Analysis of Network Heterogeneity by Using Entropy of the Remaining Degree Distribution

Lu Chen, Shin’ichi Arakawa, and Masayuki Murata
Graduate School of Information Science and Technology
Osaka University, Osaka, Japan

Presentation Outline
1. Background and objective
2. Explain the measurement
3. Router-level topologies calculated by the measurement
4. Describing some topological characteristics by changing the value of the measurement through a rewiring process
5. Conclusion and future work

Backgrounds
- Designing the Internet that has adaptability and sustainability against environmental changes is important
 - Adaptability against the failure of network equipment
 - Sustainability against changes of traffic demand

- One of the key properties to focus on is the network heterogeneity
 - “Complex networks display heterogeneous structures from different mechanisms of evolution" [2]

Goal & Objective
- Goal
 - To design networks that has adaptability and sustainability focusing on the network heterogeneity

- Objective in this work
 - Confirming mutual information is usable to evaluate the network heterogeneity of topological structure of router-level topologies

Mutual information and Network heterogeneity
- Mutual information
 - The amount of information that can obtain about one random variable X by observing another variable Y
 - \(I = H(X) - H(X|Y) \)
 - \(H(X) \): Entropy, \(H(X|Y) \): Conditional entropy

- Diversity of a topology can be measured
 - \(Y \): a part of the topology
 - \(X \): the rest part of the topology

- Mutual information is high -> Less diverse
 - Much information can obtain about X by observing Y

- Mutual information is low -> Diverse
 - A little information can obtain about X by observing Y

Remaining degree distribution as the random variable
- Solé et al. [2] studied complex networks by using remaining degree distribution as the random variable
- Focus on the relationship of pairs of nodes connected to each other
 - Relationship: degree pattern of those two connected nodes
 - (Number of links connected to a node)

- \(Y \): degree of a node connected to a randomly selected link
- \(X \): degree of a node connected to the other end of that link

- Mutual information is high -> Less diverse
 - Much information can obtain about X (the degree of a node which connected to one side of a link) by observing Y (the degree of a node connected to the other side of the link)

- Mutual information is low -> Diverse
 - A little information can obtain about X by observing Y
Solé et al. calculated mutual information of some complex networks
• Showing even though I is almost the same, $H(X)$ and $H_i(X(Y))$ is different in some case

$I = H(X) - H_i(X|Y)$

H: Entropy
• High when Degree distribution become biased, and gets close to power

$\text{Average hops of topologies obtained by setting} H, H_c \text{ as } H = H_c \text{ from 1 to 5}$
• $U(G)$ converge to approximately zero
• When H increases higher than 3, the average hop distance decreases

$\text{Because router-level topologies obey power-law around} H = 4$
Mutual Information and the Characteristic of Topologies

- Generating topologies having different H_c, but having the same degree distribution, and compared their diversity
 - Topologies having the same degree distribution has the same H
 - under the same H, changing H_c is equal to changing $I (I = H - H_c)$

- Generating topology has pre-specified I
 - Minimizing the potential function $U_I(G)$ by simulated annealing
 - $B'(G) = |I - I(G)|$
 - $I(G)$ is calculated by the topology G generated in the optimizing search process
 - Initial topology
 - Obtained by BA model (same number of nodes and links with AT&T)
 - Changing method
 - Random rewiring that leaves the degree distribution unchanged[14]

- Minimizing the potential function $U_I(G)$ by simulated annealing
 - $B'(G) = |I - I(G)|$
 - $I(G)$ is calculated by the topology G generated in the optimizing search process

- Initial topology
 - Obtained by BA model (same number of nodes and links with AT&T)
 - Changing method
 - Random rewiring that leaves the degree distribution unchanged[14]

Conclusion and Future Work

- Conclusion
 - Investigating the network heterogeneity of router-level topologies by using mutual information
 - Router-level topologies have higher mutual information than model-based topologies
 - Generating topologies with different mutual information
 - When the distribution is the same
 - Topology has regularity when mutual information is low

- Future work
 - Evaluate network performance of topologies with different mutual information
 - Apply this measure to designing information network that has adaptability and sustainability against environment changes