
Master’s Thesis

Title

Yuragi-based Virtual Network Embedding Method for

Software Defined Infrastructure with Uncertain

Environments

Supervisor

Professor Masayuki Murata

Author

Koki Inoue

February 12th, 2016

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Yuragi-based Virtual Network Embedding Method for Software Defined Infrastructure

with Uncertain Environments

Koki Inoue

Abstract

SDI (Software Defined Infrastructure) provides virtualized infrastructures to customers

by slicing computing resources and network resources. One of the important problems for

deploying SDI framework is to control the assignment of physical resources to a virtual

network against changes of traffic demand and service demand. For this problem, VNE

(Virtual Network Embedding) problem that maps a virtual network to physical resources

has been addressed, but a centralized calculation was assumed. It is difficult to adopt the

centralized approaches as a size of infrastructure increases and a number of VN requests

increases. This is because the identification of current situation becomes more complicated.

In this paper, we present a VNE method that works with a little information for the

large, complicated, and uncertain SDI frameworks. To achieve this, the proposed method

applies biological “Yuragi” principle. Yuragi, which is a Japanese word, represents a small

perturbation to the system. Yuragi is a mechanism of adaptability of organisms and

is often expressed as attractor selection model. This paper develops Yuragi-based VNE

method that deals with node attribute and has a generality of a performance objective and

runs in multi-slice environments. Simulation results show that the Yuragi-based method

decreases VN migrations by about 45% than a heuristic method to adapt the fluctuations

in resource requirements.

Keywords

Virtual Network Embedding

Software Defined Infrastructure

1

Yuragi-based VNT control

Software Defined Networks

Network Function Virtualization

Virtual Node Mapping

Delay Profile

2

Contents

1 Introduction 5

2 Virtual Network Services in SDI Frameworks 8

2.1 SDI . 8

2.2 Virtual Network Embedding Problem . 10

2.3 Centralized Approaches for VNE . 12

3 Yuragi-based Virtual Network Embedding Method 13

3.1 Yuragi Principle . 13

3.2 Performance Objectives . 14

3.3 Yuragi-based VNE Method . 15

3.4 VN migration . 18

4 Evaluation with Computer Simulation 19

4.1 Simulation Environment . 19

4.2 Delay Profile . 20

4.3 Heuristic Method for Comparison . 21

4.4 Simulation Results . 22

5 Conclusion 33

Acknowledgements 34

Reference 35

3

List of Figures

1 Service model in Software Defined Infrastructure 9

2 Comprehension of VNE problem with a simple example 11

3 Activity function for γ = 1.0, δ = 5.0 and θ = 2.0 17

4 Environmental fluctuations with a lapse of time 20

5 Delay models used for the computer simulation 21

6 Maximum delay on each VN . 25

7 Activity on each VN . 26

8 Average of maximum delay for 20 VNs . 27

9 Embedding ratio of VN requests . 27

10 The number of VN migrations . 28

11 Maximum delay on each VN: Linear delay model 29

12 Average of maximum delay for 20 VNs: Linear delay model 30

13 Maximum delay on each VN: Apache delay model 31

14 Average of maximum delay for 20 VNs: Apache delay model 32

4

1 Introduction

Information network faces with new emerging services such as mobile services, cloud com-

puting services, and social services. To deploy new services on information network and/or

information systems immediately, SDI (Software Defined Infrastructure) has been focused.

SDI provides virtualized infrastructures to customers by slicing computing resources and

network resources. In the SDI framework, thanks to the advance of virtualization technolo-

gies combined with software technology, the customers order resource requests to service

providers via, e.g., web applications, and the sliced virtualized resource is immediately

assigned to the customers.

A key to enjoying the SDI framework is the network virtualization technologies and

their control. The network virtualization technologies are at the stage of research and

development phase. In recent years, SDN (Software Defined Networking) and NFV (Net-

work Function Virtualization) technologies have been expected to replace the conventional

network management systems, and standardization of SDN/NFV technologies is being

promoted. SDN/NFV technologies enable programmable and automated network control

while the conventional systems require the network operator to configure various kinds

of network devices [1–5]. That is, SDI frameworks realized by SDN/NFV technologies

have a potential to support a rapid and flexible deployment of services such as on-demand

resource allocation, self-service provisioning, and secure cloud services [2].

Although SDN/NFV technologies and their standardization are important for deploy-

ing SDI, another important problem is to control the assignment of physical resources to

a virtual network against changes of traffic demand and service demand. For this prob-

lem, VNE (Virtual Network Embedding) problem has been addressed [6–12]. The VNE

problem is a placement problem to allocate virtual resources to the physical network with

the optimization of some performance objectives. In the VNE problem, service demands

from customers are translated to VN (Virtual Network) requests. VN consists from the

virtual nodes and the virtual links. Each of the virtual nodes is hosted on a physical node

as a form of virtual machines. Then, the virtual nodes are connected through a path of

the physical node, which forms virtual links.

The VNE problem is divided into two sub-problems; virtual node mapping and virtual

5

link mapping. Virtual node mapping decides the location of the physical node for each

virtual node. Note that each virtual node must be allocated to a physical node supporting

its “node attribute”. Node attribute is a classification of nodes defined by supported

OS, storage types, or a use of the node for, e.g., computing, storage, or packet switching.

Virtual link mapping decides the path on physical network for virtual links between virtual

nodes.

In [9–12], a centralized calculation was assumed to solve virtual node mapping and

virtual link mapping. That is, a centralized component gathers traffic information and

resource utilization of each VN, and identify the current situation of networks. Then, the

component solves the optimization problem that optimizes some metrics such as maxi-

mizing revenue or minimizing resource utilization. However, when the scale of network

size gets larger and the number of multiplexed VNs increases, the identification of current

situation gets complicated with enormous network information. As the network opera-

tors want to know the current situation more correctly and precisely, more information

is necessary to collect. This will lead to the occupation of link bandwidth, an increase

of delay, and a bottleneck of network scalability [5]. Note that the calculation time to

obtain a solution of the optimization problem also gets larger. However, the calculation

time may be relaxed by some heuristic algorithm with a little (with optimistic outlook)

or more sacrifice of the quality of the solution. Therefore, it is difficult to adopt the

centralized approaches as a size of infrastructure increases and a number of VN requests

increases. Moreover, the environments surrounding the Internet today are continuously

changing, thus, the adaptive control of VNE is required to handle uncertain changes of

environments.

In this paper, we present a VNE method which works with a little information for the

large, complicated, and uncertain SDI frameworks. To achieve this, the proposed method

applies biological “Yuragi” principle. Yuragi, which is a Japanese word, represents a small

perturbation, both externally and internally generated, to the system. For example, Yuragi

is used for representing small swaying in the candle. Yuragi is a mechanism of adaptability

of organisms and is often expressed as attractor selection model. Our research group has

developed virtual network control based on attractor selection for optical networks. Our

results showed that our control mechanism shows the high adaptability to environmental

6

fluctuations with restricted information [13–16]. Unlike the virtual network on optical

networks, virtual network on SDI frameworks has to consider various matters such as node

attribute, computing performance on servers, and VN multiplexing. Therefore, this paper

develops Yuragi-based VNE method that deals with node attribute and has generality of

a performance objective and runs in multi-slice environments. One process of the method

is executed for each VN slice respectively, and each process needs information only about

its VN requests. Each of the processes behaves to improve its own performance function,

considering other VNs as a part of an external perturbation, i.e., Yuragi.

The rest of this paper is organized as follows. In Sec. 2, a service model in SDI

frameworks is introduced and related works on VNE are referred. The method based on

Yuragi principle is proposed in Sec. 3, and the results of performance evaluation are shown

in Sec. 4. Finally, the conclusion of this paper and future work are presented in Sec. 5.

7

2 Virtual Network Services in SDI Frameworks

In this section, we describe SDN frameworks and explain a service model for SDI frame-

works. At first, a whole system of the virtual network service is explained. Next, one of

the important problems in the SDI service called VNE is described. VNE affects many

aspects of the service performance such as resource utilization, revenue, QoE (Quality

of Experience) and energy efficiency. Therefore, VNE problem has been a hot topic in

network virtualization field. The research trends are introduced in the following.

2.1 SDI

Figure 1 describes an service model of SDI frameworks. In the model, customers offer

virtual network requests (VN requests) to their service providers. The VN request consists

of a topology, which is a combination of virtual nodes and virtual links. Then, the provider

assigns computing resources on the virtual nodes by preparing virtual machines. Then, the

provider configures the packet forwarding rules on the network switches via SDN controller

to form virtual links.

The customers can specify the performance and capacity requirements such as CPU

power of a virtual node and bandwidth of a virtual link. They may also specify mem-

ory capacity (RAM), storage capacity (HDD), and in some cases, specify the detail of

restrictions: OS (Operating System) of the virtual machine, RAID type of a storage, and

RAM type of a switching device. We call these specification of virtual nodes as “node

attributes”.

The service provider has a network manager to handle VN requests. The network

manager plays three roles. First, the network manager receives VN requests from cus-

tomers and push them into a queue. Second, the network manager executes a certain

VNE algorithm for each VN request in the queue by a FIFO (First In First Out) princi-

ple. The VNE algorithm decides a VN mapping; virtual node mapping and virtual link

mapping. Virtual node mapping decides the location of the physical node for each virtual

node. Then, the virtual node is hosted on the physical node as a form of virtual machine.

Virtual link mapping decides the path on physical network for virtual links between vir-

tual nodes. Then, the virtual nodes are connected through the path. When the VNE

8

Virtual Network

Requests

VN Req. 1 VN Req. 2

…

Network Manager

Substrate Network

VN Req. 3

SDN Controller

VNE

Algorithm

for Req. 1

…

Request Queue

ex) Cloud App.

ex) OpenFlow

:Virtual Machine

:Physical Server

VNE

Algorithm

for Req. 2

VNE

Algorithm

for Req. 3

Figure 1: Service model in Software Defined Infrastructure

algorithm fails to find a VN mapping due to the shortage of the physical resources, the

VN request is rejected. Third and lastly, the network manager offers the mapping request

to the SDN controller. Note that the SDN controller might be managed by other organiza-

tions such as infrastructure providers rather than the service provider. Then, the service

provider installs virtual machines into physical servers and allocates requested computing

resources. Then, the SDN controller accesses substrate nodes via a certain protocol such

as OpenFlow and reconfigures the forwarding rules to establish the virtual links.

9

2.2 Virtual Network Embedding Problem

Virtual Network Embedding (VNE) is one of the important problems in allocating physi-

cal resources to the requested VN request. The physical resources, including resources of

the physical network and resources of physical servers, forms a substrate network. Open-

Stack, which is one of the most general IaaS (Infrastructure as a Service) frameworks,

defines virtualized resource components [10]. The substrate node is classified into three

types; computing servers, network switches, and storages. Each virtual node may have an

individual feature such as supported OS, protocols and storage types. It is necessary to

strictly check the consistency of the node features when embedding a virtual node to a

substrate node. That is, the requested features of the virtual node must be supported by

the substrate node. To simplify the service model, this paper abstracts the classifications

of features of OpenStack into “node attributes”.

The mapping of the virtual network has an effect on many aspects such as resource

utilization, blocking rate, revenue, QoE, energy efficiency and migration cost. That is why

VNE problem deserves considering. Figure 2 describes an illustrative example to show how

experienced delay of VNs differs dependent on the mapping of the virtual network. Figure

2(a) shows a substrate network and the numerical values in the figure represent CPU

capacities of the physical servers and the link bandwidths. Figure 2(b) shows the VN

requests including resource requirements. Figure 2(c) and 2(d) show two patterns of VN

mapping, denoted as mapping A and B. In general, the delay on a server gets longer

when the CPU utilization is higher, and the delay on a link also gets longer when the link

utilization is higher. In the case of mapping A, the CPU utilization on one of the substrate

node reaches 80% and the calculation delay gets longer. However, in the case of mapping

B, the CPU utilizations are at most 50%. As for the delay on a link, the maximum of link

utilization of the substrate link is 90% in the case of mapping A. In the case of mapping

B, the link utilizations of the substrate links are low, and the delay will not get longer.

Therefore, the experienced delay of mapping B is expected to be shorter than that of

mapping A. Thus, mapping B is preferred as for the solution of VNE problem.

Generally, VNE problem is divided into two phases, i.e., Virtual Node Mapping (VNoM)

and Virtual Link Mapping (VLiM) problem. VNoM is to obtain a set of matching be-

10

10

20 20

20

2020

20

10

20

10 20

10 10

(a) Substrate network

VN Req. 1

VN Req. 2

5

6

8

4

9

9 5

9

3

(b) VNs

90%

25%

25%0%
20%

80%

45% 45%

45%

50% 30%

30%

(c) VN mapping A

50%

45%

45%45%
40%

40%

45% 45%

45%

50% 30%

30%

(d) VN mapping B

Figure 2: Comprehension of VNE problem with a simple example

11

tween virtual nodes and substrate nodes under the constraint that the substrate node

must support the node attribute of the virtual node. VLiM is to obtain a set of links in

the substrate network which connects one virtual node to another virtual node.

2.3 Centralized Approaches for VNE

A number of approaches coping with VNE problem have been proposed. Most of them try

to formulate and solve optimizing problems and maximize/minimize some performance

objectives. However, existing VNE formulations are Integer Linear Programing (ILP) and

VNE problem is known as NP-hard problem. Thus, some heuristic methods are also

developed. Note that both the ILP methods and heuristic methods assume to collect

information of the network in advance.

Chowdhury et al. deal with VNE problem to embed multiple VN requests onto a sub-

strate network [9]. They give a formulation as Mixed Integer Linear Programing (MILP)

to minimize embedding cost while achieving the balance of resource utilization. Guerzoni

et al. formulate as a MILP considering node attribute to maximize the revenue while

minimizing resource utilization [10]. Chen et al. present a virtual node mapping method

to optimize energy efficiency, and also propose its heuristic algorithm [11]. Fajjari et al.

minimize the running cost of the network infrastructure by releasing unused bandwidth of

a VN for other VNs [12].

12

3 Yuragi-based Virtual Network Embedding Method

This section proposes Yuragi-based VNE method for SDI frameworks. The Yuragi prin-

ciple, which is often called attractor selection model, explains the biological adaptability.

The key concept of attractor selection model is that the system behavior is governed by

a single barometer, called “activity”, and a small perturbation which we call “Yuragi”.

The activity is kind of comfortableness for the system, and with a feedback of the activity

and the small perturbation, the control state of the system falls into a comfortable state.

When activity is high, the control state of the system is in a good condition and stay in

that state. Such the equilibrium point is called “attractor”. When activity gets low or

the condition gets uncomfortable by environmental changes, the system gets out of the

attractor and then looks for another attractor with a feedback of the activity and the

small perturbation.

The proposed VNE method is expected to enjoy the adaptability of Yuragi to environ-

mental changes. That is, VN migrations are driven according to experienced performances

and the new VN mapping is obtained by means of attractor selection. A process of the

Yuragi-based method is executed for each VN request. Thus, multiple processes are ex-

ecuted in parallel to deal with multiple VN slices. Different from optimizing problems

and their related heuristic, the Yuragi-based method can avoid the necessity of collecting

detailed information about the entire network. The process for a VN request only needs

an information for comfortableness and does not need any information related to the other

VN requests.

3.1 Yuragi Principle

Yuragi is a principle that biological organisms adapt to environmental fluctuations. Attrac-

tor selection is a model which represents Yuragi principle. The model describes dynamics

of state variables xi (i = 1, 2, . . ., n) through environmental fluctuations as,

dx

dt
= α× f(x) + η, (1)

where x = (x1, . . ., xi, . . ., xn) represents the system state, activity α is comfortableness

of the present system state, f(x) defines deterministic behavior governed by the attractor

13

structure and η represents the stochastic behavior. When the system is in a comfortable

state and hence activity α is high, the deterministic term f(x) controls the dynamics while

noise η is almost negligible. When the system condition gets worse and α gets close to

zero, f(x) is no longer influential and the stochastic term η relatively becomes dominant.

Therefore, the system changes its state at random and searches for another attractor.

Once the system reaches a new attractor, the activity recovers to a high value and the

system will stay in the new good state.

A system driven by Yuragi principle achieves adaptability to environmental changes.

The adaptability has two aspects. First, the system is robust to a small fluctuation in

the surrounding environment. As long as activity remains higher than a certain level, the

system keeps staying in an equilibrium point even though there always exists the noise

term. Second, the system has a flexibility to drastic changes in the environment. When

the system falls into an uncomfortable state, the activity decreases immediately and the

dynamics of the system behavior gets free from the attractor structure.

3.2 Performance Objectives

We can select various definitions of the activity when Yuragi principle is applied to the

VNE problem. Yuragi-based VNE method tries to find a system state which keeps a high

activity. The high activity should be designed so that a performance objective may not

violate a required threshold.

The following metrics are considered as performance objectives. Delay is the communi-

cation delay is caused by propagation delay through links and computing delay on servers

or switches. The minimizing delay is a basic requirement for networks, and as a matter

of course, the delay is preferred to be small to improve the user experience. Resource

utilization is link bandwidth utilization and server capacity (CPU, memory, storage) uti-

lization, and is often considered in the VNE problem [17, 18]. When resource utilization

is low, there is much space to accommodate future VN requests. On the other hand, less

resource utilization leads to an inefficiency of energy consumption. Note that resource

utilization and delay are positively correlated. Revenue from customers for embedding

VNs is a metric that reflects a business. Service providers impose a fee on their customers

in proportion to a number of embedded resources such as the number of CPU cores. Ser-

14

vice providers also pay a cost to accommodate the VNs by consuming physical resources.

Some VNE problems try to maximize the revenue by maximizing the income with the

minimum outcome [6, 9, 10, 19]. Energy consumption on servers and links also deserves

consideration. If any virtual nodes are not embedded in a server, sleeping the server can

save energy consumption. The energy consumption of the entire network may be esti-

mated from the number of active nodes and links, and their utilization [11, 20]. Efficient

energy consumption leads to reduce running cost and achieves a green ICT [21,22].

Conventional works usually use link utilization and/or energy consumption as a per-

formance objective because these are described by a linear function of a traffic load. Note

that a linearity in a mathematical sense is one of the key factors to solve the optimization

problem. In this paper, we focus on user’s experienced delay, which is not a linear func-

tion, as the performance objective comfortability because the experienced delay is one of

the simplest and most fundamental performance objectives in networking. It is true that

link utilization is often used as the performance objective of a virtual network control.

However, the experienced delay is more important measure in networking and especially

important for SDI frameworks. The longer delay causes considerable degradation in QoE

of the application which is running on the virtual network. Thus, customers of SDI services

want to require a low delay to the infrastructure provider. Moreover, under virtualization

environment, the delay is caused by not only utilization of the network bandwidth but

also workloads on the virtual machines, and the delay gets extremely large under heavy

workloads [23,24]. Therefore, it is difficult to deal with delay requirements in conventional

approaches. In this paper, we consider the end-to-end delay by applying Yuragi principle.

3.3 Yuragi-based VNE Method

This section explains our Yuragi-based VNE method. Our proposed method consists of

two phase; attribute-aware virtual node mapping and shortest path virtual link mapping.

To begin with, the relation between state variables in Yuragi principle and VNE problem

is explained.

Our method decides where to allocate virtual node of attribute k. In other words, the

method finds a coupling of attribute k and physical node n. Let the number of attributes

be K and the number of physical nodes be N , we prepare variables x = (x1, . . ., xkn, . . .,

15

xKN). A variable xkn is a decision variable whether physical node n becomes a candidate

for virtual node with attribute k. Then, the dynamics of each xi (i = 1, 2, . . ., KN) is

described as,

dxi
dt

= α

{
ς

(∑
j

Wijxj

)
− xi

}
+ η, (2)

where ς
(∑

j Wijxj

)
−xi represents a deterministic term and η is a stochastic term. In the

first term, the matrix W represents an attractor structure and is being mentioned later.

The function ς(z) is a sigmoid function defined as,

ς(z) = tanh(
µ

2
z), (3)

where µ represents the gradient in the vicinity of the threshold. Here, the threshold is 0

and the output value of ς(z) gets close to 1 or −1. Note that the range of xi is [−1, 1].

The second term η in Eq. (2) is a random value according with a normal distribution.

If xi > 0 and i’s corresponding node (attribute) is n (k), physical node n becomes a

candidate for the virtual node with attribute k. If xi (= xkn) < 0, the virtual node with

attribute k is not embedded to physical node n. Each of the virtual nodes with attribute k

is allocated onto one of the candidate nodes in descending order of xk∗ values. Note that,

when physical node n is not compatible with attribute k due to the attribute restriction,

xkn is set to 0 without calculating the differential equation (2).

Finally, our method assigns the shortest path for each virtual link request. In this

paper, we consider the shortest path routing to minimize hop length on the physical

topology. Other routing policies can be applied but is not examined in the evaluation in

Sec. 4.

3.3.1 Activity Function with Performance Profile

Activity α is a feedback from the system which reflects the comfortableness of the VN.

Let p as an objective metric which is expected to be small, activity is described as,

α =
γ

1 + exp(δ(p− θ))
, (4)

and Fig. 3 depicts the activity function, where γ represents the scale of the activity

value, δ represents the gradient around the threshold θ. Let γ be 1, the activity value

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

A
ct

iv
it

y

p

Figure 3: Activity function for γ = 1.0, δ = 5.0 and θ = 2.0

gets close to 1 if p < θ. Otherwise, the activity becomes 0. Note that the activity is

subject to be reduced to 0 regardless of Eq. (4). Let Vk be the number of virtual node

requests with attribute k, the activity α is reset to be 0 when the number of candidates

|xk∗| (s.t. xk∗ > 0) is less than Vk. This is necessary because the system state found by

Yuragi does not have a sufficient number of candidate nodes. Also, when the available

capacity of the physical resource is not enough to embed the found system state, α is

forced to be 0.

In our method, the objective metric p can be directly monitored. However, when the

monitoring takes some overhead or it is difficult to monitor p directly in some reasons, the

activity should be calculated by estimated p rather than actual p. For the estimation, we

consider making use of a performance profile. For example, the experienced delay is a basic

metric of network performance but it can be obtained only when the system is running.

However, the delay has a feature correlated to resource utilization. The profile database

consists of the correspondences of delay and resource utilization based on experienced

history and is maintained as a table or in some form. If the present resource utilization

and the required capacity are known, an estimated delay can be obtained by referring the

profile database instead of running the computing service.

17

3.3.2 Attractor Structure

The matrix W in Eq. (2) represents attractor structure. It stores some equilibrium points

of virtual node mapping, and the equilibrium point is called attractor. Each attractor is

defined as x = (x1, . . ., xi, . . ., xKN) where xi ∈ {-1, 0, 1}. If physical node n is one of the

candidates for a virtual node with attribute k, xkn is set to 1. If node n cannot allocate

attribute k due to the node attribute restriction, xkn is set to 0. Otherwise, xkn is set to

−1. Let M be the number of attractors stored in W, a set of attractors X = (x1, x2, . . .,

xM) can be stored by,

W = X+X, (5)

where X+ is the pseudo inverse matrix of X. This way of storing attractors uses the

knowledge of Hopfield neural network of associative memory. When the present state is

in one of the attractors, dx/dt in Eq. (2) becomes close to 0 and stay in the attractor.

3.4 VN migration

To apply the Yuragi-based VNE method, VN migration is executed as follows to reduce

overhead of installing virtual machines and restarting processes:

Step 1 When the activity gets extremely low, the provider suspends virtual machines and

take a snapshot of them.

Step 2 The provider executes Yuragi-based VNE method by using the performance profile

instead of actual performance. The profile enables to get an estimated performance

without running the services. That is, the activity is obtained while the virtual

machines are sleeping. Then, the Yuragi method migrates the VN according to the

activity.

Step 3 Once the system state converges to a certain VN mapping, the provider restarts the

virtual machines and load the snapshots.

Step 4 When the actual performance gets worse, the activity decreases again. Then, the

above steps are repeated again.

18

4 Evaluation with Computer Simulation

This section presents evaluation results of Yuragi-based VNE method by computer simu-

lations.

4.1 Simulation Environment

The substrate network consists of physical servers and links. The number of physical

servers (physical nodes) is 50. Each node has capability of hosting virtual node with

one of the node attributes. In this environment, each node has three kinds of resource

capacities for required virtual machines; CPU, memory and storage capacities of each node

are determined uniformly within [50, 100]. For each pair of physical nodes, a physical link

is prepared with a probability of 0.5. As a result, we obtain the physical topology with

50 nodes and 617 links. The capacity of physical link is determined uniformly within

[50, 100]. During the simulation, the substrate network is fixed.

Several requests of virtual network are generated and arrived. During the simulation,

the number of VN requests is set to 20 and the number of node attributes K is set to

4. Each VN request is generated as follows. The number of virtual machines (virtual

nodes) is determined uniformly within [2, 5]. Each virtual node belongs to an attribute,

and each virtual node requires capacities for CPU, memory, and storage. Each of the

required capacities is determined uniformly within [1, 10]. Virtual links are non-directed,

and each pair of virtual nodes is connected with the probability of 0.5. The number of

virtual links is within [1, 10] because the number of virtual nodes is 2 to 5. Each virtual

link has required bandwidth, and the required capacity is determined uniformly within

[1, 25].

Every 100-time steps, all the 20 VN requests are regenerated in the same way as

described above. In addition, at every 10 time step, each VN request fluctuates with

relatively small changes: we change the requested capacities by a random integer following

the normal distribution with µ = 0 and σ2 = 1 (see Fig. 4).

19

Time

5

3

4

6

2

4

5

3

4

4

6

3

5

5

3

4

7

3

Resource

requirements

fluctuation

Topological

Change

100

10 10 1010 10

100

Figure 4: Environmental fluctuations with a lapse of time

4.2 Delay Profile

We use end-to-end delay as the objective metric. In an actual environment, the experienced

delay may be available by monitoring of packet arrivals. However, when the monitoring

takes some overhead or it is difficult to monitor directly for some reasons, the activity

should be calculated by estimated p rather than actual p. For the estimation, we consider

making use of a performance profile. In the simulation environment, however, estimated

delays are used. The estimated value is calculated with some delay models. This paper

constructs three delay models as a function of resource utilization. Figure 5 shows the

delay models. The first model is the M/M/1-based model which is a basic model of delay

in networks. It is derived from a queueing theory model. The second model, which we call

the Linear model, is quite simple; the delay increases linearly in accordance with resource

utilization. However, the delay increases rapidly at the high load. The third model, which

is the Apache model, imitates response time of a web server. As shown in Fig. 5, the

model is characterized by the two-stage elevations of delay characterize the model. In the

case of web service, the elevations are caused by swapping memory pages and storage disks

in accordance with virtual memory architecture.

In the following simulation, dij , which represents the delay from virtual node i to

virtual node j, is calculated as,

dij = wc · dci + wm · dmi + ws · dsi + wb · dbij , (6)

20

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

D
el

ay

Resource Utilization

M/M/1-based
Linear

Apache

Figure 5: Delay models used for the computer simulation

where dci , d
m
i and dsi are the computing delay in virtual machine i spent by CPU, memory

and storage respectively. Then dbij is the propagation delay through virtual link from i

to j, and w∗ are the weight parameters. Each d∗i follows the delay model and calculated

by its own utilization of physical resources. Note that dbij is calculated by utilization of

the bottleneck link. The bottleneck link is the physical link that indicates the highest

utilization among the path of the virtual link.

Network managers maintain delay profiles in which correspondences between resource

utilization and actual measured delay are recorded. Referring the delay profile make it

possible for them to estimate delays in VN supposing the VN request to be embedded. In

this simulation, the profile is assumed to follow the delay functions in Fig. 5.

4.3 Heuristic Method for Comparison

As for the benchmark of our method, a heuristic VNE method is also simulated in the same

environments. The heuristic method is composed of two phases; virtual node mapping

based on greedy algorithm [25] and virtual link mapping on shortest paths. The VNE

method executes the following algorithm for one VN request after another.

(1) Execute the following processes for each virtual node v.

21

(1.1) Find the set S of physical nodes that accept the attribute of v and have

enough vacant of resource capacities to embed v. When S is null, reject the

VN request and finish.

(1.2) Find the physical node that indicates the highest value of H among S, where

H is defined as Eq. (7). Then reserve the resources of that physical node.

(2) Embed the virtual nodes according to the reservation taken in (1).

(3) For each virtual link between virtual nodes embedded in (2), find a path that is the

minimum hop in physical topology. Embed the virtual links onto the paths. When

the shortage of link bandwidth occurs, reject the VN request.

The greedy method aims to minimize utilization of node and link resources. The

heuristic method calculates an available resource indicator H for each physical node n

defined as,

H(n) = Cn ×Mn × Sn ×
∑

l∈L(n)

Bl, (7)

and avoids embedding a virtual node onto bottleneck resources. Cn, Mn and Sn represent

the available capacity of CPU, memory and storage on physical node n. The set L(n)

represents a set of physical links attached to node n, and Bl represents the available

capacity of physical link l. The computational complexity is O(n log n) for sorting H(n),

assuming the shortest path between every node pairs is available in advance.

4.4 Simulation Results

We first show the adaptability of Yuragi-based VNE method with M/M/1-based delay

model. The threshold of activity θ in Eq. (4) is set to 2.0 with regarding the metric p

as the maximum of dij for every pair of virtual nodes i and j. The weight values in Eq.

(6) are set as wc = wm = ws = wb = 0.25. In the simulation, the Yuragi-based method

calculates the VN mapping at each time step and migrates the VN until the system state

converges to an attractor. The greedy method executes VN migration according to the

demand changes at every 10 time steps.

22

4.4.1 Adaptability of Yuragi-based Method to Request Fluctuation

Figure 6 shows the maximum delay on five VN requests out of the 20 requests. The activity

of each VN is also shown in Fig. 7. In the figure, the region denoted as “Failure” represents

a failure of embedding the VN caused by the shortage of physical resources or violation of

other restrictions. Note that the demands of VN requests fluctuate with relatively small

changes at every 10 time steps and the demands fluctuate greatly at every 100 time steps.

Thus, the maximum delays for Yuragi-based method exceed the threshold drastically at

every 100 time steps owing to the topological changes in VN requests. The activities

drop sharply, and then the VN migration starts. Within few steps, the activities get

recovered and converge to another system state. Against a small fluctuation of required

capacities occurred at every 10 time steps, VN migrations occurs only if the activities

decrease extremely, for instance, as shown in time step 350 in the VN with ID 0 (Fig. 6(a)

and 7(a)). Figure 8 shows the mean of maximum delay of 20 VN requests. The Yuragi-

based method does not achieve as small delay as the greedy method in general. This

is because the Yuragi-based method does not aim to minimize the delay or the resource

utilization but keep them smaller than a certain threshold. Making the threshold smaller

might achieve smaller delay, but will result in taking longer convergence time to find an

attractor.

Figure 9 shows the embedding ratio indicating how many VN requests are accepted

out of the 20 requests. The topological changes occurred at every 100 time steps cause a

temporal decrease in the embedding ratio, but both of the methods keep almost 95% to

100% acceptances excluding that.

Figure 10 shows the number of VN migrations defined as the number of the VNs

whose location has been changed from the previous operation. Note that the operations

are performed at every step by the Yuragi-based method, at every 10 steps by the greedy

method. When the VN requests are regenerated at every 100 steps, almost all VNs are

migrated for the both methods. The Yuragi-based method migrates a few VNs for a

while but requires a few number of VN migrations to the small fluctuations. The greedy

method migrates 5 to 10 VNs every time for the required capacity fluctuations. This is

because that the greedy method tries to achieve the better objective values even though

23

the improvement in delay is marginal. Against the small fluctuation at every 10 time steps,

the number of VN migrations by the Yuragi-based method is totally 95 for 500 time steps

simulation, and 171 by the greedy method. This result indicates that the Yuragi-based

method adapts to demand fluctuations with about 45% fewer VN migrations than the

greedy method.

4.4.2 Availability of Various Models for Delay Profile

The Yuragi-based method is available for other delay profiles than M/M/1-based model.

The M/M/1-based model is constructed by a basic queueing theory in a communication

network. However, it is likely that the delay profiles in SDI frameworks will be beyond the

conventional queueing theory owing to its unique network structure with virtual machines

and computational bottleneck on them. Thus, other delay profiles than M/M/1-based

model are also considered here. Figure 11 and 12 show the delay for the Linear model,

Fig. 13 and 14 for the Apache model. For the both models, the Yuragi-based method

shows trends similar to the behavior for M/M/1-based model. Thus, the Yuragi-based

method can be applied without grasping bottom causes of the delay as long as the record

of experienced delays is available.

24

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(a) ID 0

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(b) ID 1

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(c) ID 2

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(d) ID 3

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(e) ID 4

Figure 6: Maximum delay on each VN

25

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 250 300 350 400

A
ct

iv
it

y

Time

Failure

(a) ID 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 250 300 350 400

A
ct

iv
it

y

Time

Failure

(b) ID 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 250 300 350 400

A
ct

iv
it

y

Time

Failure

(c) ID 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 250 300 350 400

A
ct

iv
it

y

Time

Failure

(d) ID 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 250 300 350 400

A
ct

iv
it

y

Time

Failure

(e) ID 4

Figure 7: Activity on each VN

26

 0

 1

 2

 3

 4

 5

 200 250 300 350 400A
ve

ra
ge

 o
f

m
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

Figure 8: Average of maximum delay for 20 VNs

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 250 300 350 400

E
m

be
dd

in
g

ra
ti

o

Time

Yuragi
Greedy

Figure 9: Embedding ratio of VN requests

27

 0

 5

 10

 15

 20

 200 250 300 350 400

M

ig
ra

ti
on

Time

Yuragi
Greedy

Figure 10: The number of VN migrations

28

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(a) ID 0

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(b) ID 1

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(c) ID 2

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(d) ID 3

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(e) ID 4

Figure 11: Maximum delay on each VN: Linear delay model

29

 0

 1

 2

 3

 4

 5

 200 250 300 350 400A
ve

ra
ge

 o
f

m
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

Figure 12: Average of maximum delay for 20 VNs: Linear delay model

30

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(a) ID 0

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(b) ID 1

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(c) ID 2

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(d) ID 3

 0

 1

 2

 3

 4

 5

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(e) ID 4

Figure 13: Maximum delay on each VN: Apache delay model

31

 0

 1

 2

 3

 4

 5

 200 250 300 350 400A
ve

ra
ge

 o
f

m
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

Figure 14: Average of maximum delay for 20 VNs: Apache delay model

32

5 Conclusion

This paper presented a VNE method based on Yuragi principle in SDI frameworks. A

system driven by Yuragi principle achieves adaptability to environmental changes, and

the dynamics is described as the attractor selection model. In attractor selection model,

the system behavior is governed by an activity and a small perturbation. When activity

is high, the control state of the system is in a good condition and stay in that state.

When activity gets low or the condition gets uncomfortable by environmental changes,

the system looks for another stable state. The Yuragi-based VNE method decides the

mapping of virtual nodes by means of attractor selection, where the network mapping is

regarded as the system state and the activity is defined as a certain performance objective.

In the evaluation, we consider the end-to-end delay as the activity. Simulation results show

that the method satisfies smaller delay and adapt to the request fluctuations by rearranging

the VN mapping for drastic changes in environments. The Yuragi-based method decreases

VN migrations by about 45% than a heuristic method to adapt the fluctuations in required

resource capacities.

In the future work, evaluation for other situations or other activity definition should

be done to confirm the effectiveness of the method. We will also investigate a method

of constructing the attractor structure to improve the convergence time or some perfor-

mances.

33

Acknowledgements

I really appreciate Professor Masayuki Murata of Osaka University. He has supervised my

research activity with his great perspective. I am very honored to have had the amazing

opportunity since I was an undergraduate. I am full of gratitude to Associate Professor

Shin’ichi Arakawa of Osaka University. We discussed my research many times, and he

taught me enormous knowledge and skill to address the problems that I faced. This thesis

could never be completed without his support. I would like to express my sincere gratitude

to Dr. Satoshi Imai of Fujitsu Laboratories Ltd. for his counsel and support with this

research. I am also grateful to him a lot during my research internship at Fujitsu Lab.

I am deeply grateful to Assistant Professor Yuichi Ohsita and Assistant Professor Daichi

Kominami of Osaka University, for helpful advices. I sincerely thank my senior associates,

including Mr. Toshihiko Ohba, for giving me many thoughtful advices and for boosting

my enthusiasm to the research activity. Finally, I would like to thank all the members of

Advanced Network Architecture Research Laboratory of Osaka University for their help

and encouragement, and I will not forget the days we worked together.

34

References

[1] C. Filsfils, S. Previdi, B. Decraene, S. Litkowski, and R. Shakir, “Segment routing

architecture,” Internet draft draft-ietf-spring-segment-routing-06.txt, Oct.

2015. work in progress.

[2] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, and T. Gayraud, “Software-defined

networking: Challenges and research opportunities for future Internet,” Computer

Networks, vol. 75, Part A, pp. 453–471, Dec. 2014.

[3] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A survey of

software-defined networking: Past, present, and future of programmable networks,”

IEEE Communications Surveys Tutorials, vol. 16, pp. 1617–1634, Feb. 2014.

[4] P. Bhaumik, S. Zhang, P. Chowdhury, S. S. Lee, J. Lee, and B. Mukherjee, “Software-

defined optical networks (SDONs): A survey,” Photonic Network Communications,

vol. 28, pp. 4–18, June 2014.

[5] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen,

M. Miller, and N. Rao, “Are we ready for SDN? Implementation challenges for

software-defined networks,” IEEE Communications Magazine, vol. 51, pp. 36–43,

July 2013.

[6] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual net-

work embedding through topology-aware node ranking,” ACM SIGCOMM Computer

Communication Review, vol. 41, pp. 38–47, Apr. 2011.

[7] J. Lischka and H. Karl, “A virtual network mapping algorithm based on subgraph

isomorphism detection,” in Proceedings of the 1st ACM Workshop on Virtualized

Infrastructure Systems and Architectures, pp. 81–88, Aug. 2009.

[8] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach, “Virtual network

embedding: A survey,” IEEE Communications Surveys Tutorials, vol. 15, pp. 1888–

1906, Feb. 2013.

35

[9] N. Chowdhury, M. Rahman, and R. Boutaba, “Virtual network embedding with

coordinated node and link mapping,” in Proceedings of IEEE INFOCOM, pp. 783–

791, Apr. 2009.

[10] R. Guerzoni, R. Trivisonno, I. Vaishnavi, Z. Despotovic, A. Hecker, S. Beker, and

D. Soldani, “A novel approach to virtual networks embedding for SDN management

and orchestration,” in Proceedings of IEEE NOMS, pp. 1–7, May 2014.

[11] X. Chen, C. Li, and Y. Jiang, “Optimization model and algorithm for energy efficient

virtual node embedding,” IEEE Communications Letters, vol. 19, pp. 1327–1330,

Aug. 2015.

[12] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “Adaptive-VNE: A flexible

resource allocation for virtual network embedding algorithm,” in Proceedings of IEEE

GLOBECOM, pp. 2640–2646, Dec. 2012.

[13] Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Adap-

tive virtual network topology control based on attractor selection,” IEEE Journal of

Lightwave Technology, vol. 28, pp. 1720–1731, June 2010.

[14] K. Mizumoto, S. Arakawa, Y. Koizumi, D. Shimazaki, T. Miyamura, S. Kamamura,

K. Shiomoto, A. Hiramatsu, and M. Murata, “A distributed control of virtual network

topologies by using attractor selection model,” in Proceedings of NOLTA, Oct. 2012.

[15] S. Kamamura, Y. Koizumi, D. Shimazaki, T. Miyamura, S. Arakawa, K. Shiomoto,

A. Hiramatsu, and M. Murata, “Attractor selection-based virtual network topology

control with dynamic threshold reconfiguration for managed self-organization net-

work,” in Proceedings of the 24th International Teletraffic Congress, pp. 1–6, Sept.

2012.

[16] T. Ohba, S. Arakawa, Y. Koizumi, and M. Murata, “Scalable design method of at-

tractors in noise-induced virtual network topology control,” IEEE/OSA Journal of

Optical Communications and Networking, vol. 7, pp. 851–863, Sept. 2015.

36

[17] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “VNE-AC: Virtual network

embedding algorithm based on ant colony metaheuristic,” in Proceedings of IEEE

ICC, pp. 1–6, June 2011.

[18] S. Zhang, Z. Qian, J. Wu, and S. Lu, “An opportunistic resource sharing and topology-

aware mapping framework for virtual networks,” in Proceedings of IEEE INFOCOM,

pp. 2408–2416, Mar. 2012.

[19] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Revenue-driven virtual network embed-

ding based on global resource information,” in Proceedings of IEEE GLOBECOM,

pp. 2294–2299, Dec. 2013.

[20] J. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer, “Energy

efficient virtual network embedding,” IEEE Communications Letters, vol. 16, pp. 756–

759, May 2012.

[21] F. Farahnakian, A. Ashraf, T. Pahikkala, P. Liljeberg, J. Plosila, I. Porres, and H. Ten-

hunen, “Using ant colony system to consolidate VMs for green cloud computing,”

IEEE Transactions on Services Computing, vol. 8, pp. 187–198, Mar. 2015.

[22] D. Bruneo, A. Lhoas, F. Longo, and A. Puliafito, “Modeling and evaluation of energy

policies in green clouds,” IEEE Transactions on Parallel and Distributed Systems,

vol. 26, pp. 3052–3065, Nov. 2015.

[23] J. Whiteaker, F. Schneider, and R. Teixeira, “Explaining packet delays under virtu-

alization,” ACM SIGCOMM Computer Communication Review, vol. 41, pp. 38–44,

Jan. 2011.

[24] G. Wang and T. Ng, “The impact of virtualization on network performance of Amazon

EC2 data center,” in Proceedings of IEEE INFOCOM, pp. 1–9, Mar. 2010.

[25] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network embedding:

Substrate support for path splitting and migration,” ACM SIGCOMM Computer

Communication Review, vol. 38, pp. 17–29, Mar. 2008.

37

