Proposal and Evaluation of Ant-based Routing with Prediction

Naomi Kuze, Naoki Wakamiya, and Masayuki Murata Osaka University, Japan

GSO 5

Contents

- Research background

 Controlled self-organization
 Predictive mechanism
- AntNet
- Our proposal
- Simulation and result
- Conclusion and future work

- Rapid growth of networks in scale and complexity

 Control overhead for collecting and maintaining information of the entire system will drastically increase
 - Conventional central control or distributed control with global information suffers from the considerable overhead
- Self-organization
 - High adaptability and robustness with low overhead
 - Long time is needed for emergence of a global pattern
 - Global optimality is not guaranteed

Simulation experiment

Scenario

- 1. Establish the initial path using AntNet
- 2. Remove one node randomly from the initial path
- 3. Reestablish the path using our proposal or AntNet

Measures

- Convergence time
- Path delay

Simulation setting

- Change the size of network from scale = 1 (100 m x 100 m) ~ 10 (1,000 m x 1,000 m) while keeping node density
 - At scale = 2, 150 nodes are distributed at random in the area of 200 m x 200 m
- Communication range : 30 m
- One-hop delay: 1 + |(u,v)|
 15
 msec
 |(u,v)|: the Euclidean distance from node u to node v
- Interval of ant emissions : 10 msec

Path delay

- The path delay of our proposal is approximately equal to that of AntNet
 - Pheromones already exist on the network due to the establishment of the initial path by AntNet

Conclusion and future work

- Conclusion
 - Moderate control with prediction accelerates path establishment of ant-based routing
- Future work
 - Evaluation of influence of frequent environmental changes (adaptability and robustness of prediction)