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Abstract

The Internet provides various services which are essential for our daily life as one of the

social infrastructure. The number of services provided through the Internet is increasing

days by day. However, a long history of developments of Internet causes inflexibility of the

today’s Internet, that is, it is difficult to integrate modern technology and support new

types of requests for services. Recently, the network virtualization attracts a great deal

of attention as one of technology to take performance and manageability of services. One

of the important research issues for network virtualization is how to embed a request of

virtual networks into a physical infrastructure. Another of the important research issues

is to investigate what kinds of the virtual network should be constructed dependent on

a service request. In this thesis, we focus on the latter issue and investigate a configu-

ration method of virtual networks to provide resilient, efficient, and scalable services to

the Internet. Our configuration method is inspired from the fractality of human brain

functional networks (BFNs). Fractality is a self-similar property of the topology, and it

contributes to robustness and redundant paths in BFNs. Our configuration method piles

up a single virtual network as a module in a hierarchical manner and constructs inter-

modules links connecting non-hub nodes. Results of numerical evaluations reveal that

the fractal topology configured by our proposed method has superior robustness and ef-

ficiency. The reachability of the fractal topology is 17% higher than the reachability of

non-fractal topology when a 10%-node failure occurs, and the fractal topology relaxes the

traffic concentration by about 45% on the most congested node.
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1 Introduction

The Internet provides various services which are essential for our daily life as one of the

social infrastructure. The number of services provided through the Internet is increasing

days by day, such as social media services like movie sharing website and SNS (Social

Networking Service), and cloud services including IaaS (Infrastructure as a Service), PaaS

(Platform as a Service) and SaaS (Software as a Service). These diverse services are

brought by many years of assiduous effort for technology development, not provided from

the dawn of the Internet. This long-term development, however, causes inflexibility of

the today’s Internet, that is, it is difficult to integrate modern technology and support

new types of requests for services. For this reason, some network administrators consider

to separate network traffic for each service and to use network equipment efficiently and

flexibly. Nowadays, network virtualization attracts a great deal of attention as one of

technology to take performance and manageability of service. Network virtualization

is a technology which enables operating multiple network services independently on a

single physical network by separating a physical network and network services. This

technology makes the physical network possible to accommodate multiple network services

that require different functions or performance [1].

There are many research subjects to develop various technology to implement net-

work virtualization and they have actively been studied in recent years. These researches

include, for example, network equipment virtualization such as NIC (Network Interface

Card) and router and/or link virtualization such as bandwidth and data-transmit multi-

plexing, which forms a virtualized network [2]. A virtualized network, or simply virtual

network hereafter, is a network which are used by each network service under network

virtualization environment.

A virtual network consists of virtual nodes and virtual links. Virtual nodes and virtual

links are configured by network administrators, who manage virtual networks, and are

embedded in a physical network. For constantly providing network services, it is desired

that the connectivity of virtual networks is maintained under failures of physical nodes and

links on the physical network including human error of network configurations. Moreover,

in the future, larger scale virtual networks may appear by interconnecting existing virtual
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networks. For example, interconnected and large scale virtual networks correspond to

provide advanced and complex network services by combining the basic and simple network

services running on a respective single virtual network. According to the report from

Ministry of Internal Affairs and Communications in 2015, actually, 46 percent of the

performance decay or service stop in telecommunication carrier are caused by the accident

in other carrier [3]. To reduce such accidents, it is required to suppress impacts of failures

into small range for not affecting the entire network. In addition, there is more traffic flow

in the large scale virtual networks. As the scale of topology gets larger, there will be a

problem of traffic concentration on a certain node or placements of excess load on network

equipment. Virtual networks should be configured as maintaining the connectivity of

virtual networks under failures of virtual nodes and links, suppressing impacts of loss of

connectivity into small range, and avoiding traffic concentration. In this thesis, we propose

a virtual networks configuration methods that achieve robustness in terms of connectivity

and relax the traffic concentration.

Our research group focuses on human brain functional networks (BFNs) as clues to

configure virtual networks with desired properties. BFNs are networks which show connec-

tion structure of brain regions when they perform advanced brain functions. Nowadays,

many researchers analyze BFNs as complex network with graph theory [4]. These results

reveal the modular structure [5], tradeoff between hop length and wiring cost [6], degree

correlation [7] and effects of assortativity [8]. The noteworthy results are that BFNs exhibit

fractality [9, 10]. Fractality is one of the topological property that information network

topology, such as Internet AS (Autonomous System) level topology, does not exhibit [11].

For this reason, we have studied advantages of fractality of BFNs to network performance

from communication network perspective [12]. Our results show the BFN’s topology with

fractality have many superior paths, or redundant paths, compared to that without frac-

tality. We also show BFNs are robust in terms of connectivity against node failure. Hence,

it is expected that virtual networks can possess desired properties by incorporating fractal

nature. Note that we explain further details of BFNs in Section 3.

Many previous studies on fractality of network topology analyze only whether the

topology has fractality or not. Although some studies propose a generation model of

fractal topology, their main objective is eliminating noises which real networks contain
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to analyze the pure property of fractal topology. Thus, there are no practical configura-

tion or design methods for the fractal network. In this thesis, we propose a configuration

method of virtual networks with fractality. This method configures hierarchical mod-

ular virtual networks to integrate fractality, by piling up a single virtual network as a

module in a hierarchical manner and constructing inter-modules links via non-hub nodes.

Then, we examine the topological performance of fractal virtual networks by comparing

to non-fractal networks. Our evaluation results show fractal networks can achieve high

reachability and decrease the traffic concentration.

The rest of this thesis is organized as follows. We survey fractality and configuration

methods of virtual networks in Section 2. Section 3 explains our results about topological

characteristics of brain functional networks. In particular, we show BFNs have fractality

in various grain size, and fractality contributes to robustness against node failures and

redundant paths in the topology. In Section 4, we propose a configuration method of

virtual networks with fractality, and Section 5 shows the performance of the topology

configured by our proposed method. We conclude this thesis and refer to future works in

Section 6.
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Figure 1: Self-similar property of fractal topology under renormalization

2 Related Work

2.1 What is Fractal?

Originally, a fractal is a geometric concept but is extended for network topology by Song

et al [13]. From the point of view of network topology, fractality is a self-similar property

or repeating patterns at every scale, as shown in Figure 1. A network topology is fractal

when fractal dimension db in the topology is a finite value. For calculating db, Song et

al. proposed a renormalization procedure. This procedure is based on the box-covering

algorithm. This algorithm tiles whole nodes in the network topology by “boxes” with size

lB. The size of the box is defined by the maximum hop count between all node pairs in

the box. Then, the fractal dimension db is calculated by the following relationship,

NB(lB)/N ∼ lB
db , (1)

where NB(lB) is the minimum number of boxes and N is the number of nodes in the

network topology. When the value of db is finite, the relation between box size lB and

number of boxes NB(lB) is scale-invariant. In other words, fractality in network topology

is the property of preserving the proportion of the number of boxes to the box size. On

the other hand, dB of non-fractal topology is infinite. dB is appeared as the slope on the

log-log graph. Figure 2 shows the relationship among lB, NB and dB on the log-log graph.

Song et al. analyzed fractality of various networks with the renormalization proce-

dure. The analysis showed many networks, such as WWW (World Wide Web), protein

interaction networks and cellular networks, have fractality. In their following paper, they
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Figure 2: Relationship among box-size lB, number of boxes NB and fractal dimension dB

mentioned that the Internet router-level topology does not possess fractality [11]. The

fractal analysis of BFNs is also widely performed, and the results show BFNs have fractal-

ity in both anatomical and functional level [10,14]. There are several works of re-analyzing

the networks which were well studied in the past with fractal theory [15]. The analysis of

the performance of the fractal network, however, have not been carried out. Therefore,

advantages of fractality to communication networks have been still unknown.

2.2 Generation Model and Essentials of Fractal Topology

Some generation models of fractal topology are proposed in previous studies [11, 16, 17].

Here we explain the model by Song et al. The model is simple but useful to understand

the essentials or origins of fractality.

The model is based on the inverse of the renormalization procedure. In this model, the

network grows as the time step t increases. Every node at step t− 1 with degree k(t− 1)

evolves to a box and mk(t − 1) additional nodes are generated inside each box at step t.

Nodes existing at step t− 1 are connected to all the generated nodes inside each box. In

addition, all links at step t−1 are removed and new cross-box links are generated between

nodes inside each box. They proposed two kinds of mode to generate cross-box links, that

is, Mode I and Mode II. In Mode I, two boxes are connected through a direct link between

their hubs. In Mode II, a cross-box link connects to their non-hubs or additional nodes

at step t. The network evolves through the combination of Mode I with probability e and
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Mode II with probability 1− e, where e is defined as the measurement of the level of hub

attraction.

The probability e decides the fractality of topology generated by the model. The

topology with higher probability e, or hub attraction, tend to be non-fractal, on the other

hand, the topology with lower probability e, or hub repulsion, are inclined to be fractal.

This behavior is the essentials of fractal topology, that is, hub repulsion is the cause of

fractality.

2.3 Relation between Hierarchical Modularity and Fractal

A module is a group of nodes which are densely connected each other inside the module

and sparsely connected to nodes outside the module. A hierarchical module is a group of

modules connected in a hierarchical manner. A topology has hierarchical modularity if the

topology has fractality. Gallos et al. [14] explains this relationship through the property

of resulting boxes obtained by the box-covering algorithm. The box-covering algorithm

detects boxes that contain a maximum number of nodes within each box at given length

scale lB. As a result, the boxes tend to maximize modularity. Different values of the

length scale lB produce boxes of different size. These boxes are identified as modules at

various length scale, then, modules at a smaller scale lB are merged into larger entities as

increasing lB. Thus, a fractal topology has hierarchical modular structure. Considering

the contrapositions, topology without hierarchical modularity cannot have fractality.

Meanwhile, a hierarchical modular topology does not always have fractality. It is

evident from the Song’s generation model with higher probability e.

2.4 Configuration Methods of Virtual Networks

There are few studies on configuration methods of virtual networks. VNE (Virtual Network

Embedding) problem is the major problem treating virtual networks. In this research

problem, researchers randomly configure virtual network topology just for evaluations,

therefore, they do not focus on the virtual network itself. A few study has focused on

constructing virtual networks [18] In [18], Guo et al. studied survivability against facility

node failures. They proposed a method to efficiently re-embed virtual nodes in a physical
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network for sustaining availability of virtual networks when facility failures occur. They,

however, do not refer to the configuration method of virtual networks which can sustain

connectivity against node failure.
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3 Fractality and Performance of Brain Functional Networks

3.1 Fractality Analysis

3.1.1 Topology Data

Generally, brain functional network topology is obtained by processing data from the

fMRI measurement. By using fMRI, we can obtain time-series data of brain activities at

each voxel. A voxel is a unit of fMRI measurement. It can be regarded that there are

brain-functional interactions between voxels which showed high-correlated brain activity

transition. Thus, by regarding a voxel as a node and by constructing a link between voxels

where correlation value for brain activity transition is more than given threshold, we can

obtain the brain functional network topology that reflects brain-functional interactions [4].

Note that the obtained topology may be disconnected depending on the threshold. In this

case, the only most giant connected component is generally used for analysis.

We obtained the brain functional network topology for analysis by using the method

explained above. There is one male subject under resting-state conditions, and we mea-

sured subject’s brain activities with fMRI. The data from fMRI often include measurement

errors. To remove errors, we applied motion correction, or realignment, and slice timing

correction by using SPM8 [19]. Then we calculated a correlation value between all voxels

by Pearson’s method. Taking into account topology scale, we set the threshold to 0.65 and

obtained the topology with 10823 nodes and 64275 links. Hereafter, we call this topology

as voxel-level topology.

3.1.2 Decomposition of Voxel-level Topology

The voxel-level topology has almost no relevance to brain functions because a voxel is

merely a measuring point of fMRI and it does not directly relate to brain functions. It is

needless to say that it is important to focus on brain functions about our analysis of BFNs.

So we should obtain brain-functional-level topology. There are some methods to obtain

that kind of topology, such as ROI (Region Of Interest) which provides brain functions by

anatomical position of voxels. We, however, want to focus on fractality and hierarchical

module structure brought by it. Therefore, we obtain module-level topology as brain-
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functional-level topology by regarding module as a node at various grain scales. A module

is an aggregation of high-correlated nodes at voxel-level topology, so we can regard modules

as brain functions. Various grain scales of voxel-level topology correspond to levels of brain

functions, where small scale corresponds to primitive functions and large scale corresponds

to derivative functions. Note that we can decompose the topological structure of voxel-

level topology into 3 types of topological structures; module-level topology, inner-module

topologies, and inter-module links. We explain how to obtain these structure.

For obtaining module-level topology at various grain scales, we first detect hierarchical

modular structure. We use so-called “Louvain method [20]” for this purpose. This method

can find module identifier Mi(h) of node i at PATH (hierarchy) h1. We obtained module-

level topology at PATH h by following procedures:

Step.1 Generate initial topology. The number of nodes is set to the number of modules

at PATH h. The number of links is set to zero.

Step.2 Construct a link between nodes Mi(h) and Mj(h) when a link exists between node

i and node j at voxel-level topology and satisfies Mi(h) ̸= Mj(h).

Note that we call voxel-level topology as module-level topology at PATH 0 for convenience.

Table 1 shows the number of nodes and links of the obtained module-level topology.

Inner-module topology at PATH h consists of voxel-level nodes with same module

identifier at PATH h. That is, the inner-module topology can be obtained as a subgraph of

the voxel-level topology. For each PATH-level, the voxel-level topology can be decomposed

into a set of inner-module topologies. We distinguish inner-module topologies by the rank

of module size in descending order of the size.

Inter-module links are links connecting different modules. That is, they are set of links

obtained by removing all links of inner-module topologies from voxel-level topology.

As an example, Figure 3 is the illustration of the decomposition of voxel-level topology

with 26 nodes. A group of nodes surrounded by a circle is a module. The nodes in the

same module have same module identifier. This voxel-level topology contains six modules

at PATH1, three modules at PATH2, and one module at PATH3. Module-level topology

at PATH1 and PATH2 obtained by applying procedures explained above is illustrated

1We call the level of hierarchy as “Path” by following [20].
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Figure 3: Illustration of decomposition of BFN’s voxel-level topology

Table 1: The number of nodes and links at each PATH by decomposition of BFNs

PATH # of nodes # of links

0 10823 64275

1 1116 1946

2 203 458

3 79 245

4 69 222

at the left bottom of the Figure 3. Even if there are multiples links between modules

at voxel-level topology, they are regarded as a single link at the module-level topology.

Thus, we can obtain module-level topology with six nodes and seven links at PATH1 and

with three nodes and two links at PATH2. On the other hand, inner-module topologies

at PATH2 is illustrated at the right bottom of the Figure 3. We can obtain three inner-

module topologies at PATH2 because there are three modules at PATH2. The number of

nodes of each inner-module topology is eleven, nine, and six from the left. Therefore, the

rank of module size is assigned one, two, and three from the left.
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Figure 4: Fractality of BFN

3.1.3 Results

We analyzed fractality of both module-level topology and inner-module topologies. The

results are shown in Figure 4. Although there are about 1500 or more inner-module topolo-

gies over four PATHs, inner-module topologies with a sufficient number of nodes, more

than 100 nodes, share the similar result. Then, as the result of inner-module topologies,

we show only the topologies at PATH1 with module number 1, 2, 4, 8 and 16. The figure

shows NB decays against lB at the power-law manner in all topologies, therefore, they are

fractal topologies.

3.2 Path Quality Evaluation

3.2.1 Methods

For evaluating path quality, it is to be desired that we derive all paths between any nodes,

calculate the hop count along the paths and compare the distribution of the hop count

with other comparison topologies. It is, however, almost impossible due to very long

computation time. Then, taking computation time into account, we derive from shortest

path to 300th path between any nodes in the topology, and calculate the hop count. We use

Yen’s K shortest paths algorithm [21] for calculating paths. Defining HK as the average

hop count of K-the shortest path between arbitrary node pair, we take a distribution from

H1 to H300 as metrics for path quality.
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3.2.2 Topologies for Evaluation

In this paper, we evaluate BFNs’ path quality by comparing with various topologies. We

examined following topologies obtained by network generation models for comparison.

These models are used in the field of neuroscience and/or reflect a part of structural

properties of BFNs.

• Random model

• Barabási-Albert (BA) model [22] which reflects the structural property of power-law

degree distribution.

• Watts-Strogatz (WS) model [23] which reflects the integration of local optimality

and global efficiency [24].

• Waxman model [25] which reflects the property that functional modules in anatom-

ically close position are densely connected [26].

We evaluate the module-level topology from PATH1 to PATH4 respectively. The

topologies for comparison are generated with models so that the number of nodes and links

of those corresponds to module-level topology at each PATHs. Note that WS and Waxman

model have several parameters. WS model has parameter p which is the proportion of

random swapping of links. We calculated the average hop count H(p) and clustering

coefficient C(p) against p, and obtained the results. Figure 5 shows the result at PATH1

and almost same results as PATH1 are obtained at other paths. Regarding high clustering

coefficient as local optimality and the low average hop count as global efficiency, the value

of p should be around 0.1 to integrate high clustering coefficient and the low average

hop count. Therefore, we assign parameter p to 0.1 for WS model. On the other hand,

Waxman model has parameters α and β. They influence the probability to have a link

between node u and node v defined by

P (u, v) = αe−d(u,v)/βL, (2)

where d(u, v) is the distance between u and v, and L is the maximum distance between

any two nodes. The value of α affects the number of links in the topology. When the
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Figure 5: The value of the average hop count H(p) and clustering coefficient C(p) with

the proportion p of random link swapping in Watts-Strogatzs model

value of α is higher, the generated topology has more links. However, the number of links

of the comparison topology corresponds to that of module-level topology in this paper.

Hence, we assign α to 1.0 and modify WS model to generate topology with given number

of links. The value of β affects the probability of having a link between nodes with a

certain distance. When the value of β is lower, the fewer links are constructed between

nodes with long distance, or nodes with short distance have more links. Therefore, we

assign β to 0.1 for reflecting property that nodes in close position are densely connected.

3.2.3 Results

Figure 6 shows distribution from H1 to H300 of topologies for evaluation. Focusing on

BFNs, or red line, the value HK is minimum for overall K at PATH1 and PATH2. At

PATH3 and PATH4, HK is minimum for almost overall K. Even in the case that HK is

not minimum, HK is small enough comparing with other topologies. Therefore, it can be

concluded that BFNs have many superior paths at the module-level topology.
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Figure 6: Distribution of average hop length from 1st to 300th shortest paths of the

topologies for evaluation
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3.3 Robustness Evaluation

3.3.1 Methods

In Ref. [11], the authors evaluate the robustness of fractal and non-fractal topologies. They

use the relative size of the largest cluster, S, and the average size of the remaining isolated

clusters, ⟨s⟩ as a function of the removal fraction f of the largest hubs of topologies

for evaluation. In this paper, we follow its evaluation method. This method, however,

can evaluate only single topology, or cannot evaluate robustness relationship between

topologies at the different hierarchy. We want to evaluate such relationship to focus on

hierarchical module structure brought by fractality. Therefore, we generate module-level

topology under the removal fraction f0 of the nodes at PATH0 and calculate S and ⟨s⟩ of

each module-level topology. For failure scenario, Ref. [11] considers only hub node failure,

that is, a node with the highest degree in the topology is removed one by one until removal

fraction f reaches a certain threshold. We, in addition, consider random node failure, that

is, a randomly chosen node is removed. We set removal fraction threshold to 0.50 by the

Ref. [27].

3.3.2 Topologies for Evaluation

We focus on fractality of BFNs, so we evaluate the influence of fractality on robustness.

Here we evaluate two types of topology, fractal and non-fractal voxel-level topology, pre-

serving the topological structure at module-level.

Fractal topology is brain functional network topology, so we use it for evaluation. On

the other hand, non-fractal topology should be generated by some method. The easiest

way is to use topology generation model for non-fractal topology. Topology obtained by

this model, however, cannot preserve the module-level topological structure of BFNs. Here

we apply the essence of non-fractal generation model to generate the desired topology, as

we mentioned in Section 2.2. We rewire inter-module links of BFNs so that hub node in

each module construct inter-module links. Thus, we obtain non-fractal voxel-level topology

with preserving the topological structure at module-level.

Now we confirm the fractality. Figure 7 shows distribution of lB versus NB for brain

functional network topology and corresponding non-fractal topology. The result reveals
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Figure 7: lB versus NB distribution of brain functional network topology and non-fractal

topology

that fractality is changed so that fractality of the rewired topology is weakened.

3.3.3 Results

We show evaluation results of hub node and random node failure respectively in following

paragraphs.

Hub node failure Figure 8 shows the result of hub node failure and shows a similar

tendency for all the case of PATHs. Focusing on S, although both network topologies

break down as removal fraction f0 increases, brain functional network topology is the

significantly slow pace of breaking down. This means brain functional network topology

has the significantly higher robustness to hub node failure at both of voxel-level and

module-level topology.

Here, focusing on same f0 for brain functional network topology, the value S is larger

at higher PATH. This means module-level topology at higher PATH is more robust than

topology at lower PATH.
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Random node failure We generate 50 patterns of a random node failure and calculate

S and ⟨s⟩ for each pattern. Then we derive worst and average results from all pattern

results. Note that the worst result is based on S at each PATH independently, that is, we

select minimum S from 50 patterns at a certain f0.

Figure 9 shows the worst result. In the same way, hub node failure, brain functional

network topology has the significantly higher robustness to worst-case random node failure.

Figure 10 shows the average result. Both topologies share almost same transition of S and

⟨s⟩ as f0 increases. This means that both topologies have the almost same robustness to

average-case random node failure.

Taken together with hub node failure, brain functional network topology is more robust

than corresponding non-fractal topology.
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Figure 8: Cluster size transition under hub node failure
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Figure 9: Worst case of cluster size transition under random node failure
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Figure 10: Average case of cluster size transition under random node failure
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4 Hierarchical Modular Virtual Networks with Fractality

4.1 Virtual Networks as Hierarchical Modular Networks

As we mentioned in Section 2.3, the topology with fractality needs to have hierarchical

modular structure. Here we assume that virtual networks which we configure in this thesis

have a hierarchical modular structure for fractality.

To attain hierarchical modular structure, we regard a single virtual network as a mod-

ule, and we aim to configure a whole virtual network by hierarchically interconnecting

single virtual networks. A single virtual network provides small and basic services from

the perspective of whole virtual networks, and we regard that it is configured by its ad-

ministrators. In other words, we exclude a single virtual network from the configuration

of our method.

4.2 Construction of Hierarchical Structure

We implement hierarchical modular structure by using BHMN (Basic Hierarchical Mod-

ular Network) model proposed in Ref. [28]. As shown in Figure 11, this model regard a

topology at hierarchy h− 1 as a module, and the topology at hierarchy h is generated by

interconnecting these modules. The method for generating topology at each hierarchy is

as follows:

Hierarchy 1 (lowest) Any topology with LN nodes and LL links. The link density, or

ratio of the number of links against the total number of combinations of nodes, is

ρ1.

Hierarchy h(≥ 2) Connecting two topologies at hierarchy h − 1 as modules. The link

density between modules is ρh.

The link density ρh is calculated by the following equation:

ρ2
ρ1

=
ρ3
ρ2

= ... =
ρh
ρh−1

= d ∈ (0, 1). (3)

Equation (3) means the topology at upper hierarchy has less inter-module links. Lower d

can generate a topology with clear hierarchical structure.
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Hierarchy 1
(lowest)

Hierarchy 2

Hierarchy 3

Hierarchy 4

Figure 11: A topology with BHMN model for explanation : m = 2

BHMN model configures a topology at hierarchy h by connecting two topologies, or

modules, at hierarchy h − 1. Here we introduce parameter m to change the number of

modules. When generated topology has the same number of nodes, lower m generates

a “narrow and high” topology, on the other hand, higher m generates a “fat and low”

topology. When parameter m is greater than three, we should consider the topology at

module-level. Here we use star topology as module-level topology.

4.3 Strategies for Connecting Modular Networks for Changing Fractal-

ity

As we refer in Section 2.2, fractality is affected by degree correlation, especially the con-

nection structure of hub nodes. In the case of not configuring the topology at lowest

hierarchy in BHMN model, degree correlation of topology is decided only by the connec-

tion structure of inter-module links. In other words, the topology with various fractality

can be generated by changing the method of construction of inter-module links. We use

two types of methods for constructing inter-module links.

The first method is to construct links between nodes which are independently selected

from each module by the following equation:

P (di) =
(di)

α

Σj(dj)α
(4)

It is confirmed that various degree correlation can be achieved by changing the parameter

28



 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25

N
od

e 
D

eg
re

e

Node Degree

 0

 50

 100

 150

 200

 250

 300

 350

 400

N
um

be
r 

of
 L

in
ks

(a) α = 0.0

 0

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20  25  30  35

N
od

e 
D

eg
re

e

Node Degree

 0

 50

 100

 150

 200

 250

 300

N
um

be
r 

of
 L

in
ks

(b) α = 1.0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15 20  25 30  35 40  45

N
od

e 
D

eg
re

e

Node Degree

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

N
um

be
r 

of
 L

in
ks

(c) α = 2.0
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(d) α = 3.0

Figure 12: Relations between parameter α and degree correlation of inter-module links

α in Equation (4). As one of examples, Figure 12 shows degree correlation of inter-module

links when α is set to 0.0, 1.0, 2.0 and 3.0. Both x-axis and y-axis are node degree of

both sides of inter-module links, and colors of plot represent the number of inter-module

links between corresponding node degree. It is obvious that, when α is small, there are

many links between non-hub nodes and a few links between non-hub and hub nodes. As α

increases, while the number of links between non-hub nodes decreases, more links between

hub nodes are constructed.

The second method is to minimize the metric SM (G). SM (G) derives from considering

only inter-module links in the metric S(G). S(G) is the metric which can identify the

connection structure of hub nodes and larger value means the dense connection of hub
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nodes [29]. SM (G) is defined as following equation:

SM (G) =
∑

(i,j)∈EM

didj , (5)

where, in two graphs G1 = (V1, E1) and G2 = (V2, E2), EM ⊂ V1×V2 is set of inter-module

links, and di denotes the degree of node i ∈ V . As Equation (5) shows, minimizing SM (G)

means that inter-module links are constructed between small degree nodes as much as

possible. Note that maximizing SM (G) is the one of the methods of constructing inter-

modules links. We, however, do not consider this one. This is because, when SM (G) is

maximized, inter-module links are concentrated at certain nodes, and the generated topol-

ogy is significantly vulnerable to failure of these nodes. This is clearly not the topology

we aim to configure.

4.4 Fractality Validation

Here, we validate that our proposed method can configure the topology with and with-

out fractality depending on strategies for the construction of inter-module links and the

parameters.

4.4.1 Parameter Settings

Our configuration method has roughly five parameters. For the validation of fractality, we

set parameters as shown in Table 2. Parameters m and h affect the number of nodes of

the generated topology. We assign (m,h) to (2, 7), (4, 4), (8, 3), (64, 2) to generate the

topology with 8192 nodes. Note that the topology at lowest hierarchy is generated by BA

model.

The number of inter-module links should be decided by parameter d, however, we do

not apply it in the case of m ≥ 3. This is because the generated topology has the same

number of nodes but a different number of links. For example, the number of links with

d = 0.20 is 14261 for m = 2 and 21188 for m = 4. Here, as a reference, we use the number

of links in the topology with d = 0.20 and m = 2. For generating the topology with the

same number of links, we use a constant number of inter-module links at each hierarchy

for a topology with m ≥ 3, as shown in Table 3. Then all topology have 14261 links.
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Table 2: Parameters of our proposed model

Parameter value description

LN 128 the number of nodes at lowest hierarchy (h = 1)

LL 256 the number of links at lowest hierarchy (h = 1)

d 0.20 the proportion of ρh to ρh−1 (use only at m = 2)

m 2, 4, 8, 64 the number of topologies at hierarchy h−1 to construct

topology at hierarchy h

h depends on m the number of hierarchy of generated topology

Table 3: The number of inter-module links in our proposed model with different parameters

(m,h)

(m,h)

(4, 4) (8, 3) (64, 2)

Hierarchical level

2 36 34 32.3

3 22 19

4 15

We consider following five patterns to construct inter-module links. Note that we use

C[α‘] as the notation in the case of α = α′ in Equation (4).

• MINSG: SM (G), defined as Equation (5), is minimized

• C[ {0.0, 1.0, 2.0, 3.0} ]: parameter α in Equation (4) is assigned as 0.0, 1.0, 2.0 and

3.0

4.4.2 Results

The results are shown in Figure 13. The figure shows that, for C[1.0], C[2.0] and C[3.0]

regardless of the parameter m, NB decays exponentially against lB, therefore they are

non-fractal topology. On the other hand, the topologies generated by MINSG and C[0.0]

have fractality when parameter m is 2, 4 or 8. In the case of m = 64, no topologies have

fractality. This is because there is no hierarchical structure as h = 2 when m = 64. A
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Figure 13: Fractality validation of our proposed model : N = 8192

fractal topology needs hierarchical structure, hence the topology with m = 64 cannot have

fractality.

To summarize, the topology has fractality when parameter m is 2, 4 or 8, and inter-

module links are constructed by the methods of MINSG or C[0.0]. In contrast, the others

do not have fractality. These results mean fractality of the topology can be controlled by

changing the strategies for construction of inter-module links in BHMN model.

32



5 Performance Evaluation

In this section, we evaluate the performance of fractal topology compared to non-fractal

topology. Our objectives to configure fractal topology are to maintain the connectivity,

suppress impacts of loss of connectivity into a small range and avoid traffic or load concen-

tration. Therefore, as performance metrics, we use reachability between modules under

node failure and node betweenness centrality. In addition, we consider average hop length

and diameter to assess the fundamental performance of topology. Their evaluation results

are shown in following subsections.

5.1 Topologies for Evaluation

Here we aim to reveal the relationship between fractality and topological performance.

In Section 4.4, we clarified which topology has fractality or not. Therefore, we use same

topologies in Section 4.4 for evaluation in this section. In other words, the parameters are

set as shown in Table 2 and they generate topology with 8192 nodes and 14261 links.

In addition, for the evaluation of node betweenness centrality and hop length, we

evaluate large-scale topology to evaluate the influence of topology growth. For that, as

parameters (m,h) are assigned to (2, 8) and (2, 9), we generate the topologies with 16384

and 32768 nodes.

5.2 Reachability under Node Failure for Robustness Evaluation

5.2.1 Metrics

As we mentioned in Section 1, it is important to maintain the connectivity of virtual

networks under failures, and it is desirable to suppress impacts of failures into small range

for not affecting entire network even if the connectivity losses. For evaluating this property,

we introduce the metrics defined as follows:

T h
f =

∣∣{(Mh
x ,M

h
y ) | exists paths between (x, y) ∈ V 1, Mh

x ̸= Mh
y }

∣∣
|Nh| × |Nh − 1|

∈ [0, 1], (6)

where V 1 is the set of nodes in topology at lowest hierarchy, Mh
x is the module number

of node x ∈ V 1 at hierarchy h, and Nh is the number of modules at hierarchy h. Note
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Figure 14: The robustness metrics T h
f

that T 1
f can be defined by regarding each node at lowest hierarchy as a module, that is,

∀x ∈ V 1(M1
x = x)).

Now we explain the metrics by using Figure 14 as a concrete example. The left side

of this figure shows two levels of the topology at failure ratio f = fx; the node at lowest

hierarchy as a black-colored circle, and the module at hierarchy h = hy as a dotted circle.

The right side of this figure shows reachable modules at hierarchy hy based on the topology

on the left side of this figure. Then the values of the numerator and denominator of T
hy

fx

are as follows:

(numerator) = |(1, 2), (1, 3), (2, 3), (3, 4), (2, 1), (3, 1), (3, 2), (4, 3)| = 8,

(denominator) = 4× (4− 1) = 12,

and T
hy

fx
is calculated as = 8/12 = 0.75. This means that one-fourth of module pairs at

hierarchy hy no longer can communicate each other.

5.2.2 Failure Scenario

We consider three failure scenarios. The first one is the failure of both terminal nodes of

inter-module links. This failure simulates the case that nodes exceed its capacity due to a

large amount of traffic exchange between modules. We randomly select inter-module links

and remove the nodes connected to inter-module links. This procedure is repeated until

all inter-module links are removed from the topology. The second one is the random node

failure. In this scenario, the randomly chosen node fails. This corresponds to various types

of natural failures such as human errors, natural disasters, and so on. The last one is the
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hub node failure. The node with the largest degree fails in this failure scenario. This is

regarded as failures caused by traffic concentration on the node in a single virtual network.

Note that, in all scenarios, the failures occur at a node in the topology at lowest hierarchy.

The random and hub node failures continue until the 15% of nodes in the topology is

removed.

5.2.3 Results

First of all, Figure 15 reveals the effect of the difference of the construction method of

inter-module links. The evaluated topologies are generated by parameter m = 2. Note

that the topologies with fractality are MINSG and C[0.0]. In this figure, y-axis shows

T 1
f0
, or reachability at the lowest topology. The figure shows MINSG and C[0.0] can hold

high reachability under the failure of both terminal nodes of inter-module links and hub

node. On the other hand, reachability of other topologies decreases faster than MINSG and

C[0.0]. For the random node failure, all topologies show the similar changes of reachability

before the failure ratio reaches around 0.1. After that, reachability of MIN, C[1.0] and

C[0.0] decreases. Taking a practical situation into consideration, however, it is unlikely to

occur the node failure more than 10% in a topology. Therefore, MINSG and C[0.0], that

is, the fractal topologies have robustness against various types of the failures.

Next, Figure 16 shows the effect of the parameter m in our proposed method. The

evaluated topologies are generated by C[0.0] with different m. Note that the parameters

m = 2, 4 and 8 generate the fractal topologies, on the other hand, the parameter m = 64

generates the non-fractal topology. In this figure, y-axis shows reachability at the lowest

topology. This figure shows the fractal topologies exhibit the robust behavior against

various types of the failures regardless of parameter m. By contrast, the non-fractal

topology shows the unrobust behavior due to the rapid decrease of reachability.

Finally, Figure 17 shows the transition of reachability of the topology at higher hier-

archy, or module-level topology. The evaluated topologies are generated by C[0.0] with

m = 2. This figure reveals that reachability of module-level topology is highly maintained

even if reachability of the topology at the lowest hierarchy decreases (red line). This

means the hierarchical modular structure contributes to suppression of impacts of loss of

reachability.
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Summarizing the above, the fractal topology is robust against various types of node

failures. In addition, thanks to its hierarchical structure, the fractal topology is able to

suppress impacts of loss of connectivity.

5.3 Node Betweenness Centrality

Node betweenness centrality g(v) of node v is defined by following equation:

g(v) =
∑
s,t∈V

σst(v)

σst
, (7)

where, V is the set of nodes, σst is the number of shortest paths between node s and node

t, and σst(v) is the number of those paths passing through node v. Note that if s = t,

σst = 1, and if v ∈ {s, t}, σst(v) = 0. The higher g(v) means that there is more paths

passing through node v, that is, node v may suffer from the high load.

First, figure 18 shows the result of topology with 8192 nodes. From this result, regard-

less of parameter m, MINSG and C[0.0] can keep g(v) low compared to the others. The

other methods for constructing inter-module links except MINSG and C[0.0] have links

between hub nodes, therefore, the load is concentrated on these nodes. On the other hand,

MINSG and C[0.0] do not have links between hub nodes, hence, the load is distributed to

many peripheral nodes.

Next, figure 19 shows the case of larger topology. This result reveals, even if the

topology is getting large, MINSG and C[0.0] can avoid load concentration.

Taken together Figure 18 and 19, fractal topology can avoid traffic concentration.

5.4 Average Hop Length and Diameter

Figure 20 shows the evaluation results of average hop length and diameter. First, com-

pared with each method of constructing inter-module links, MINSG takes the largest value

followed by C[0.0], C[1.0], C[2.0] and C[3.0]. This results from the difference of contribu-

tion of hub nodes for inter-module links. Next, compared with each parameter m, larger

m takes smaller value in both average hop length and diameter. We use star topology

as module-level topology. Hence, larger m means connecting a larger number of nodes

with almost same hop length compared to smaller m. This is the reason larger m can

communicate via shorter paths.
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Figure 21 and 22 show the increasing ratio of average hop length and diameter respec-

tively. The values in the figures are normalized by the value of h = 7. These figures reveal

that, as topology is getting larger, the topology which tends to connect between non-hub

nodes further increase its path length compared to the topology which tends to connect

between hub nodes.
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Figure 15: Reachability under node failures as a function of failure ratio f0 : Difference

of the construction method of inter-module links
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Figure 16: Reachability under node failures as a function of failure ratio f0 : Difference

of parameter m
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Figure 17: Reachability under node failures as a function of failure ratio f0 : Topology at

higher hierarchy
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Figure 18: Node betweenness centrality : N = 8192
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Figure 19: Node betweenness centrality for larger topology : N = 16384 and 32768
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Figure 20: Average hop length and diameter : N = 8192

43



 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

h=7 h=8 h=9

In
cr

ea
si

ng
 R

at
io

 o
f 

 A
ve

ra
ge

 H
op

 L
en

gt
h

MIN(m=2)
C[0.0](m=2)
C[1.0](m=2)
C[2.0](m=2)
C[3.0](m=2)

Figure 21: Increasing ratio of average hop length for larger topology : N = 16384 and

32768
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Figure 22: Increasing ratio of diameter for larger topology : N = 16384 and 32768
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6 Conclusion

In this thesis, we proposed the configuration method of virtual networks with fractality

to maintain the connectivity, suppress impacts of loss of connectivity into a small range,

and relax the traffic or load concentration. Our method configures a hierarchical modular

virtual network by piling up a single virtual network as a module. The key to fractality is

the way to connecting modules. We revealed that we can generate the fractal topology by

avoiding construction of inter-module links between hub nodes. Moreover, the topology

without the hierarchical structure cannot possess fractality even if inter-module links are

constructed between non-hub nodes. We evaluated the topological performance of the

fractal and non-fractal topologies. The results showed the fractal topologies can keep

reachability between modules against the various types of node failures and relax the

traffic concentration. On the other hand, hop length tends to be longer due to the absence

of hub-hub connection.

We used specific parameters for our evaluation in this thesis, however, out proposed

method has many parameters to be considered. In addition, we have to consider the

different module-level topology in our proposed method other than the star topology.

Therefore, as the future work, we evaluate the fractality and performance by using various

parameters.
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