Achieving Plasticity in WDM networks: Application of Biological Evolutionary Model to Network Design

Koki Inoue, Shin’ichi Arakawa, Masayuki Murata
Graduate School of Information Science and Technology, Osaka University

IEEE GLOBECOM 2015, ONS 5: Virtualization and RSA for WDM Networks, 8 Dec. 2015

VNT (Virtual Network Topology) control

- VNT control reconfigures VNT in accordance with traffic changes
 - by establishing or tearing-down lightpaths
 - to lower link utilization

Research Background

- VNT control against traffic fluctuation
 - Some VNT control methods have showed good performance, such as keeping link utilization lower
 - VNT control method based on attractor selection\(^1\) shows high adaptability to unexpected traffic demand changes

- Shortage of resources caused by traffic growth
 - The VNT control may fail to obtain a good VNT

Network Design against Traffic Growth

Purpose: Add physical resources, e.g., transceivers in order to improve the adaptability of VNT control

- A good network design, or reinforcement of physical resources can accommodate future unknown traffic demands
- Optimization toward the present traffic may be bad for the future traffic

An Effect of Adding Transceivers

- We consider a method of adding transceivers
 - Selection of IP-routers where transceivers should be added
 - Adding a transceiver results in a new lightpath available

Key: The transceivers distribution has effect on available VNTs
Approach: Achieving a Biological Plasticity

- A plasticity, i.e., a changeability to environmental fluctuation is a basic characteristic in evolution

Physical topology:
- Simulation environment

Evaluate traffic demand and link utilization:
- Traffic demand model: Initially, each nodes has traffic demand about 15% more traffic patterns
- Add a transceiver to the selected node
- If there remains another transceiver, go back to Step 1
- Otherwise, finish

Proposed Method of Adding Transceivers

Step.1:
- Select a node to add a transceiver
 - Temporarily add a transceiver to one node
 - Evaluate the plasticity by using the biological model
 - Repeat [1.1-1.3] for another node

Step.2:
- Temporarily add a transceiver and evaluate the plasticity
- Add a transceiver to the selected node
 - If there remains another transceiver, go back to Step 1
 - Otherwise, finish

Applying a Genetic Evolutionary Model

- Evaluate the plasticity by computational simulation in case some transceivers were added to some nodes

Evaluation

- Simulation environment:
 - Physical topology:
 - Initially, each nodes has 2 + its degree transceivers
 - Traffic demand model:
 - $T_{VNT}(t) = m + r_{VNT}(t-1)$
 - Increase linearly
 - $T_{VNT}(t) = T_{VNT}(t-1) + k \times \sigma_{VNT}(t)$

- Method for comparison:
 - An ad-hoc design based on a heuristic method

Performance against Traffic Changes

- Proposal method accommodates CCDF
 - The distribution of link utilization for 1000 patterns of traffic changes
13

Performance against Noise Strength

- Proposal method with VNT control is adaptable even under drastic traffic fluctuation

Both designs achieve 100% success rate

The proposed design achieves plasticity

The ad-hoc design cannot handle various traffic patterns

Conclusion and Future Work

- **Proposal**
 - We proposed a design method of WDM network, which determines a set of IP-routers where transceivers should be added
 - The proposed method is inspired from biological evolution so that the network can obtain plasticity

- **Computer simulation**
 - Simulation showed the proposed method makes VNT control more adaptive against unexpected traffic fluctuations

- **Future work**
 - Evaluation on other physical topologies
 - Extension of the method so that it should add other resources not only transceivers of a node but also links between nodes

14