Enhancing Convergence with Optimal Feedback for Controlled Self-organizing Networks

> O<u>Naomi Kuze</u>, Daichi Kominami, Kenji Kashima, Tomoaki Hashimoto, Masayuki Murata

Background

Rapid growth of networks in scale and complexity
 Limitation of conventional information systems based on central control or distributed control with global information

Self-organizing systems

- High scalability, adaptability, robustness
- Components behave autonomously based on local information
 Global pattern emerges through interactions among components
- Disadvantage of self-organizing systems
- · Global optimality is not guaranteed
- Long time is needed for emergence
- \rightarrow Adaptation to environmental changes is slow
- We introduce <u>controlled self-organization</u> where the self-organizing system is controlled through some constraints

Y(t)

Convergence with restrictions in WSNs

- In realistic situation in WSNs
- · The potential convergence speed is improved
- by about 4.1 times
- The controller dose not always collect latest potential information
 Congestion occurs around sink nodes because the controller

Conclusion and future work

Conclusion

 We introduce an optimal feedback to potential-based routing
 We show that an optimal feedback enhance potential convergence speed even with some constraints in WSNs

Future work

- We will reduce computational cost by introducing <u>model reduction</u>
 Computational cost for estimating the potential dynamics
- increases exponentially as the number of nodes becomes larger • We now trying <u>a distributed control</u> for large-scale networks
- Several controllers provide optimal feedback in a distributed manner
- We consider that a distributed control can enhance convergence with lower computational cost and communication overhead