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Abstract

As the Internet has become playing an important role in our society, the number of types of

the applications provided through the Internet increases. The requirements of the applications

depend on the type of applications. The interactive applications such as online game require the

communication with low latency. On the other hand, the file transfers for the cloud storages require

the communication with a large bandwidth. The network should accommodate the traffic of such

applications so as to satisfy the requirements of the applications.

The classification of the flows based on their corresponding application is necessary to ac-

commodate the traffic with different applications, satisfying their requirements. The traditional

classification of the traffic uses the port numbers. However, in recent years, a large number of

types of the applications, such as YouTube and network game, have become provided through

HTTP or HTTPS. All of these applications use 80 or 443 port. As a result, the flow classification

using the port numbers is no longer applicable in the Internet.

Therefore, new methods to classify the traffic without using the port numbers have been de-

veloped. The clustering is one of the most commonly used approaches. By using the clustering,

the clusters are constructed so that each cluster includes the flows with the similar features. The

flow classification methods based on the clustering first construct the clusters offline by using the

traffic traces. Then, the newly monitored flows are classified by comparing their features with the

constructed clusters.

However, these methods have the following two problems. The first problem is that these

methods do not consider the case that the new applications emerges. One approach to handling

the new applications is to periodically run the clustering methods to learn the features of the new

applications. However, this approach cannot classify the traffic of the new application before

running the clustering methods.
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Another problem is that these methods assume that the accurate features of the flow are ob-

tained before classifying the traffic. However, the accurate features may not be able to be obtained

before the flow is completed. One approach to classifying the flows before the flow is completed

is to obtain the features when a predefined number of packets are monitored. By setting the re-

quired number of packets to the small value, we can classify the flow soon after the flow arrives.

However, the features obtained by monitoring a small number of packets may be inaccurate, and

some applications may be classified into wrong cluster.

In this thesis, we propose a new hierarchical clustering method for real-time flow classifica-

tion. Our method constructs the hierarchical cluster, updating the features of the traffic flows; the

features are updated every time a packet arrives, and the cluster which a flow belongs to in each

layer is determined after the features become accurate enough. If the features of the flow are not

accurate enough to determine the cluster the flow belongs to, our method waits another packet to

improve the accuracy of the features.

The hierarchical clusters are useful to estimate the characteristics of the flow when the flow

is related to an unknown application. In the hierarchical cluster, the flows are clustered into a

small number of groups in the upper layer, and the flows belonging to the same group in the upper

layers are clustered into several groups in the lower layer. If flows of a new application construct

a new group in the lower layer, but they are classified in an existing group in the upper layer, the

characteristic of the new application can be estimated from the characteristic of the existing group.

We evaluated our clustering method using the actual traffic traces. The results indicate that

our method construct the similar cluster as the method that uses the accurate features; our method

achieves the accuracy of 88% when 3 clusters are constructed, and achieves the accuracy of 74%

when 5 clusters are constructed. In addition, the results demonstrated that our method classifies

the flows by monitoring only a small number of packets; 81 % of the flows are classified into 3

clusters before 30 packets arrive, and 99 % of the flows are classified into 5 clusters before 40

packets arrive.
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1 Introduction

As the Internet has become playing an important role in our society, the number of types of the

applications provided through the Internet increases; the various new applications such as online

games, video streaming services and cloud storage services have been deployed over the Inter-

net. The requirements of the applications depend on the type of applications. The interactive

applications such as online game require the communication with low latency. On the other hand,

the file transfers for the cloud storages requires the communication with a large bandwidth. The

network should accommodate the traffic of such applications, satisfying the requirements of the

applications.

Future network architectures that can accommodate traffic of different types of applications

with different requirements have been proposed. One of the architectures is based on the network

virtualization [1, 2]. This architecture enables to run multiple virtual networks over the network.

By constructing a virtual network for each type of applications, this architecture can accommodate

different types of applications. In this architecture, the classification of the flows based on the

types of the applications is required at the gateway of the network. Then, the traffic is relayed to

the virtual network corresponding to the type of the application.

The traditional classification of the flows uses the port numbers [3, 4]. However, in recent

years, a large number of types of the applications, such as YouTube and network game, have

become provided through HTTP or HTTPS [5]. All of these applications use 80 or 443 port. As a

result, the flow classification using the port numbers is no longer applicable in the Internet.

Therefore, new methods to classify the flow without using the port numbers have been de-

veloped [3, 4, 6]. The traffic generated by the applications has characteristics that can be used to

identify the types of the applications. Thus, these methods learn the characteristics based on the

machine learning techniques.

There are two kinds of the methods based on the machine learning. One of the methods is

the supervised method. In this method, the classes are predefined, and the training data set, which

include the features of the flows and the labels indicating the corresponding classes, are given as

an input. Then, the rules to classify the traffic are learned based on the training data set. The

methods based on the supervised machine learning can be applicable only in the case that the

labels of the flows are known. However, it is difficult to prepare the training data set including the
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suitable labels for the flows if the new applications, which are unknown when the classification

system starts, emerge.

On the other hand, the unsupervised method does not require the training data set including

the labels. Clustering is one of the representative unsupervised methods. The clustering constructs

the clusters so that each cluster includes the data with the similar features. The flow classification

methods based on the clustering have been proposed. These methods construct the clusters offline

by using the collected traffic traces. Then, they classify the monitored flows online by selecting

the cluster which is the closest to the features of the flow.

However, these methods have the following two problems. The first problem is that these

methods do not consider sufficiently the case that the new applications emerge. One approach

to handling the new applications is to periodically run the clustering method to learn the features

of the new applications. However, this approach cannot classify the flows of the new application

before running the clustering methods.

Another problem is that these methods assume that the accurate features of the flow are ob-

tained before classifying the flow. However, the accurate features may not be able to be obtained

before the flow is completed. One approach to classifying the flows before the flow is completed

is to obtain the features when a predefined number of packets are monitored. By setting the re-

quired number of packets to the small value, we can classify the flow soon after the flow arrives.

However, the features obtained by monitoring a small number of packets may be inaccurate, and

some applications may be classified into wrong clusters.

In this thesis, we propose a new hierarchical clustering method for real-time flow classifica-

tion. Our method constructs the hierarchical cluster, updating the features of the traffic flows; the

features are updated every time a packet arrives, and the cluster which a flow belongs to in each

layer is determined after the features become accurate enough. If the features of the flow are not

accurate enough to determine the cluster the flow belongs to, our method waits another packet to

improve the accuracy of the features.

The hierarchical clusters are useful to estimate the characteristics of the flows when the flow

is related to an unknown application. In the hierarchical cluster, the flows are clustered into a

small number of groups in the upper layer, and the flows belonging to the same group in the upper

layers are clustered into several groups in the lower layer. If flows of a new application construct

a new group in the lower layer, but they are classified in an existing group in the upper layer, the
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characteristic of the new application can be estimated from the characteristic of the existing group.

The rest of this thesis is organized as follows. Section 2 explains the related work. Section 3

introduces our method. Section 4 evaluates our method. Section 5 concludes this thesis.
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2 Related Work

2.1 Flow Classification

Roughan et al. proposed a method to classify the traffic through the supervised machine learn-

ing [7]. In this method, the newly obtained data is classified as the class of its nearest neighbor

in the training data set. Zhang et al. improved the accuracy of the nearest neighbor approach by

incorporating the correlation information of the flows when the training data set is small [8].

Moore et al. used another machine learning approach, Naı̈ve Bayes to classify the flows [9]. In

this method, the Naı̈ve Bayes classifier is trained by using the hand-classified network data. Then,

the new flows are classified by the Naı̈ve Bayes classifier. Nguyen et al. also used the Naı̈ve Bayes

to classify the flows [10]. This method uses the statistics of a small number of most recent packets

to obtain the features. Then, by applying the Naı̈ve Bayes, this method classify the current traffic

flows. Zhang et al. proposed another method based on the Naı̈ve Bayes classifier [11]. In this

method, flow correlation information is modeled by bag-of-flow. Then, the features are extracted

to represent traffic flows. The traffic is classified by aggregating the output of the Naı̈ve Bayes

classifiers using the extracted features.

Li et al. proposed a method to construct the decision tree from the training data set [12]. Then

the flows are classified based on the decision tree.

Jin et al. proposed a flow classification method using multiple simple linear binary classi-

fiers [13]. In this method, each classifier can be easily trained. Then, combining the multiple

classifiers, we can accurately classify the traffic.

The supervised machine learning methods described above require the training data set. How-

ever, as we discussed in Section 1, it is difficult to prepare the training data set including the

suitable labels for the traffic if new applications, which are unknown when the classification sys-

tem starts, emerge.

Another approach of the machine learning is the unsupervised method. Clustering is one of

the representative unsupervised methods, and constructs the clusters so that each cluster includes

the data with the similar features.

Erman et al. applied the clustering method to the flow classification [14]. They used the

K-means method, DBSCAN, and AutoClass, and demonstrated that these clustering algorithms

can classify the flow accurately. Bernaille et al. proposed a method to classify the flow online
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by using the K-means method [15]. In this method, the clusters are constructed offline by using

the training data set. Then, flows are classified online by searching the cluster corresponding to

the flow. However, this approach cannot classify the traffic which corresponds to the application,

which was not included in the training data set. The clustering method can be used to solve this

problem. Zhang et al used the K-means method to detect the unknown flows [16].

Recently, Wang et al. extended the K-means method to improve the accuracy of the flow

classification [17]. In this method, the accuracy is improved by considering the information of the

flow inferred from the packet headers as the constraint on the clustering.

However, the existing flow classification methods based on the clustering have the following

two problems. (1) These methods do not consider sufficiently the case that the new applications

emerge. Though the method proposed by Zhang et al [16] can detect the unknown flows, it cannot

estimate the characteristic of the new flows. (2) These methods assume that the accurate features

of the flow are obtained before classifying the flow. However, the accurate features may not be

able to be obtained before the flow is completed.

In this thesis, we propose a clustering method which solves the above problems. Our cluster-

ing method can be applicable to the existing flow classification method based on the clustering,

because our clustering method can be run by using any features of the flows.

2.2 Clustering

There are many algorithms to construct the clusters.

K-means is one of the most popular clustering algorithms. In the K-means method, the number

of clusters k is given as a parameter. Then, the k clusters are constructed so as to minimize the

distance from each data point to the center of the cluster the data point belongs to, which is defined

by the mean of the data points within the cluster. However, the result of the K-means only indicates

the cluster which each data point belongs to. Thus, we cannot understand the similarity of the data

points belonging to different clusters.

The hierarchical clustering methods can solve this problem. In the hierarchical clustering

methods, the data points are clustered into a small number of groups in the upper layer, and the

data points belonging to the same group in the upper layers are clustered into several groups in the

lower layer. By constructing the hierarchical groups, we can identify the similarity of the groups.

The ClusTree is one of the hierarchical clustering methods, which allow to update the clusters
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online [18]. This method constructs the tree, including two kinds of nodes, inner node and leaf

node. The leaf node indicates a fine-grained cluster, and has the pointer to the feature values of the

corresponding data points. The inner node corresponds to the coarse-grained cluster, which sum-

marizes the data points included in its children. The inner node has the pointer to the aggregated

features of the data points included in its children called as Clustering Feature or Cluster Feature.

In the ClusTree, the clusters can be updated by (1) searching the leaf node corresponding to the

new data point from the root node, and (2) updating the features on the path from the root node

to the leaf node. They propose maintaining CFs by extending index structures from the R-tree

family [19–21].

The ClusTree can be updated online, but does not consider the case that the features are in-

accurate. Therefore, in this thesis, we propose a new clustering method based on the ClusTree,

considering the case that the features are inaccurate.

AntTree [22] is another hierarchical clustering method. AntTree is a method inspired by the

behavior of the ants constructing a tree. In this process, each data point acts as an ant; each data

point walks around the tree to find the node similar to itself, and connects it to the found node.

In the AntTree, the nodes in the constructed tree are corresponding the data points. Therefore, it

is difficult to interpret the constructed tree hierarchically; we need to determine the clusters the

data points corresponding to the inner nodes belong to when constructing the fine-grained cluster.

However, the idea of the AntTree is useful to handle the inaccuracy of the features. In the AntTree,

each data point has a function to determine whether the other data points are similar to it. Then,

each data point walks around the tree based on the function. Though each ant select its behavior

by comparing the similarity with the threshold defined based on the number of nodes the data

points visited in the original AntTree, we can consider the inaccuracy of the features by using the

function based on the accuracy of the features. Therefore, in this thesis, we introduce the method

based on the AntTree to search the cluster each data point belongs to.
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3 Hierarchical Clustering Approach for Real-time Flow Classifica-

tion

3.1 Overview

In this thesis, we develop a new clustering method for the real-time flow classification. We assume

our clustering method is used in the traffic classifier, which classifies the flow passing the classifier.

The classifier has the definition of flows. When the traffic classifier receives a packet, it identifies

the flow the packet belongs to. Then, the traffic classifier updates the features of the flow.

Our method constructs the hierarchical cluster, updating the features of the traffic flows; the

features are updated every time a packet arrives, and the cluster which a flow belongs to in each

layer is determined after the features become accurate enough. If the features of the flow are not

accurate enough to determine the cluster the flow belongs to, our method waits another packet to

improve the accuracy of the features.

In this process to determine the clusters, we use an approach based on the AntTree [22], which

is a method inspired by the behavior of the ants constructing a tree. In the AntTree, an ant, which

corresponds to an item required to be classified, walks around the tree based on the behavior

selected by itself. Then, if the similar node is found, the ant connects it to the found node. In our

method, each ant uses the information of the inaccuracy of the corresponding features to select its

behavior. By doing so, we can construct the clusters, considering the inaccuracy of the features.

In our method, by constructing the hierarchical clusters, we can estimate the characteristic of

new clusters; if flows of a new application construct a new cluster in the lower layer, but they are

classified in an existing cluster in the upper layer, the characteristic of the new application can be

estimated from the characteristic of the existing cluster.

Our method has the following advantages. (1) Our method can identify the clusters a new flow

belongs to accurately as soon as possible, because our method searches the clusters, considering

the accuracy of the features. (2) The similarity of the flows belonging to the different clusters can

be obtained by constructing the hierarchical clusters. (3) Our method can identify the flows of the

new applications, because our method updates the clusters online.
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3.2 Data Structure

In this thesis, we construct the hierarchical cluster based on ClusTree [18]. Figure 1 shows the

data structure of the constructed cluster.

This data structure has two kinds of nodes, inner node and leaf node. The leaf node indicates

a fine-grained cluster, and includes l to L flows. Each leaf node has the pointers to the feature

values of the corresponding flows. The inner node corresponds to the coarse-grained cluster,

which summarizes the flows included in its children. That is, by constructing the tree of inner

nodes, we can hierarchically construct clusters; the inner node near root node corresponds to the

coarser-grained cluster, and the node near leaf corresponds to the finer-grained cluster.

The inner node constructs the tree structure by connecting it to m to M children. Each inner

node has the entries corresponding to its children. Each entry has the abstracted clustering features

and the pointer to the corresponding child. The abstracted clustering features corresponding to the

child c have the following values.

• The number of flows included in the abstracted features nc

• The sum of the features Slinear, which is calculated by

Slinear
c =

∑
f∈Fc

Sf

where Fc is the set of flows included in cluster of the node c, and Sf is a vector indicating

the clustering features of the flow f .

In our method, there are flows that have not been classified into any clusters. We maintain

such flows in a list called unclassified flows.

3.3 Process to Cluster Flow

3.3.1 Flow Insertion

If a flow included in the unclassified flows exists and its features are updated, we run the process

to find the cluster the updated flow belongs to. We use the process to find the cluster based on the

AntTree [22], which is inspired by the behavior of the ants constructing a tree. In this process, an

agent corresponding to each flow acts as an ant; each agent walks around the tree to find the node

similar to the flow, and inserts it to the found node.
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Figure 1: Data Structure

In our method, the agent for the flow fnew moves over the tree based on the following two

functions.

The first function F1(ϵfnew) is a function to check whether the current features are sufficiently

accurate. F1(ϵfnew) is defined by

F1(ϵfnew) = (N − n)× ϵfnew (1)

where n is a number of monitored packets of the flow fnew, and N is a predefined parameter.

ϵfnew is defined by

ϵfnew = |Sfnew − S′
fnew |

where S′
fnew is a vector indicating the clustering features before updating the features. F1(ϵfnew)

indicates the expected difference between the current features and the features after N packets

are monitored. Thus, the flow whose F1(ϵfnew) is small is regarded as the flow with sufficiently

accurate features.

Another function F2(dc
pfnew

1

, d
c
pfnew

2

) is a function which compares the most similar cluster

and the second most similar cluster among the clusters corresponding to the children of the current

location of the agent for the flow fnew. Hereafter pfnew is the current location of the agent.
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F2(dc
pfnew

1

, d
c
pfnew

2

) is defined by

F2(dfnew,c
pfnew

1

, d
fnew,c

pfnew

2

) =
d
fnew,c

pfnew

1

d
fnew,c

pfnew

2

. (2)

where c
pfnew
1 is the cluster which is the most similar to fnew, cpf

new

2 is the cluster which is the

second most similar to fnew. dfnew,c is difference between the features of the flow fnew and the

features of the cluster c, which is defined by

dfnew,c =

∣∣∣∣Sfnew − Slinear
n

nc

∣∣∣∣
By checking F2(dc

pfnew

1

, d
c
pfnew

2

), we investigate the certainty that the flow fnew should be in-

cluded in the most similar cluster; if F2(dc
pfnew

1

, d
c
pfnew

2

) is small, the flow fnew should be in-

cluded in the most similar cluster even if the features are inaccurate. But, on the other hand,

if F2(dc
pfnew

1

, d
c
pfnew

2

) is large, we should wait until the features become accurate, because the

second similar cluster is also similar to fnew.

In our method, the agent for the flow fnew moves over the tree by performing the following

rule once per one arrival packet.

1. If F1(ϵfnew) ≤ T fnew

1 ×Ah−1

(a) if pfnew has no children, make a leaf node and insert the pointer to the features of

fnew to the newly added node

(b) if pfnew has only one child,

i. if the child is the leaf node, insert the pointer to the features of fnew to the child.

ii. otherwise, go to the child.

(c) if pfnew has plural children

i. if F2(dc
pfnew

1

, d
c
pfnew

2

) ≤ T fnew

2 ,

A. if cpf
new

1 is the leaf node, insert the pointer to the features of fnew to c
pfnew
1 .

B. otherwise, go to c
pfnew
1 .

ii. if F2(dc
pfnew

1

, d
c
pfnew

2

) > T fnew

2 ,

A. if pfnew is the root node, stay and update T fnew

2
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B. if pfnew is not the root node, go back to the parent node of pfnew and update

T fnew

2

2. If F1(ϵfnew) > T fnew

1 ,

(a) if pfnew is the root node, stay and update T fnew

1

(b) if pfnew is not the root node, go back to the parent node of pfnew and update T fnew

1

In the above rules, the threshold for F1(ϵfnew) is defined by T fnew

1 × Ah−1 where T fnew

1 is a

value stored for each flow, A is a parameter, and h is the height of pfnew . This threshold becomes

strict as pfnew becomes close to the leaf. By doing so, decision of insertion/descent is made

carefully at the lower layer and quickly at the upper layer.

In the above rules, T fnew

1 and T fnew

2 are updated by

T fnew

1 = T fnew

1 × α (3)

and

T fnew

2 = T fnew

2 × α (4)

where α is a parameter. By updating T fnew

1 and T fnew

2 , we relax the threshold so that the flow

fnew can be included in a cluster.

3.3.2 Node Split

If the number of entries of a node exceeds the threshold, we split the node. In our method, node

splitting is done based on pairwise distances between the entries; entries are separated into two

groups so as to minimize the sum of the intra-group distances in the same way as ClusTree.

In this thesis, we first apply Ward method [23] to separate entries into two groups. Then one

group is removed from the original node and added to newly created node. We also add the node

which is the parent of the new node and the original node.
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4 Evaluation

4.1 Environment

4.1.1 Traffic Data

In this evaluation, we used the traffic traces monitored at the gateway of our laboratory for 1

hour. We regard the well-known ports as the server ports, and define the flow as the set of packets

between the same IP address pair using the same server port. The monitored traffic data includes

4692 flows. In this evaluation, we focus on the flows with a sufficiently large number of packets,

because it is important to classify the large flows, considering the case that the flows are handled

based on the identified types of the applications. In this evaluation, we focus on the flows which

includes more than 50 packets. The number of such flows included in the monitored traffic data is

1268.

4.1.2 Features

In this evaluation, we use the following two features;

• Average size of the downstream packets

• Average size of the upstream packets

where downstream packets indicate the packets from the server, and upstream packets indicate the

packets to the server.

In this thesis, we use the above simple features to discuss the constructed clusters, though our

method is applicable to the case that more features are used to construct the clusters.

4.2 Compared method

We compare our method with the online clustering method using the features obtained by moni-

toring a predefined number of packets. In this method, the classifier monitors the downstream and

upstream packets. When if either the number of downstream packets or that of upstream packets

exceeds the predefined threshold, the classifier set the features of the flow, and run the clustering

method. In this method, we use our clustering method with setting ϵ to 0. By this comparison, we
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demonstrate that our method constructs the accurate clusters fast, considering the inaccuracy of

the features.

4.3 Metric

We use the following metrics.

4.3.1 Accuracy

We evaluate the accuracy of the constructed clusters. We regard the clusters constructed by the

offline clustering using the features obtained after the flows are completed as the correct clusters.

In this evaluation, we use our method with setting ϵ to 0 as the offline clustering. Then, we compare

the clusters constructed by our method with the correct clusters at each layer.

To compare the constructed clusters, we define the following three metrics. The first metric is

Precision. Precision for ith cluster is defined by

Precision(i) =
|F correct

i ∩ Fi|
|Fi|

(5)

where Fi is the set of flows included in the ith cluster, and F correct
i is the set of flows in the correct

ith cluster. Precision for the ith cluster indicates the ratio of the flows that is correctly clustered in

the ith cluster.

Similarly, we define Recall for the ith cluster by

Recall(i) =
|F correct

i ∩ Fi|
|F correct

i |
. (6)

Recall for the ith cluster indicates the ratio of the flows in the ith correct cluster that are also

included in the ith cluster constructed by the clustering method.

Finally, we define the overall accuracy by

Overall Accuracy =

∑
i |F correct

i ∩ Fi|
n

(7)

where n is the number of flows. The overall accuracy indicates the ratio of the flows that are

correctly clustered.
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4.3.2 Time required to find the cluster

In our method, agents for flows find the suitable clusters from the root of the tree. When an

agent goes through a node in the tree, the agent determines that the corresponding flow should

be included in the cluster corresponding to the node. Therefore, in this thesis, we investigate the

number of packets required by the agents to go through the node in each layer. If the agent goes

through a node in a layer with a small number of packets, the corresponding flow can be clustered

immediately at the layer after the flow starts.

4.4 Results and discussion

In this evaluation, we set the initial value of T fnew

1 to 0.04, the initial value of T fnew

2 to 0.2, α to

1.1, A to 0.9, N to50 in our method.

Figures 2 through 5 show the clusters constructed by our method, offline clustering using the

features obtained after the flows are completed, online clustering using the features obtained when

20 and 40 packets are monitored. In these figures, the horizontal axis is the average size of the

downstream packets, and the vertical axis is the average size of the upstream packets. We plot the

data point of all flows based on the true features obtained after the flows are completed. The data

points are colored according to the constructed cluster.

These figures indicate that all methods construct 3 clusters at the first layer, and 5 clusters

at the second layer. Our method and the offline clustering method construct the clusters so that

the data points in each cluster are similar. However, especially the clusters constructed by the

clustering method using the features obtained when 20 packets are monitored includes data points

far from the other data points in the cluster.

We investigate the accuracy of the constructed clusters. Figures 6 and 7 compares the Precision

and the Recall, respectively. In these figures, the Precision and the Recall become low in the

lower layer. This is because the difference between the clusters becomes small in the lower layer.

As a result, it becomes difficult to construct the accurate clusters in the lower layer. Because

the parameters in our method may have an impact on the constructed clusters, our method may

construct accurate clusters by setting the parameters properly, which is one of our future work.

From these figures, our method achieves the higher Precision and Recall than the method using

the features obtained when 20 or 40 packets are monitored. This is because the features of some
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flows obtained when 20 or 40 packets are monitored are different from the true features obtained

when the flows are completed. Such flows cannot be grouped into the correct clusters. On the

other hand, our method waits until the features of the flow becomes sufficiently accurate. As a

result our method achieves the higher Precision and Recall.

The advantages of our method discussed above are also demonsrated by the overall accu-

racy The overall accuracy is shown in Figure 8. Similar to the Precision and Recall, our method

achieves the higher overall accuracy than the method using the features obtained when 20 or 40

packets are monitored.

We also investigate the number of packets required to be monitored to determine the cluster

the corresponding flow belongs to. Figure 9 shows the number of packets required to be monitored

to determine the cluster in the 1st and 2nd layers. In this figure, the horizontal axis is the number

of packets, and the vertical axis is frequency or cumulative distribution. The location of each data

point in this figure is determined based on the largest number among the number of upstream

packets and that of downstream packets. This figure indicates that 81 % of flows can be grouped

into the corresponding cluster in the 1st layer by monitoring 30 packets. Even in the second layer,

99 % of flows can be grouped into the corresponding cluster by monitoring 40 packets. In addition,

there are flows whose corresponding cluster is determined only by monitoring 10 packets. This

is because our method selects the clusters immediately after the features of the flow becomes

sufficiently accurate. Therefore, our method is applicable to the real time flow classification;

the flow classification using our method can classify the flows soon after the flow starts, and the

classified flows can be handled properly according to the identified types of the flows.
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Figure 2: Constructed clusters: offline
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Figure 3: Constructed clusters: online (proposed)
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Figure 4: Constructed clusters: online (using features obtained by monitoring 40 packets)
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Figure 5: Constructed clusters: online (using features obtained by monitoring 20 packets)
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Figure 6: Precision
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Figure 7: Recall
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Figure 8: Overall Accuracy
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Figure 9: Number of packets required to determine the clusters
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5 Conclusion and Future Work

In this thesis, we proposed a new hierarchical clustering method for real-time flow classification.

Our method constructs the hierarchical cluster, updating the features of the traffic flows; the fea-

tures are updated every time a packet arrives, and the cluster which a flow belongs to in each

layer is determined after the features become accurate enough. If the features of the flow are not

accurate enough to determine the cluster the flow belong to, our method waits another packet to

improve the accuracy of the features.

The hierarchical clusters are useful to estimate the characteristics of the flow when the flow

is related to the unknown application. In the hierarchical cluster, the flows are clustered into a

small number of groups in the upper layer, and the flows belonging to the same group in the upper

layers are clustered into several groups in the lower layer. If flows of a new application construct

a new group in the lower layer, but they are classified in an existing group in the upper layer, the

characteristic of the new application can be estimated from the characteristic of the existing group.

We evaluated our clustering method using the actual traffic traces. The results indicated that

our method construct the similar cluster as the method that uses the accurate features; our method

achieves the accuracy of 88% when 3 clusters are constructed, and achieves the accuracy of 74%

when 5 clusters are constructed. In addition, the results demonstrated that our method classifies

the flows by monitoring only a small number of packets; 81 % of the flows are classified into 3

clusters before 30 packets arrive, and 99 % of the flows are classified into 5 clusters before 40

packets arrive.

Our future work includes the method to set the parameters in our method, and evaluation of

the flow classification method using our clustering method.
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