
Master’s Thesis

Title

Hierarchically Structured Spatio-Temporal Traffic Measurement

utilizing Compressive Sensing

Supervisor

Professor Masayuki Murata

Author

Yoshihiro Tsuji

February 10th, 2015

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Hierarchically Structured Spatio-Temporal Traffic Measurement utilizing Compressive Sensing

Yoshihiro Tsuji

Abstract

The collection of traffic information at the short-term interval is required to perform the TE

at the short-term interval. However, the collection of traffic information at the short term interval

causes a large overhead; a large number of traffic information from a large number of nodes

are sent to the control server periodically at the short interval. As a result, especially links near

the control server may be congested. However, approaches against this problem have not been

sufficiently discussed.

In this thesis, we propose a method to collect traffic information without causing a large over-

head to the network. In our method, the traffic monitor creates the traffic model for each flow

to be monitored, and share it with the control server. Then, unless the model becomes no longer

suitable to the current traffic, the traffic monitor sends only the information on the difference from

the models, which we call the differential traffic information. If we can create the accurate traffic

model, most of the elements in the differential traffic information are small. Thus, the traffic mon-

itor compresses the differential traffic data by using the compressive sensing, which is a technique

to compress the sparse data and recover it from the compressed data.

We introduce a method to compress the differential traffic information along the route from

traffic monitors to the controller by using the compressive sensing. In this method, we construct a

tree whose root is the controller. The differential traffic information is sent along the tree from the

leaves to the root. Each traffic monitor compresses the differential traffic information generated

by it and those sent from its children into a few number of packets. Thus, this approach avoids the

concentration of traffic information on the links near the controller.

In this thesis, we evaluate our method by numerical simulation. The results demonstrate that

we can reduce the amount of the information required to be collected by half without causing the

errors larger than 1 [Mbps], if the number of flow entries which cannot be predicted accurately is

smaller than a quarter of the number of the total entries.

1

Keywords

Traffic Measurement

Traffic Data Collection

Compressive Sensing

Traffic Modeling

2

Contents

1 Introduction 5

2 Related Work 7

2.1 Traffic Engineering . 7

2.2 Traffic Measurement . 7

2.3 Traffic Prediction . 8

3 Traffic Measurement utilizing Compressive Sensing 10

3.1 Compressive Sensing . 10

3.2 Compression and Recovery . 10

3.2.1 Quantization . 11

3.2.2 Compression . 11

3.2.3 Recovery . 11

3.2.4 Reverse Quantization . 12

4 Hieararchically Structured Spatio-Temporal Traffic Measurement 14

4.1 Overview . 14

4.2 Hierarchical Traffic Data Collection . 14

4.3 Updating Traffic Model . 15

5 Evaluation 18

5.1 Evaluation Environment . 18

5.2 Number of non-Zero Entries after Quantization 18

5.3 Errors caused by Compression . 19

5.4 Overall Errors . 19

5.5 Discussion on Intervals to Update Traffic Models 20

6 Conclusion 30

Acknowledgments 31

References 32

3

List of Figures

1 Coding the traffic information . 13

2 Overview of collection of traffic information . 16

3 Flowchart to update the traffic model . 17

4 Number of non-zero entries . 21

5 Error caused by CS (|y| = 100, compression ratio is 1) 22

6 Error caused by CS (|y| = 75, compression ratio is 1.33) 23

7 Error caused by CS (|y| = 50, compression ratio is 2) 24

8 Error caused by CS (|y| = 25, compression ratio is 4) 25

9 Overall error (|y| = 100, compression ratio is 1) 26

10 Overall error (|y| = 75, compression ratio is 1.333) 27

11 Overall error (|y| = 50, compression ratio is 2) 28

12 Overall error (|y| = 25, compression ratio is 4) 29

4

1 Introduction

The network operators must accommodate the fluctuating traffic without causing congestion. So

far, network operators prepare the redundant link capacity so as to accommodate the possible

traffic. However, this approach requires high cost according as the variation of traffic increases.

One approach to accommodating fluctuating traffic without a large cost is to dynamically

change the routes so as to follow the traffic changes. This approach is called traffic engineering

(TE), and many methods have been proposed [1, 2]. In these methods, the network controller

is deployed. The network controller collects the traffic information from the nodes within the

network, and then calculates the suitable routes based on the collected traffic information.

In the TE, the traffic information is an important input. The existing TE methods use the traffic

measurement technologies such as Netflow [3] and sFlow [4]. In NetFlow, traffic monitors have

traffic counters per flow and increment their counters when a packet arrives, and then, the control

server periodically collects flow-statistics from all traffic monitors in the network and obtains

the traffic information. On the other hand, in sFlow, traffic monitors summarize sampled packet

information and send directly to the control server. Then the control server obtains the traffic

information by the calculation based on sampled packet information.

Most of TE methods focus on the daily traffic changes, and configure the routes periodically

at the intervals of a few hours. However, the route control at the hourly intervals may be insuffi-

cient when the traffic fluctuation is significantly large. For example, Benson et al illustrated that

the route control at the intervals of a few seconds is required to provide sufficient bandwidth to

communicating nodes in the data center network [5].

The collection of traffic information at the short-term interval is required to perform the TE

at the short-term interval. However, the collection of traffic information at the short term interval

causes a large overhead; a large number of traffic information from a large number of nodes

are sent to the control server periodically at the short interval. As a result, especially links near

the control server may be congested. However, approaches against this problem have not been

sufficiently discussed.

In this thesis, we propose a method to collect traffic information without causing a large over-

head to the network. In our method, the traffic monitor creates the traffic model for each flow

to be monitored, and share it with the control server. Then, unless the model becomes no longer

5

suitable to the current traffic, the traffic monitor sends only the information on the difference from

the models. Hereafter we call the information on the difference from the models differential traf-

fic information. Then, the control server obtains the traffic data by adding the differential traffic

information to the traffic rate generated by the traffic model.

If we can create the accurate traffic model, most of the elements in the differential traffic

information are small. Thus, the traffic monitor compresses the differential traffic data by using

the compressive sensing (CS), which is a technique to compress the sparse data or recover it from

the compressed data.

We introduce a method to compress the differential traffic information along the route from

traffic monitors to the controller by using the compressive sensing. In this method, we construct a

tree whose root is the controller. The differential traffic information is sent along the tree from the

leaves to the root. Each traffic monitor compresses the differential traffic information generated

by it and those sent from its children into a few number of packets. Thus, this approach avoids the

concentration of traffic information on the links near the controller.

In this thesis, we evaluate our method by numerical simulation. The results demonstrate that

we can reduce the amount of the information required to be collected by half without causing the

errors larger than 1 [Mbps], if the number of flow entries which cannot be predicted accurately is

smaller than a quarter of the number of the total entries.

The rest of this thesis is organized as follows. First, Section 2 explains the related work,

especially focused on the TE, traffic measurement and traffic prediction. Section 3 introduces the

method to compress and recovery the traffic information based on compressive sensing. Section 4

presents the method of hierarchical collection and updating traffic models in our traffic monitoring.

Section 5 evaluates our method by numerical simulation. Section 6 concludes this thesis.

6

2 Related Work

2.1 Traffic Engineering

Traffic engineering (TE) has been studied as one approach to accommodating the traffic changes

by dynamic changing routes. The process of TE method consists of following three steps; (1) the

collection of traffic information, (2) the calculation of the routes so as to accommodate the traffic,

and (3) the implementation of calculated routes into the actual network.

Most of them focused on the daily traffic changes, and configures the routes periodically at

the intervals of a few hours [1, 2]. However, the recent growth of the Internet services such as

streaming and clouds has enlarged the time variation of the Internet traffic. In addition, the growth

of Machine-to-Machine communication will accelerate the increase of the traffic variation. As the

time variation of the network traffic becomes large, more short-term control is required. In fact,

Benson et al. illustrated that dynamical route changes at the interval of a few seconds are required

to provide sufficient bandwidth in the data center network [5]. To perform TE at such short-term

intervals, the control server must collect traffic information at the short-term intervals, which may

cause a large overhead.

2.2 Traffic Measurement

Traffic information is required to manage the network. Especially, traffic matrices (TMs), which

are the matrices whose elements are traffic rates between all nodes in network, are important

for the network management. TM gives important input for many applications such as future

traffic prediction, network optimization, protocol design, anomaly detection, and dynamic routing

control and so on.

TM is obtained by the following three steps; (1) each traffic monitor monitors the traffic per

flow, (2) it forwards the monitored traffic information to the control server, and (3) the control

server analyzes the received traffic information. Major traffic monitoring technologies, which are

widely used, are NetFlow [3] and sFlow [4]. In NetFlow, traffic monitors prepare traffic counters

per and increment their counters when a packet arrives, and then, the control server periodically

collects flow-statistics from all traffic monitors in network. On the other hand, in sFlow, traffic

monitors summarize sampled packet information and send directly to the control server, and then,

the control server obtains the traffic information based on sampled packet information.

7

However, as a traffic rate per each flow becomes large, the overhead of these traffic monitoring

methods may be a problem; the traffic monitor requires more CPU resources to maintain the

traffic counter, and a large number of samples may be forwarded to the control server. So far,

this problem has been addressed by setting the sampling rate to a small value, or by monitoring

traffic only within the predefined small range of the target traffic to be monitored. However, these

approaches may cause the large monitoring errors.

Therefore, several approaches to mitigating the overhead of the traffic monitoring have been

proposed [6–8]. L. Yuan et al. have proposed a programmable measurement architecture [6],

where the algorithms to monitor traffic can be implemented. While G. Cormode et al. have

proposed the method to identify the hierarchical heavy hitters in multi-dimension [7], L. Jose

et al. also implemented the method to identify the hierarchical heavy hitters using commodity

switchs [8]. They focused only on the overhead of the traffic monitors. The overhead of the

collection of the traffic information has not been sufficiently discussed.

However, the overhead of the collection of the traffic information is a non-negligible problem

especially for the manager of a large network. As the network becomes large, a large number

of traffic information concentrate on the links near the control server. Moreover, as the control

server performs the control of the network at the short-term intervals, the intervals to collect traffic

information become smaller, which also increase the rate of the traffic information sent by each

traffic monitor. Therefore, in this thesis, we focus on the problem of the overhead of the collection

of the traffic information.

The final steps to obtain the traffic information may also require the large CPU resources,

as the number of collected traffic information becomes large. Several approaches to mitigate

the overhead caused by analyzing the traffic information have been proposed [9]. Y. Lee et al.

has developed the Internet traffic measurement and analysis system on the parallel distributed

computing architecture Hadoop. Therefore, if we can collect the traffic information with a small

overhead, we can obtain the traffic information immediately by using these approaches to analyze

the received information.

2.3 Traffic Prediction

The predictability of the Internet traffic has paid much attention from many domains like capacity

planning, anomaly detection, admission control, and TE. To predict the traffic in network, many

8

prediction models have been proposed such as ARMA, ARIMA [10], ARCH [11], GARCH [12],

Neural Network [13] and so on. In these methods, traffic is predicted by the two phases, learning

phase and prediction phase. In the learning phase, the traffic data of past time slots is analyzed

to tune the parameters of the traffic model. Then, in the prediction phase, the future traffic rate

is predicted by calculating the traffic model whose parameters are tuned in the learning phase to

learn real-time network condition.

In our method, the traffic monitor creates the traffic model for each flow to be monitored, and

share it with the control server. Then, unless the model becomes no longer suitable to the current

traffic, the traffic monitor sends only the differential traffic information from the models. If we

can create the accurate traffic model, most of the elements in the differential traffic information are

small. Thus, the traffic monitor compresses the differential traffic data by using the compressive

sensing, where the sparsity of the data determines its performance.

9

3 Traffic Measurement utilizing Compressive Sensing

3.1 Compressive Sensing

In this thesis, we apply the compressive sensing (CS) to traffic measurement. The CS reduces the

size of the data by using its redundancy. In the CS, we only measure the signal y ∈ RM , whose

size is smaller than the original signal x ∈ RN . y and x have the relation of y = Ax, where A is the

matrix called the measurement matrix. That is, in the CS, the original signal x should be estimated

from measurement signal y such that y = Ax. This is a ill-posed problem, because the number of

simultaneous equations is smaller than the number of variables. However if the coherence of the

measurement matrix is sufficiently small and the original signal is sparse, the original signal can be

recovered with slight errors [14]. In this thesis, we use the CS to compress the traffic measurement.

Though using the CS to compress the traffic measurement causes the errors, the errors included

in the traffic measurement are acceptable, unless the errors do not degrade the performance of the

application using the traffic measurement. For example, the TE can set the suitable routes even

when the relative errors included in the traffic matrix are 20 % [15].

Figure 1 shows the steps to encode or decode the traffic measurement based on the CS. First,

we create the traffic model. If we can create the accurate traffic model, most of the elements in the

differential traffic information are small. As long as the traffic monitor and the control server share

the model in advance, all we have to collect is the differential traffic information. By applying the

CS to these data, we collect the differential traffic information of all nodes with a few packets.

3.2 Compression and Recovery

The traffic monitor creates the traffic model for each flow to be monitored, and shares it with the

control server. The traffic monitor sends only the information on the differential traffic informa-

tion. By using the information, the control server collects the traffic information. Here, if we can

create the accurate traffic model, most of the entries in the differential traffic information are quite

small. The differential traffic information can be sent with compressed by using the CS. Hereafter

in this section, we describe the method to compress and recovery the traffic information.

10

3.2.1 Quantization

First, the traffic monitor quantizes the differential traffic information by the predefined quantiza-

tion size. The quantized differential traffic information xf corresponding to the flow f is obtained

by Eq. (1).

xf = trunc
(
ϵf
ρ

)
(1)

where ϵf is the difference obtained by Eq. (2), ρ is the quantization size, and trunc (a) is the same

signed integer that does not exceed |a|. For example, trunc (0.4) = 0, trunc (−1.2) = −1.

ϵf = tf − zf , (2)

where tf is the actual traffic information, and zf is the predicted traffic rate generated by the traffic

model. By this quantization in Eq. (1), most of the elements in the vector x = (xf1 , xf2 , ..., xfn)

are zero. That is, x is sparse.

3.2.2 Compression

The compressed differential data y is calculated by Eq. (1), where A is the measurement matrix.

y = Ax (3)

The compression ratio is defined by N/M , where N and M is the sizes of x and y respectively.

In this thesis, we generate A so that the coherence of A becomes small by the method proposed

by Abolghasemi et al. [16]. In this method, A is obtained by

A = arg min
A

∥AtA− I∥2F . (4)

By setting the measurement A whose coherence is small, we can accurately estimate x from y,

when x is sparse.

3.2.3 Recovery

The control server recovers the differential traffic information from the compressed differential

data y. In this thesis, we use Orthogonal Matching Pursuit (OMP) algorithm [17], which is one of

11

the well-known algorithms to recover the sparse signals. By using OMP algorithm, the estimated

differential traffic data x̂ is obtained by

x̂ = arg min
x

∥y −Ax∥22 s.t. ∥x∥0 ≤ θ. (5)

3.2.4 Reverse Quantization

The recovered differential traffic information x is reverse quantized by the quantization size ρ into

ϵ̂f . This ϵ̂f is obtained by

ϵ̂f = ρx̂f . (6)

Then, by using the estimated difference ϵ̂f and the predicted traffic rate zf generated by the traffic

model, the estimated traffic information zf is calculated by the following Eq. (7).

t̂f = zf + ϵ̂f (7)

12

Traffic data

Generate traffic model

Generate the traffic rate

from the traffic model

Traffic model data

Traffic differential data

Reverse

quantization

Quantization Compression

Quantization

(a) Encoding

Reverse

quantization

Traffic dataTraffic differential data

Traffic model data

Reverse quantizationRecovery

Generate the traffic rate

from the traffic model

(b) Decoding

Figure 1: Coding the traffic information

13

4 Hieararchically Structured Spatio-Temporal Traffic Measurement

4.1 Overview

Figure 2 shows the overview of our method to collect traffic information. In this method, each

traffic monitor creates the traffic models for the flows monitored by it and sends them to the con-

trol server. Since then, the traffic monitor calculates the differential traffic information by using

the traffic model generated for the flow. And, if the differential traffic information exceeds pre-

defined threshold, the traffic monitor Nodei creates the quantized differential traffic information

xNodei . The difference xNodei generated on each traffic monitor is transmitted along the collec-

tion route which forms a tree topology whose root is the control server. The differential traffic

data is compressed along the route; the compressed differential traffic data yNodei is generated

by summing the packets received from its children and the compressed differential traffic data of

itself. This method enables to collect traffic information without concentration of packets near

the control server. The control server recovers the differential traffic information x̂f for each flow

entry from the received packet. Then, the control server gets the corresponding information t̂f

by adding the traffic rate zf generated by the traffic model and the reverse quantized differential

traffic information ϵ̂f .

4.2 Hierarchical Traffic Data Collection

In this thesis, we use the mechanism based on CDG (Compressive Data Gathering, [18]) to collect

the differential traffic information. The CDG is a technique to collect sensor data with a low

bandwidth based on the CS. In this technique, the data is compressed along the route from sensor

to the sink node. By applying this technique, we compress the traffic differential data monitored

by multiple traffic monitors into a small number of packets.

The compressed data yNodei generated at the traffic monitor Nodei on the collection path is

calculated by

yNodei = AxNodei +
∑

Nodej∈CNodei

yNodej , (8)

where xNidei is the differential traffic information for the flows monitored by the traffic monitor

Nodei, and CNodei is the set of the children of the traffic monitor Nodei. Finally, the control

14

server receives the amount of the compressed data at k traffic monitors which is obtained by

∑
i=1,..,k

AxNodei . (9)

This value is equivalent to the compressed data y from the difference x. This is because of the

following deformation.

∑
i=1,..,k

AxNodei = A
∑

i=1,..,k

xNodei = Ax = y (10)

4.3 Updating Traffic Model

If the traffic models shared by the traffic monitors and the control server are accurate, the traffic

differential information becomes sparse. However, the traffic pattern may change significantly,

and the traffic model may no longer be unsuitable. In this case, the differential traffic information

is not sparse, and is difficult to compress and recover based on the CS.

To address this problem, the traffic monitor and the control server cooperate with each other

in updating the traffic models. Figure 3 shows the flowchart to update the traffic model. At each

time slot, each traffic monitor checks whether the current traffic model is suitable by checking the

difference between the actual traffic information tf and the predicted traffic rate zf generate by the

traffic model for the flow f . If the current model is unsuitable, (1) the traffic monitor renews the

traffic model and sends traffic model data to the control server, (2) the control server updates the

traffic model data. Otherwise, unless the model becomes no longer suitable to the current traffic,

the traffic monitor sends only the differential traffic information.

There may be several policies to check whether the update is necessary. One example is that

the traffic monitor updates the traffic model only when the differential traffic information becomes

larger than a threshold at the consecutive λ time slots.

15

1

2

i, j

Monitor: calculate the quantized

differential traffic information for each

flows and send compressed one to parent

Compression: receive yi packets from children

and send yj, which is sum of received packets

and compressed data of xj, to the parents

Calculate traffic: calculate the traffic

information by adding corresponding

differential traffic information and the

traffic rate predicted by its model

Recover: recover the differential

traffic information from received y

Figure 2: Overview of collection of traffic information

16

Calculate

the differential data

Access the counter

(The model is suitable

for the current traffic)?

Create the traffic modelP
e
r
o
n
e
ti
m
e
sl
o
t

Send the traffic model data

Send the differential

data with compressed

Ye
s

No

(a) Traffic monitor

(New traffic model

data is arrive)?

Calculate the traffic data

Receive the traffic model data

Update the traffic model

P
e
r
o
n
e
ti
m
e
sl
o
t

Receive and recovery

the differential data

N
o

Yes

(b) Control server

Figure 3: Flowchart to update the traffic model

17

5 Evaluation

5.1 Evaluation Environment

In this thesis, we evaluate our method, focusing on the steps to compress and recover the traffic

information after the traffic models are obtained. In this evaluation, we generate two kinds of

the prediction errors of the traffic model. The first one is the white noise, which is the relatively

small errors. The other one is the spikes, which cause the significant prediction errors. If the

traffic model is accurate, most of the flows include only the white noises, but a small number of

flows, whose traffic rates change suddenly, may include the spikes. In this section, we evaluate

our method by changing the number of spikes.

The evaluation environment is described as follows. We assume that each traffic monitor

monitors 100 flows whose average rate is 10 [Mbps]. We assume that the predictive error ϵ per

each time slot follows the Gaussian distribution N
(
0, σ2

)
. We set σ to 100 [Kbps] and 3 [Mbps]

for the flow with only the white noise and for the flow with the spike respectively. We set the

quantization size ρ to (0.00, 2.50] [Mbps] and we set the size of measurement signal |y| to 25, 50,

75, and 100.

In our evaluation, we generate the measurement matrix A by Vahid’s method [16] setting the

step size to 0.02 and the number of the iteration to 100. We use the OMP algorithm to recover the

traffic information. We implement the OMP algorithm by using

sklearn.linear model.OrthogonalMatchingPursuit function, which is available on Python’s ma-

chine learning package scikit-learn [19].

5.2 Number of non-Zero Entries after Quantization

Figure 4 shows the number of non-zero elements in the quantized differential data x by each

quantization size. As the quantization size becomes large, the non-zero entries in the quantized

differential data become small. The result demonstrates that the quantization size should be set to

a large value so as to keep the number of non-zero entries small, as the number of spikes increases.

18

5.3 Errors caused by Compression

Figure 5 through 8 show the error caused by the CS. In these figures, the horizontal axis is the

quantization size, and the vertical axis is the error caused by the CS. These figures show the

results for the different compression ratio; Figures 5, 6, 7 and 8 show the results for the cases that

compression ratio is 1, 1.33, 2, and 4 respectively. In this evaluation, we use the two kinds of

errors as the metrics. The first one is the average error defined by

1

n

n∑
i=1

(ρ · |x̂fi − xfi |), (11)

where ρ is the quantization size, xfi is the quantized differential traffic information for the flow

fi, and x̂fi is the recovered differential traffic information for the flow by the CS. The other one is

the worst error defined by

max
i=1,...,n

(ρ · |x̂fi − xfi |). (12)

These figures show that the errors become large as the quantization size becomes small. This

is because the smaller quantization size causes more non-zero entries in the differential traffic

information, which degrades the performance of the CS.

5.4 Overall Errors

Figures 9 through 12 show the overall errors in the measured traffic. In these figures, the horizontal

axis is the quantization size, and the vertical axis is the errors. Similar to Section 5.3, we evaluate

the errors with various compression ratio, and we use two metrics on errors; the first one is the

average error defined by

1

n

n∑
i=1

(|ϵfi − ϵfi |), (13)

and the other one is the worst error defined by

max
i=1,...,n

(|ϵfi − ϵfi |). (14)

From these figures, we discuss the impact of the compression ratio on the number of spikes

that can be accurately recovered. These figures indicate that our method allows 90, 50, 25, and 7

spikes without causing overall error larger than 1 [Mbps], by setting the compression ratio to 1,

19

1.33, 2, and 4 respectively. In other words, if the number of spikes included in the traffic becomes

smaller than the quarter of the total number of the entries, we can compress the traffic information

by half, though the compression ratio should be set to a small value if more spikes are included in

the traffic.

5.5 Discussion on Intervals to Update Traffic Models

When the significant changes of the traffic pattern occur, the traffic model may no longer be suit-

able to the current traffic, and a large prediction error may occur. If many flows include large

prediction errors, the differential traffic information includes a large number of non-zero entries,

and our compression based on the CS causes the large errors. To avoid large errors, we should keep

the traffic model suitable to the current traffic by updating the traffic model. In this subsection, we

discuss the policy to update the traffic model.

According to the results discussed in Section 5.4, the number of non-zero entries should be

less than 25 % of the number of the total entries so as to make the compression ratio 50 % without

causing errors larger than 1 [Mbps]. The interval to update the traffic models can be discussed

based on this result. Assuming that the number of non-zero entries in the differential traffic infor-

mation is 10 % of the number of total entries at the first steps after the models are updated, and the

number of non-zero entries increases by 1.1 times at each time slot, the required interval to update

the traffic model λ should satisfy

0.1× 1.1λ < 0.25. (15)

Solving this equation, we obtain λ = 9.

To obtain the interval to update the traffic mode, we need the number of non-zero entries of

the traffic information of whole network. However, the number of non-zero entries is unknown

for the traffic monitors. Instead, each traffic monitor can use the number of non-zero entries in the

differential traffic information generated by it to estimate the number of non-zero entries of the

traffic information of whole network.

20

Figure 4: Number of non-zero entries

21

(a) Average error

(b) Worst error

Figure 5: Error caused by CS (|y| = 100, compression ratio is 1)

22

(a) Average error

(b) Worst error

Figure 6: Error caused by CS (|y| = 75, compression ratio is 1.33)
23

(a) Average error

(b) Worst error

Figure 7: Error caused by CS (|y| = 50, compression ratio is 2)
24

(a) Average error

(b) Worst error

Figure 8: Error caused by CS (|y| = 25, compression ratio is 4)
25

(a) Average error

(b) Worst error

Figure 9: Overall error (|y| = 100, compression ratio is 1)
26

(a) Average error

(b) Worst error

Figure 10: Overall error (|y| = 75, compression ratio is 1.333)
27

(a) Average error

(b) Worst error

Figure 11: Overall error (|y| = 50, compression ratio is 2)
28

(a) Average error

(b) Worst error

Figure 12: Overall error (|y| = 25, compression ratio is 4)
29

6 Conclusion

We proposed a method to collect traffic information without causing a large overhead to the net-

work. In our method, the traffic monitor creates the traffic model for the flow to be monitored, and

share it with the control server. Then, unless the model becomes no longer suitable to the current

traffic, the traffic monitor sends only the information on the difference from the models. Then,

the control server obtains the traffic data by adding the differential traffic information to the traffic

rate generated by the traffic model.

We also introduced a method to compress the differential traffic information along with the

route to the controller by using the compressive sensing. In this method, we construct a tree

whose root is the controller. The differential traffic information is sent along the tree from the

leaves to the root. Each traffic monitor compresses the differential traffic information generated

by it and those sent from its children into a few number of packets. Thus, this approach avoids the

concentration of traffic information on the links near the controller.

We evaluated our method by numerical simulations. The results demonstrate that we can

reduce the amount of the information required to be collected by half without causing the errors

larger than 1 [Mbps], if the number of flow entries which cannot be predicted accurately is smaller

than a quarter of the number of the total entries.

Our future work includes the evaluation of our method combined with the creation of the

traffic models. Moreover, we will also discuss the method to reduce the overhead to collect traffic

information more by utilizing the correlation between flow entries.

30

Acknowledgments

Foremost, I would like to express my deepest gratitude to Professor Masayuki Murata of Osaka

University for his exact guidance and insightful comments with foresight. Furthermore, I would

like to show my sincere appreciation to Assistant Professor Yuichi Ohsita of Osaka University for

continuous support, helpful discussions, and insightful advice. Without their support, I cannot

achieve all results in my research life.

My sincere appreciation also goes to Mr. Akihiko Miyazaki, and Mr. Koji Yamazaki of NTT

Device Technology Laboratories for their helpful comments and fruitful discussions. Moreover,

I would like to show my appreciation to Professor Kazunari Inoue of Nara National College of

Technology for support in the implementation aspect.

I am also grateful to the helpful advice from Associate Professor Shin’ichi Arakawa, Assistant

Professor Daichi Kominami, and Assistant Professor Yuya Tarutani of Osaka University. Finally,

I would like to thank my senior associates including Mr. Tatsuya Otoshi, and my colleagues in the

Department of Information Networking, Graduate School of Information Science and Technology

of Osaka University for their kindness.

31

References

[1] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg, “COPE: Traffic Engineer-

ing in Dynamic Networks,” ACM SIGCOMM Computer Communication Review, vol. 36,

no. 4, pp. 99–110, Aug. 2006.

[2] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, “Overview and Principles of

Internet Traffic Engineering,” RFC 3272, 2002.

[3] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC 3954, Oct. 2004.

[4] P. Phaal, S. Panchen, and N. McKee, “InMon Corporation’s sFlow: A Method for Monitoring

Traffic in Switched and Routed Networks,” RFC 3176, 2001.

[5] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine Grained Traffic Engineering

for Data Centers,” in Proceedings of ACM CoNEXT, 2011, pp. 8:1–8:12.

[6] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: Towards Programmable Network Mea-

surement,” ACM SIGCOMM Computer Communication Review, vol. 37, no. 4, pp. 97–108,

Aug. 2007.

[7] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Diamond in the Rough: Finding

Hierarchical Heavy Hitters in Multi-dimensional Data,” in Proceedings of ACM SIGMOD

ICMD, 2004, pp. 155–166.

[8] L. Jose, M. Yu, and J. Rexford, “Online Measurement of Large Traffic Aggregates on Com-

modity Switches,” in Proceedings of USENIX Hot-ICE, 2011.

[9] Y. Lee and Y. Lee, “Toward Scalable Internet Traffic Measurement and Analysis with

Hadoop,” ACM SIGCOMM Computer Communication Review, vol. 43, no. 1, pp. 5–13, Jan.

2012.

[10] M. F. Zhani, H. Elbiaze, and F. Kamoun, “Analysis and Prediction of Real Network Traffic,”

Journal of Networks, vol. 4, no. 9, pp. 855–865, 2009.

[11] B. Krithikaivasan, Y. Zeng, K. Deka, and D. Medhi, “ARCH-Based Traffic Forecasting

and Dynamic Bandwidth Provisioning for Periodically Measured Nonstationary Traffic,”

IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp. 683–696, 2007.

32

[12] B. Zhou, D. He, Z. Sun, and W. H. Ng, “Network Traffic Modeling and Prediction with

ARIMA/GARCH,” in Proceedings HET-NETs Conference, 2005, pp. 1–10.

[13] P. Cortez, M. Rio, M. Rocha, and P. Sousa, “Internet Traffic Forecasting using Neural Net-

works,” in IEEE International Joint Conference on Neural Networks, 2006, pp. 2635–2642.

[14] Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications. Cambridge

Univ. Press, 2012.

[15] M. Roughan, M. Thorup, and Y. Zhang, “Traffic Engineering with Estimated Traffic Matri-

ces,” in Proceedings of ACM SIGCOMM IMC, 2003, pp. 248–258.

[16] V. Abolghasemi, S. Ferdowsi, B. Makkiabadi, and S. Sanei, “On Optimization of the Mea-

surement Matrix for Compressive Sensing,” in Proceedings of European Signal Processing

Conference, 2010, pp. 427–431.

[17] J. Tropp and A. Gilbert, “Signal Recovery From Random Measurements Via Orthogonal

Matching Pursuit,” IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4655–

4666, Dec 2007.

[18] C. Luo, F. Wu, J. Sun, and C. W. Chen, “Compressive Data Gathering for Large-scale Wire-

less Sensor Networks,” in Proceedings of ACM MobiCom, 2009, pp. 145–156.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Ma-

chine Learning Research, vol. 12, pp. 2825–2830, 2011.

33

