Evaluation and improvement of end-to-end bandwidth measurement method for power-saving routers

<u>Daisuke KOBAYASHI</u>, Go HASEGAWA, and Masayuki MURATA

Osaka University, Japan

Background

- Increasing in energy consumption in computer networks
- Researches related to power-saving of network equipment
 - Low power modes for G-PON, ADSL2, ADSL2+
 - Adjust link speed according to traffic load for power-saving
 - Power-saving router which adjusts the processing performance according to the traffic load
 - The power saving function is triggered in shorter cycles (the order of milliseconds)
 - > This behavior may affect network controls and protocols adversely
- The effect on end-to-end network controls and protocols has not been investigated in detail

We focus on interactions between an <u>end-to-end bandwidth</u> <u>measurement method</u> and the power-saving router

K. Zaitsu, K. Yamamoto, and Y. Kuroda, et al. "Hardware implementation of fast forwarding engine using standard memory and dedicated circuit," in Proceedings of 17thIEEE conference on ICECS 2010, pp. 379-382, Dec 2010.

Background and our goal

Researches on end-to-end available bandwidth measurement method

- Pathload, ImTCP, Cprobe, Spruce, and others
- These researches do not take into account the environment where the physical link bandwidth changes by power-saving routers
- We focus on Pathload
 - Most popular, and highly accurate

Our goal

- Investigate the interactions between the bandwidth measurement behavior of Pathload and the behavior of power-saving routers
- Propose Pathload parameter tuning method
 - Maintain measurement accuracy without affecting the behavior of power-saving routers

Pathload algorithm

SLoPS measurement principle

SLoPS: Self-Loading Periodic Streams

- The sender sends packet streams to the receiver at a certain rate
- The receiver observes the arrival intervals of the packets
 - ► The interval increases→the send rate is larger than available bandwidth →decreases send rate of the next stream
 - The interval does not change→the send rate is smaller than available bandwidth →increases send rate of the next stream
- The sender repeats sending packet stream to the receiver

High accuracy, but <u>Heavy load in a short period of time</u>

Power-saving router model

- The router has several stepwise power saving configurations
 - Divides into several steps between full power (without power saving) and 0 (sleep mode)
- The router regulates its physical link bandwidth according to the network traffic load
 - Monitors the link utilization at regular intervals
 - Increases or decreases the physical link bandwidth when the average link utilization becomes larger or smaller than threshold

Effects of Pathload's measurement on power-saving routers

- The power-saving router may increase its physical bandwidth to accommodate the measurement load caused by Pathload
 - Packet streams are injected into the network to fill the available bandwidth at the tight link (bottleneck link)
 - The link of the power-saving router is likely to become tight link because they decrease the physical bandwidth in order to reduce power consumption
 - The power-saving router increases the physical bandwidth temporarily because the link utilization approaches 100%

Effects of power-saving router's behavior on Pathload's measurement accuracy

- The power-saving router increases the physical bandwidth due to traffic load by Pathload's measurement
- Pathload measures the available bandwidth based on the increased physical bandwidth
 - In such case, Pathload measurement is not correct

available bandwidth [Mbps]

We assume the situation that the power-saving router increases its physical bandwidth due to traffic load by Pathload's measurement at the first process of Pathload measurement

Simulation settings

Settings of the power-saving router and Pathload

parameters of the power-saving router	
Parameter	Value
Maximum value of physical	2000 Mbps,
link bandwidth	1000 Mbps, 100 Mbps
Number of steps	10
for regulating physical bandwidth	10
Upper threshold of link utilization	0.8
for increasing physical bandwidth	0.8
Lower threshold of link utilization	0.3
for decreasing physical bandwidth	0.5
Averaging weight	0.3
Length of the interval	5. ms
for monitoring link utilization	

8

parameters of Pathload

Probing packet size Number of packets included in a packet stream	1500 bytes
Number of packets included in a packet stream	2 5
Number of packets included in a packet stream	25
Number of streams for determining the trend	3
Estimate resolution	1 Mbps

With changing this parameter, we show evaluation of

the impact of traffic generated by Pathload

Simulation results

Effects of changing the maximum bandwidth of the tight link

The power-saving router increased its physical bandwidth due to the measurement load
 Especially when maximum bandwidth is small

•The behavior of the power-saving router degrades the measurement accuracy

Parameter tuning of Pathload

monitoring interval by power-saving router

In such cases the measurement traffic generated by Pathload strongly influences the behavior of power-saving routers

We obtained Eq. (1) through simple mathematical analysis.

Eq. (1) means the condition for not affecting a power-saving router in such case.

$$U(t_{j-1}) = w \sum_{k=0}^{j-1} (1-w)^{j-1-k} \frac{R(f)}{C(t)} + \frac{R^C}{C(t)} \leq \underbrace{\lambda_u}_{\text{Upper threshold of link utilization}}_{\text{Upper threshold of link utilization}}$$
the average link utilization contributed by Pathload's measurement contributed by contributed by for increasing physical bandwidth cross traffic

We verified the validity of Eq. (1) through comparison with the simulation results in previous slide

Conclusion and future works

Conclusion

- Investigated the interactions between the bandwidth measurement behavior by Pathload and the behavior of power-saving routers
 - Accurate measurement results are difficult to be obtained, particularly when the physical bandwidth of the tight link is narrow
- Obtained the parameter tuning method of Pathload

Future works

- Enhance the algorithm of Pathload to accommodate power-saving routers
 - Automatic parameter tuning
 - Evaluate the performance of enhanced Pathload