
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on Special Section on Internet Technologies to Accelerate Smart Society

Scalable Cache Component in ICN Adaptable to Various Network
Traffic Access Patterns

Atsushi OOKA†a), Nonmember, Suyong EUM†b), Shingo ATA††c), Members, and Masayuki MURATA†d), Fellow

SUMMARY Information-centric networking (ICN) has received in-
creasing attention from all over the world. The novel aspects of ICN
(e.g., the combination of caching, multicasting, and aggregating requests)
is based on names that act as addresses for content. The communication
with name has the potential to cope with the growing and complicating In-
ternet technology, for example, Internet of Things, cloud computing, and
a smart society. To realize ICN, router hardware must implement an in-
novative cache replacement algorithm that offers performance far supe-
rior to a simple policy-based algorithm while still operating with feasi-
ble computational and memory overhead. However, most previous stud-
ies on cache replacement policies in ICN have proposed policies that are
too blunt to achieve significant performance improvement, such as first-
in first-out (popularly, FIFO) and random policies, or impractical policies
in a resource-restricted environment, such as least recently used (LRU).
Thus, we propose CLOCK-Pro Using Switching Hash-tables (CUSH) as
the suitable policy for network caching. CUSH can identify and keep pop-
ular content worth caching in a network environment. CUSH also employs
CLOCK and hash-tables, which are low-overhead data structure, to sat-
isfy the cost requirement. We numerically evaluate our proposed approach,
showing that our proposal can achieve cache hits against the traffic traces
that simple conventional algorithms hardly cause any hits.
key words: Information-centric networking, Content-centric networking,
Caching, Cache replacement algorithm

1. Introduction

Information-centric networking (ICN) has been proposed as
a measure for overcoming the limitations of current Inter-
net architecture. ICN provides inherent in-network caching
in the framework of a novel networking architecture based
on name address that is assigned to content rather than a
device [1]. In the Internet, it is becoming more and more
difficult to assign and manage the location of devices in the
growing and complicating Internet technology, for example,
Internet of Things, cloud computing, and a smart society,
where the devices explosively increases and the connectiv-
ity is easily lost. However, network users mainly want con-
tent in network and do not want to know the location of who
provides it at the risk of increasing such difficulties. In ICN,
the name-based communication releases a network device
from the assignment and management of the location, and
enhances the availability of content.

†The authors are with the Graduate School of Information Sci-
ence and Technology, Osaka University, Suita-shi, Osaka, 565-
0871, Japan

††The author is with the Graduate School of Engineering, Osaka
City University, Sumiyoshi-ku, Osaka-shi, Osaka 558-8585, Japan

a) E-mail: a-ooka@ist.osaka-u.ac.jp
b) E-mail: suyong@ist.osaka-u.ac.jp
c) E-mail: ata@info.eng.osaka-cu.ac.jp
d) E-mail: murata@ist.osaka-u.ac.jp

Many challenges must be resolved to realize ICN,
which is a clean-slate network. In particular, most re-
searchers focus on in-network caching mechanisms because
such mechanisms can reduce network traffic volume effi-
ciently. Broadly, the popularity of Internet traffic approxi-
mately follows a Zipf distribution, where a large amount of
packets carrying redundant data are transferred. In [2], con-
tent requested more than once occupy 50% or more of the
volume of network traffic, with the value depending on the
observation period. The potential of caching is explored in
terms of which content should be cached at the router and
how to choose a “victim” chunk. The former and the lat-
ter are known as content placement and cache replacement
problems, respectively.

The cache replacement mechanism used in ICN re-
quires low computational and memory overhead because
the computing and storage resources of an ICN router are
very limited. However, most previous studies on cache re-
placement policies in ICN have adopted cache replacement
policies that are too blunt to achieve significant performance
improvement, such as first-in first-out (FIFO), random, and
least-recently-used (LRU), or are so complex and costly (of-
ten using statistical information), such as least frequently
used (LFU), that they are impractical. Although there are a
number of research studies on the policies from the view-
point of a computer system (e.g., CPU, I/O buffer, and vir-
tual memory) that have proposed scalable cache replace-
ment policies, it is not obvious that the knowledge learned
from them can be applied to in-network caching since the
studies cover access patterns of computer applications only,
rather than network traffic.

We propose a cache replacement algorithm that is suit-
able for network traffic, achieves a high cache-hit rate, and
is scalable enough to address the challenge of implement-
ing a cache mechanism in resource-restricted hardware, in-
spired by CLOCK-Pro [3]. Our proposed algorithm, called
CLOCK-Pro Using Switching Hash-tables (CUSH), satis-
fies the performance requirements by employing two strate-
gies: two types of chunks and ghost caches. Classifying
chunks enables a cache to detect and hold popular content.
Ghost caches are the records of content discarded from the
cache. By storing the historical information of accesses
rather than the data of content, CUSH can adapt to the va-
riety and dynamism of network traffic access patterns while
avoiding an excessive memory cost.

CUSH also satisfies the cost requirements by adopt-
ing the low-overhead data structures: a CLOCK list and

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

hash tables accepting hash collisions for ghost caches. The
CLOCK list is a low-overhead variant of LRU, which re-
quires only one-bit per entry and achieves as good perfor-
mance as LRU. The hash-tables significantly reduce the cost
of ghost caches and the lookup table, which are expensive
in an ICN router because of a long name used in the ICN
communication. Although these low-overhead data struc-
tures cannot directly adapt to our high-performance strate-
gies, we devise the algorithm that can be performed on the
low-overhead data structures and exploits the benefits of our
strategies.

This paper is organized as follows. We summarize var-
ious cache mechanisms ranging from computer systems to
in-network caching in Section II and the following Section
III uses the knowledge of them to reveal the design consid-
erations of cache replacement algorithm for a network envi-
ronment. In Section IV, we give the description of CUSH.
The simulation results in Section V show that our proposed
approach, which can be assumed as a low-overhead variant
of CLOCK-Pro, is comparable to CLOCK-Pro and outper-
forms simple policies. In addition, our proposal can achieve
cache hits against the traffic traces where simple conven-
tional algorithms cannot cause any hits. The section also
clearly shows that CUSH is low-overhead by comparing
time and space complexity of cache replacement algorithms.
Finally, we conclude this article in Section 6.

2. Related Works

Because cache resources are limited, practical cache re-
placement algorithms are necessary to keep popular con-
tent and remove rarely used one. There are a consider-
able number of cache replacement algorithms, ranging from
those used in software (e.g., database and web applications)
to those available in hardware (e.g., CPU and I/O buffers).
In this section, we review several cache replacement algo-
rithms that have been carried out in the different context to
understand the requirements of in-network caching.

Replacement algorithms are developed originally for
the purpose of paging in the computer system [4], [5]. The
bottleneck of the systems is the latency of fetching pages
from slow auxiliary memory to fast cache memory. On
the one hand, the hardware cache such as CPU commonly
used First-in, first-out (FIFO) and Not Recently Used (NRU)
to reduce the memory and computational costs because of
the hardly limited resources. On the other hand, the soft-
ware cache such as virtual memory of OS commonly adopts
LRU and LFU, which are costly to maintain a data structure
or/and statistical information (i.e., the number of references
to a page).

Then, researchers have uncovered access patterns that
degrade the performance of the algorithms. To overcome
the problematic access patterns, many variants of LRU and
LFU are developed. 2Q [6], ARC [4] and LIRS [7] improve
the performance by exploiting the advantages of LRU and
LFU while their time and space complexities are compa-
rable to that of LRU. They also hold ghost caches, which

are the records of evicted chunks rather than the data of the
chunk to adapt to the variety and dynamism of access pat-
terns. In contrast to them, CLOCK [8] reduces the com-
plexity of LRU by approximating its behavior with a fixed
circular buffer while keeping the performance. The com-
plexity of CLOCK is comparable to that of NRU which has a
low computational cost. CLOCK-Pro [3] combines CLOCK
with LIRS to achieve both performance improvement and
cost reduction.

After the emergence of the web services, web-cache
and CDN-cache are researched intensively to improve the
performance of them in terms of bottleneck, latency, over-
load and robustness [9]–[11]. Because the resource con-
straints of them are more moderate than those of computer
systems, the cache replacement algorithms in a web and a
CDN utilize statistical information including not only re-
cency and frequency but also several others including size,
latency, and URI [10]. However, the improvement was
slight or specific to particular environments in spite of an
abundance of caching algorithms [11].

In recent years, ICN has revived research on caching al-
gorithms because ICN provides inherent in-network caching
feature. Unlike web- and CDN-cache employed in the
application-layer, all devices in ICN have caching capabil-
ity. Because one of the most interesting problems is im-
provement achieved by through cooperation among ICN
routers in the network-layer, many researchers focus on
cache placement algorithms [12], [13]. As a cache replace-
ment algorithm taking advantage of ICN, there are also poli-
cies that make use of content popularity [14], [15]. Pre-
vious papers on caching use only LRU [16], [17] or claim
that the effect on performance of cache replacement is mini-
mal [18]. However, the papers use only blunt cache replace-
ment policies and ignore the suitability for network traffic.
In fact, there are studies that exhibit the capability to im-
prove the performance of a network [14], [15]. Cache re-
plcement policy based on content popularity (CCP) [14] can
significantly decrease the server load and increase cache hit
rate compared to that of LRU and LFU. The work in [15]
analyzed the effects of chunking and proposed Highest cost
item caching (HECTIC), which uses a utility-based replace-
ment algorithm and outperforms existing polices including
LRU. Their statistical approaches are too expensive to be
employed in an ICN core router due to computational and
memory costs. However, we propose a low-overhead cache
replacement policy that outperforms LRU-based and simple
replacement policies by coping with access patterns specific
to ICN. Compact CAR [19] is low-overhead and copes with
a part of traffic access patterns; however, the policy is weak
to LOOP and assumes that the memory cost of the lookup
table for ghost caches is acceptable, which are discussed in
the following section.

To realize ICN, especially an ICN core router, it is re-
quired to implement a cache replacement algorithm that can
be operated with severe resource constraints instead of the
statistical caching algorithms for web and CDN with rich
resources. The implementation cost of commonly used ap-

OOKA et al.: SCALABLE CACHE COMPONENT IN ICN ADAPTABLE TO VARIOUS NETWORK TRAFFIC ACCESS PATTERNS
3

proaches such as LRU and LFU are also prohibitive for
router hardware, as pointed out by [18], [20]. Looking back
at the history of cache replacement algorithms, ICN routers
need a hardware implementable approach whose complex-
ity is comparable to that of FIFO or CLOCK. In addition
to the cost, this approach should cope with access patterns
specific to ICN, where the unit of caching is a fine-grained
chunk rather than whole content data. To understand how
to satisfy these requirements of cost and performance, we
examine the knowledge of caching in computer systems and
apply it to in-network caching in the following section.

3. Design Considerations of Cache Replacement Algo-
rithm for ICN

3.1 Access Patterns of Traffic in the Network

An access pattern is the important factor to govern the per-
formance of cache replacement algorithm. It is well known
that the popularity of content follows a Zipf-like distribu-
tion: a large number of content requested only once or just
a few times [21]. In addition, many requests generate asyn-
chronous requests for content, and so the temporal locality
of network traffic becomes relatively low.

In particular, ICN is able to identify a chunk (its de-
fault size is 4K bytes in CCNx), which enables the chunk
level caching in an ICN router. Thus, we conjecture that
the distribution of the “chunk popularity” would be more
biased than Zipf-like distributions. In this paper, to design
an appropriate cache replacement algorithm for ICN under
different types of the distributions, we classify access pat-
terns of traffic, which governs the distribution [4], [6], [7],
[22], into four categories: SCAN, LOOP, COOREALTED-
REFERENCES, and FICKLE-INTEREST as follows:

• SCAN: a sequence of requests to different chunks, and
so each chunk is requested only once

• LOOP: a repetition of a scan
• CORRELATED-REFERENCES: a short-term intensi-

fied requests to a few chunks
• FICKLE-INTEREST: rapidly changing sets of re-

quested chunks

First, although the exact access pattern of the chunk
level (i.e., network level) traffic in ICN is not known due to
the lack of available ICN traffic trace, such one-time used
items occupy 60% or more in the network level traffic in
IP networks [2]. We conjecture that the highly aggregated
network level traffic in ICN would have a large number of
one-time used chunks, which correspond to SCAN access
pattern. SCAN makes the performance of an LRU-based
approach much poor because such unpopular content occu-
pies the whole cache.

Second, ICN is originally designed to efficiently dis-
seminate multimedia traffic which generally occupies high
network bandwidth and is requested repeatedly. Thus, we
also conjecture that the chunk level traffic in ICN will have
LOOP access pattern. As mentioned previously, LOOP is

highly correlated to SCAN: SCAN and LOOP are generated
by unpopular and popular content, respectively. Each chunk
in LOOP is removed from a cache before being accessed
again. LOOP has adverse effect on a LFU-based approach
as well as LRU because all chunk in LOOP have the same
recency and frequency.

Third, CORRELATED-REFERENCES and FICKLE-
INTEREST access patterns are observed in the requests to
user-generated content and real-time content, respectively.
We conjecture that these access patterns would be frequently
observed in ICN due to the growth of social networks that
share user-generated content as well as real-time application
such as video chatting. The volatile traffic hinders the strate-
gies depending on statistical information (including LFU)
from replacing the out-of-date chunks that were accessed
frequently.

For the reason above, the cache replacement algorithm
for ICN should be able to deal with the access patterns
described above. We here focus on SCAN and LOOP
in the design of the cache replacement algorithm for ICN
since it is the major traffic that occupies the network band-
width. Among the conventional cache replacement algo-
rithms, CLOCK-Pro is able to efficiently deal with the traf-
fic access patterns [3] due to its strategy based on inter-
reference recency (IRR) which enables to cope with SCAN
by distinguishing popular and non-popular content and fur-
thermore keep the appropriate number of popular content for
the traffics with LOOP. Our proposal is based on CLOCK-
Pro to inherit this feature.

3.2 Computational and Memory Cost

The cache replacement algorithm in an ICN router must sat-
isfy the requirements for consider computational and mem-
ory costs: the former is the cost that updates the table hold-
ing the information of cached items in the ICN router, and
the other is the cost that manages the table in the memory
according to a cache replacement algorithm, e.g., prioritiz-
ing cached items. The computational cost includes insertion
of a new caching item into the table, deletion of an existing
cached item from the table, moving the location of cached
items in the memory, and updating relevant information in
the caching table. The memory cost increases as the num-
ber of cached items increases due to the increase of control
information for the maintenance of the table [3], [5], [18],
[20]. For example, LFU has much higher overhead to keep
statistics of each cached item. In LRU using double-linked-
list, this cost is prohibitive due to the maintenance of double
pointers to other cached items.

CLOCK can satisfy the requirements. CLOCK has a
memory link list having a shape of a clock and assigns one-
bit to each entry in the list. CLOCK searches for an entry
containing a cached item that needs to be replaced follow-
ing a clockwise. CLOCK can keep recently accessed con-
tent because CLOCK judges whether a found entry should
be removed by the assigned bit, which is set to on when-
ever the cache is accesses. When the bit is on, CLOCK

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

KEY
(name)

VALUE
(address)

/A.mpg/s1 [𝟑]

/A.mpg/s2 [7]

/A.mpg/s3 [9]

⋮ ⋮

/X.jpg [1]

/B.mpg/s1 [𝟐𝒏]

/B.mpg/s2 [5]

/B.mpg/s3 [10]

⋮ ⋮

/Z.txt [4]

Interest: /A.mpg/s1

Lookup table

C
ach

e
G

h
o

st cach
e

log 2𝑛[bit]𝐿𝑚𝑎𝑥[bit]

𝑛

𝑛

Ideal lookup table
(collision-free ghost cache)

Interest: /B.mpg/s1

Fig. 1: Ideal Lookup Table for the Cache Replacement Pol-
icy using Ghost Caches (e.g., CLOCK-Pro)

unsets the bit and continues the search process; otherwise,
CLOCK removes the cache. Thus, CLOCK requires only
a single bit per chunk and few repetitions of the searching
process. Our proposed mechanism also adopts this mecha-
nism in CLOCK to reduce the computational and memory
costs.

3.3 Overhead on Lookup Table caused by Ghost Caches

Some cache replacement algorithms such as LIRS and
CLOCK-Pro hold ghost caches, which are historical record
of cached content items rather than cached data. Although
the ghost caches are essential to distinguish the chunks
worth caching from chunks in SCAN and LOOP, the ghost
caches impose high memory overhead on a cache lookup
table. For example, consider the lookup table for a cache re-
placement algorithm using ghost caches as depicted in Fig.
1. In the cache in ICN, the lookup table maps the name
of a chunk to the address of the entry for the chunk in the
data structure of a cache policy. In the figure, we assume
CLOCK-Pro as the cache replacement policy, which can
cache n chunks and remember n ghost caches. Entries for
the cached chunks (unshaded) and the ghost caches (shaded)
are stored in the CLOCK lists shown in the bottom of the
figure. In this example, the chunk “A.mpg/s1” is cached
and is mapped to the entry at the address 3 in the CLOCK
list. The chunk “/B.mpg/s1” is not in the cache memory but
only its historical record is stored in the entry at the address
2n as a ghost cache.

Then, let us discuss the memory cost of a lookup table

to keep ghost caches. Assuming the lookup table is imple-
mented as a simple key-value store, it needs to store a name
as a key and an address as a value. Assuming the maxi-
mum length of a name is Lmax[bit], the lookup table totally
needs 2n(Lmax+log 2n)[bit], where n(Lmax+log 2n)[bit]
are consumed to keep n ghost caches. Since Lmax can be
at most 512 Kbit according to the specification of CCNx,
the memory cost easily becomes prohibitive. Of course,
previous literature on ICN reduces the cost by proposing a
low-overhead lookup table such as a tree-based implemen-
tation [23]; however, it is expensive to double the number
of entries in a lookup table for ghost caches. To solve this
challenge retaining benefits of ghost caches, our proposal
addresses the challenge of minimizing the additional cost of
ghost caches as discussed in Section 4.3.

4. CLOCK-Pro Using Switching Hash-table (CUSH)

4.1 Data Structure of CUSH

CUSH has two component parts as shown in Fig. 2. One
is the circular buffer which works as a modified CLOCK
list, whose entry holds information to point to an actually
cached chunk. The CLOCK list has two types of entries:
hot entries and cold entries. H and C in the figure denote a
hot entry and a cold entry, respectively. The hot entry points
to a frequently accessed chunk, and the cold entry points
to the rest. Precisely, they are classified based on IRR as
explained later. The other component is the two hash-tables
for ghost caches, which act as “the loser bracket” providing
an opportunity for discarded chunks to be re-cached.

The CLOCK list assigns two bits to each entry: a bit
that indicates whether it is hot or cold (H-bit), and a ref-
erence bit (R-bit). The R-bit indicates whether the entry
has been accessed. H-bit is set to “1” when the entry is
hot; otherwise, “0”. R-bit is set to “1” when the chunk
is accessed. The entry with a check mark in Fig. 2 indi-
cates its R-bit is set to “1”. R-bit is set to “0” by using
the two hands: HANDcold and HANDhot. HANDcold is
used to discard a cold entry when cache replacement oc-
curs. HANDhot is used to change a hot entry to a cold
entry. Both hands remember the position to start the pro-
cess. When the process is needed, the hand rotate clockwise
to search a entry whose R-bit is “0”, and rotates ignoring
it. When HANDcold (HANDhot) encounters a cold (hot)
entry whose R-bit is “1”, the hand resets its R-bit to “0”
and continues to rotate ignoring the entry. In the process of
HANDcold, HANDcold also sets its H-bit to “1”. In addi-
tion, HANDcold (HANDhot) ignores a hot (cold) chunk.

The two hash-tables store ghost caches, which are the
information of chunks discarded from the CLOCK list re-
cently. The information of a ghost cache is recorded as the
flag bit in the hash-tables. In detail, when a chunk whose
name is /a.txt has been removed from the CLOCK list, the
flag bit of an entry at the address of H(/a.txt) is set to
“1”, where H(name) is the mapping function that maps
a name in ICN to the address of a flag bit in hash-tables.

OOKA et al.: SCALABLE CACHE COMPONENT IN ICN ADAPTABLE TO VARIOUS NETWORK TRAFFIC ACCESS PATTERNS
5

Hash
table 2

𝟏 [bit]

fill alternately

VALUE
(flag)

0

1

⋮

0

Hash
table 1

𝟏 [bit]

𝒌 × 𝒏

For Ghost Cache

𝐇𝐀𝐍𝐃𝐜𝐨𝐥𝐝

𝐇𝐀𝐍𝐃𝐡𝐨𝐭

𝐶
𝐶

𝐻

𝐶

𝐶

𝐶

𝐶

𝐶

𝐶

𝐻

𝐶

𝐻

𝐻

𝐻𝐻

𝐻

𝐻

𝐶

⋯

𝐶 𝐻 











Modified CLOCK list

For Cached Chunk

name: /𝑎. 𝑡𝑥𝑡

𝐻(/𝑎. 𝑡𝑥𝑡) = 2 VALUE
(flag)

0

1

⋮

0

Fig. 2: Data Structure of CUSH

When the chunk is accessed, the chunk is cached as hot if
its corresponding flag bit is “1”; otherwise, it is cached as
cold. CUSH has two hash-tables to fill (and clear) them al-
ternately. It is undesirable to have only one hash-table and
remove all ghost caches when needed because the chance of
the access to a ghost cache (i.e., the chance to detect popular
chunks) is lost shortly after the clear operation.

n denotes the number of chunks that a router can cache
in the cache memory. The number of entries in the CLOCK
list is also n because the CLOCK list is for actually cached
chunks. The number of entries in hash-tables can be ex-
panded to k × n, where k is determined according to the
characteristics of access patterns and the memory cost. k
is important because the LOOP-resistant property of CUSH
depends on the number of ghost caches. Although longer
LOOP requires larger k, the memory cost is very small be-
cause the cost of a flag bit is 1-bit.

4.2 Operation of CUSH

Here, we explain the operation of CUSH. There are two
cases when a new request arrives: (1) the requested chunk
is in the cache memory or (2) the chunk is not in the cache
memory. In the case (1), the entry of the requested chunk is
in the CLOCK list. If the R-bit of the corresponding entry is
“0”, it changes to “1”; otherwise, it remains “1”. In the case
(2), CUSH firstly retrieves the requested chunk from the
source of the chunk. Then, CUSH verifies whether the re-
quested chunk has been cached previously or not by check-
ing the hash tables. If the flag at the address of H(name)
is “1”, it means a ghost hit, that is, the chunk with the name
has been cached previously but the chunk does not exist in
the cache memory. Thus, when the chunk is cached, its en-
try is added to the CLOCK lists as a hot entry. If the flag
bits in the hash tables are “0”, the requested chunk has not
been cached recently. Thus, a new cold entry for the chunk
is added to the CLOCK list. We elaborate these processes in
detail in the following.

Figures 3 and 4 illustrates the operation classifying the
entry into hot or cold. The figures show the recently ac-
cessed requests to a router until now, which are arranged in

𝑥 𝑥

𝑥 is cached as cold.

𝐼𝑅𝑅 < 𝑃 ⇒ 𝑥 becomes hot.

𝑅-bit ← 1. 𝑅-bit ← 0, 𝐻-bit ← 1.

𝑒𝑥: 𝐶

Access
sequence

𝑡

𝑃

𝑒𝑥: 𝐶 𝑒𝑥: 𝐻


⋯

now

Fig. 3: The Operation of CUSH in the Case where ex Be-
comes Hot

𝑥 𝑦

now

𝑥 is cached as cold.

𝐼𝑅𝑅 < 𝑃 ⇒ 𝑥 is discarded.

𝑥 is discarded. 𝑥 is cached again.

𝑒𝑥: 𝐶

Access
sequence

𝑡

𝑃

𝑒𝑥 → 𝑒𝑦 𝑒𝑦

⋯ 𝑥⋯

𝑒
𝑥 𝑒𝑥 →

𝐻 if 𝑡 ≤ 𝑄
𝐶 if 𝑡 > 𝑄

Fig. 4: The Operation of CUSH in the Case where ex Be-
comes Cold

the order of the accessed time. In this example, we focus on
a certain chunk “x” and illustrate how to classify its entry
denoted by “ex” in the CLOCK list. The figures show the
case when two requests to the chunk x arrives with the time
interval t. The time interval t is the number of chunks ac-
cessed from the penultimate access to the last access, which
is the definition of IRR [7]. In addition, we introduce two
more parameters: P and Q. P is the rotation period of
HANDcold. Q is the period clearing the hash-tables (we
discuss the period in Section 4.4). For brevity, we illustrate
only HANDcold, which rotates whenever a new chunk ar-
rives and a cache replacement process is performed.

Here, we can consider two cases: (a) the first chunk
x has a hot entry and (b) the first chunk x has a cold en-
try. In the case (a), the hot entry ex remains in the CLOCK
list regardless of t. The case (b) is further divided into two
cases: (i) t ≤ P and (ii) t > P . Figure 3 shows the case
(i). The cold entry ex becomes hot because ex is accessed

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

before HANDcold encounters ex. Figure 4 shows the case
(ii). The cold entry ex is discarded from the CLOCK list
and is registered in the hash-table to provide an opportunity
for the discarded chunk x to be re-cached with a hot entry.
In short, t affects the behavior of CUSH. Since t represents
IRR, a chunk with low IRR is classified as hot and remains
in the CLOCK list. On the other hand, a chunk with high
IRR remains cold and is finally discarded when HANDcold

encounters it.
In the case (ii), in addition, the parameter Q determines

whether ex moves back to the CLOCK list or is discarded.
If t < Q, ex moves back to the CLOCK list because x is
requested before its flag bit is cleared; otherwise, x is com-
pletely discarded. When ex moves back to the CLOCK list,
ex becomes hot because it is assumed to have low IRR.

CUSH can deal with SCAN and LOOP by using two
types of chunks and ghost caches. The both access patterns
pollute a cache, that is, all chunks in a cache is removed
from a cache by the access patterns as explained in Section
3.1. CUSH can avoid the adverse effect of SCAN because
only cold chunks are replaced by one-time requested chunks
and popular chunks remain as hot chunks. CUSH can also
cope with LOOP as explained in Section 4.4.

To adapt the dynamics of access patterns, CUSH ad-
justs the target number of hot/cold chunks (denoted by mh

and mc, respectively). According to the target number,
CUSH manages the number of hot/cold chunks. When
accesses tend to have low IRR, CUSH increases mc and
attempts to behave like CLOCK, which focuses on the
recently accessed chunks. It is undesirable to increase
mh against low IRR because CUSH tries to hold out-of-
date chunks as hot chunks and it becomes hard to keep
up with the volatile popularity such as CORRELATED-
REFERENCE and FICKLE-INTEREST. On the other hand,
it is desirable to increase mh against accesses with high
IRR. CUSH copes with the accesses with high IRR such
as SCAN and LOOP by holding chunks worth caching
as hot chunks and ignoring wasteful chunks such as one-
time requested chunks. Specifically, mc increases when-
ever a cache hit or a ghost hit occurs. mh increases when-
ever HANDhot encounters a cold chunk and hash-tables are
switched. Because the parameters satisfy mh = mc, the one
parameter decreases when the other parameter increases.

4.3 Collision-free Lookup Table vs Hash-tables Accepting
Collision

Figure 5 compares the overhead of a lookup table for a cache
replacement policy using ghost caches. As shown in the left
of the figure, which is the same as Fig. 1, ghost caches im-
pose a high memory cost on a lookup table although ghost
caches are essential to deal with SCAN and LOOP. The
memory cost becomes prohibitive due to a name used in ICN
in contrast to the computer system as explained in Section
3.3.

CUSH can avoid the memory cost on a lookup table for
ghost caches. As shown in the right of Figure 5, CUSH re-

quires the lookup table only for the CLOCK list. The hash-
tables of CUSH do not require the support of the lookup
table because an entry in the hash-tables can be accessed
by computing H(name). Thus, we can reduce the memory
cost of the lookup table for ghost caches.

To reduce the cost, CUSH must accept a hash collision
on searching a ghost cache. Suppose, for example, hashes
of /b.txt and /c.txt take the same value as shown in Figure
5. When an initial request for /c.txt arrives at a router after
/b.txt was removed from the cache and has been stored as
a ghost cache, CUSH stores /c.txt as a hot chunk because
H(/b.txt) = H(/c.txt) and a hash collision occurs. It is
concerned that, if /c.txt is one-time requested content, the
unpopular content wastes the cache capacity for a long time
and degrades the cache hit rate of CUSH.

However, the collision problem is less serious com-
pared to the benefits of dealing with the access patterns. In
addition, the scalable data structure of the hash tables en-
ables to reduce the probability of hash collisions. We can
expand the hash space by increasing k. Another solution is
to use multiple bits instead of a one-bit flag. We explore the
influence of the difference in the implementations of ghost
caches in Section 5.2.

4.4 Management of Hash-tables to deal with LOOP

CUSH can deal with LOOP by using two types of entries
(i.e., hot and cold entries) and ghost caches. The exist-
ing LOOP-resistant policies (e.g., CLOCK-Pro) requires to
maintain an ideal lookup table without a collision and man-
age the number of ghost caches appropriately. To reduce the
memory cost of existing policies, we propose a method to
deal with LOOP without such an expensive lookup table as
described below.

As mentioned in Section 3.1, each chunk in LOOP is
removed from a cache before being accessed again; there-
fore, the all accesses to chunks in LOOP cause cache misses
in spite of the repetition of accesses. Although LOOP is
the repetition of the same SCAN accesses, the solution to
SCAN, which classifies chunks into two types and keeps hot
chunks, cannot be directly applied to LOOP. This is because
all chunks in LOOP have the same recency and frequency;
therefore, the number of chunks becoming hot is too large
and the chunks overflow the capacity of hot chunks. Specifi-
cally, even if the ghost cache of a chunk in LOOP is accessed
and the chunk becomes a hot chunk, too many chunks also
becomes hot after that and the chunk is removed from the
cache before being accessed again. Because this is applied
to all chunks in LOOP, a cache hit never occurs.

Our solution to LOOP is not only to detect the LOOP
access pattern but also to hold a cacheable portion of the
chunks in the LOOP as hot chunks. The detection needs
ghost caches, which is already introduced in CUSH, and the
hold process needs to manage the number of ghost caches.
To realize the latter process, CUSH clears the hash-tables
at an appropriate time interval. If the interval is too long,
CUSH tries to hold more hot chunks than the capacity and

OOKA et al.: SCALABLE CACHE COMPONENT IN ICN ADAPTABLE TO VARIOUS NETWORK TRAFFIC ACCESS PATTERNS
7

KEY
(name)

VALUE
(address)

Lookup table

𝑛

𝐿𝑚𝑎𝑥[bit] log 𝑛 [bit]

VALUE
(flag)

VALUE
(flag)

Hash tables accepting collision

𝟏 [bit]

𝒌 × 𝒏

Lookup table for CUSH
(ghost cache accepting collision)

/b.txt

Cache

Ghost cache

𝟎 or 𝟏

Mapping Function
𝐻(𝑛𝑎𝑚𝑒)

/c.txt

1

/d.txt

KEY
(name)

VALUE
(address)

Lookup table

Cache

Ghost Cache

𝑛

𝑛

𝑳𝒎𝒂𝒙[bit] log 2𝑛 [bit]

Ideal lookup table
(collision-free ghost cache)

Interest: /a.txt

𝑘𝑛𝑘𝑛

Fig. 5: Variations of Lookup Table for Ghost Caches

hot chunks overflow as described above. On the other hand,
the too short interval reduces the opportunity to detect the
repetition of LOOP because ghost caches are cleared before
cacheable chunks are detected. We propose the criteria to
determine the appropriate interval according to the number
of hot chunks nh. nh is the upper bound that hot chunks do
not overflow. Thus, CUSH clears hash-tables whenever the
count of both a cache hit and a ghost hit becomes nh.

Because CUSH has two hash-tables, in fact, CUSH
clears the two hash-tables alternately whenever the count
of hits becomes nh/2. CUSH stores ghost caches into one
of the two hash-tables until nh/2 hits occur, and then the
hash-table is switched and cleared. Although the lookup op-
eration must be performed against two hash-tables, we can
support the parallel lookup by hardware-implementation.

5. Performance Evaluation

This section explores the following three facts with simu-
lation studies: (1) Our proposal improves the performance
against the access patterns specific to network traffic com-
pared to existing cache replacement policies policies. (2)
Our proposed management scheme of ghost caches im-
proves the LOOP-resistant property in terms of its capacity
and its collision probability. (3) The memory and computa-
tional costs of our proposal are low enough to install it into
an ICN router.

5.1 Evaluation of Property Resistant to Access patterns us-
ing Synthetic Traffic

First, we demonstrate the adaptability of CUSH to several
traffic access patterns compared to some cache replacement
policies. The access patterns on which we focused in this
simulation are SCAN and LOOP, which are caused by a
large number of one-time used content items and the fine
granularity of items as stated in Section 3.1. Unfortunately,

ICN traffic traces are not available yet. Thus, we generate
two types of synthetic traffic workloads: requests for content
items and requests for chunks, which simulate the access
patterns of ICN. The synthetic workloads follow a Zipf-like
distribution because the popularity of Internet content (e.g.,
VoD, web pages, file sharing, and user generated content)
has been reported to follow the Zipf-like distribution [2],
[24]. According to the previous literature, we vary α, which
is a constant parameter of the Zipf-like distribution, from
0.8 to 1.4. We also change the chunk size L from 1.5 KB to
60 KB.

The cache replacement policies used in our evaluation
are OPT (here, an offline optimal algorithm with a priori
knowledge of the stream of requests), FIFO, CLOCK, Com-
pact CAR, CLOCK-Pro, and our proposal. OPT provides
the absolute upper bound on the achievable hit rate. FIFO,
CLOCK and Compact CAR are the policies consuming the
low memory and computational costs which can be imple-
mented in an ICN router. Compact CAR is SCAN-resistant
but is weak to LOOP. Although Compact CAR is origi-
nally designed on the assumption that it has the collision-
free ghost cache as depicted in the Fig. 1, it uses the ghost
cache that allows hash collision in our evaluation. CLOCK-
Pro also uses ghost caches but we evaluate the performance
of both implementations to show the effect of hash col-
lision. CLOCK-Pro(ideal) and CLOCK-Pro(real)
denote CLOCK-Pro using the collision-free ghost cache and
CLOCK-Pro using the ghost cache without collision resolu-
tion, respectively.

An ICN router manages n entries, where n ranges from
101 to 106 chunks which are adjusted according to the traf-
fic trace we adopt. In this evaluation, we assume that CUSH
consumes 4n [bit] for ghost caches 4n. We did not use com-
plicated topology because our purpose is demonstrating the
adaptability of our proposal to network traffic. A topology
we used in our simulation can be assumed to have only one

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

 0

 0.2

 0.4

 0.6

 0.8

 1

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]

OPT
FIFO

CLOCK
Compact CAR

CLCOK-Pro (real)
CLOCK-Pro (ideal)

CUSH

(a) α = 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]

(b) α = 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]

(c) α = 1.2

Fig. 6: Evaluation for SCAN-resistant Property with Synthetic Workloads in Units of Content

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

0 10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]

FIFO
CLOCK

Compact CAR
CLCOK-Pro (real)

CLOCK-Pro (ideal)
CUSH

(a) α = 1.0, L = 1.5KB

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

0 10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]

(b) α = 1.2, L = 1.5KB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]

(c) α = 1.4, L = 1.5KB

Fig. 7: Evaluation for LOOP-resistant Property with Synthetic Workloads in Units of Chunks

ICN router between clients and a server. The transmission
delay of each chunk on links and the unnecessary computa-
tion in the protocol stacks are also ignored to simplify the
simulation.

Figure 6 depicts the cache hit rates for synthetic work-
loads in units of content. There is SCAN in these scenarios
but LOOP does not appear. CUSH improves utilization effi-
ciency by up to several-fold compared with simple policies
that are weak to SCAN. We can find CUSH is superior to
Compact CAR although we conjectured Compact CAR was
better in a scenario without LOOP. This is because Com-
pact CAR fails to detect and hold popular chunks caused by
the hash collisions. Our low-overhead approximation shows
the performance as good as original CLOCK-Pro(real),
while the ideal policy with collision resolution achieves the
best performance.

Figure 7 shows the cases when the size of cacheable
chunks L is 1.5 KB. We can find the adverse effect of LOOP
as some policies have no cache hit happen until the cache
size exceeds a certain value. The policies that are weak to
LOOP are disturbed by LOOP when the cache size is less
than a certain value (e.g., 30,000 when α = 1.4); however,
CUSH achieves cache hits in the same condition. Thus,
these results show CUSH can adapt to access patterns in
network traffic. CUSH is also a good approximation of

Table 1: Cache Policies Used to Analyze Effect of Ghost
Cache

Name Implementation of ghost cache
CUSH-ht1(xk) Hash-table with kn 1-bit entries
CUSH-ht2(xk) Hash-table with kn 2-bit entries
CUSH-ht4(xk) Hash-table with kn 4-bit entries

CLOCK-Pro(real) Hash-table without collision resolution
CLOCK-Pro(ideal) Hash-table with collision resolution

CLOCK-Pro. In fact, the performance of CUSH is com-
parable to that of CLOCK-Pro.

5.2 Evaluation of the Influence of Ghost Caches to LOOP-
resistant Property

Then, we analyze the influence of the difference in the im-
plementation of a ghost cache. The LOOP-resistant prop-
erty is improved by increasing ghost caches and decreasing
the hash-collision probability as mentioned in Section 4.3.
Thus, we compare the policies shown in Table 1. CUSH-
htb(xk) denotes the implementation of CUSH with a hash-
table that contains k × n entries and assigns b-bits per en-
try. For example, CUSH used in the previous section cor-
responds to CUSH-ht1(x4). Ghost caches increase as k be-
comes larger. Increasing b reduces the collision probability.

OOKA et al.: SCALABLE CACHE COMPONENT IN ICN ADAPTABLE TO VARIOUS NETWORK TRAFFIC ACCESS PATTERNS
9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]

CLCOK-Pro (real)
CLOCK-Pro (ideal)

CUSH-ht1(x4)
CUSH-ht1(x16)
CUSH-ht4(x1)
CUSH-ht4(x4)

(a) α = 1.0, L = 15K

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]

(b) α = 1.2, L = 15K

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]

(c) α = 1.4, L = 15K

Fig. 8: Effect of Implementation of Ghost Cache on LOOP-Resistant Property

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]

CLCOK-Pro (real)
CUSH-ht1(x2)
CUSH-ht1(x4)
CUSH-ht1(x8)

CUSH-ht1(x16)

(a) CUSH-ht1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]

CLCOK-Pro (real)
CUSH-ht2(x1)
CUSH-ht2(x2)
CUSH-ht2(x4)
CUSH-ht2(x8)

(b) CUSH-ht2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Ca
ch

e
hi

t
ra

tio
Cache size [Chunks]

CLCOK-Pro (real)
CUSH-ht4(x1)
CUSH-ht4(x2)
CUSH-ht4(x4)

(c) CUSH-ht4

Fig. 9: Effect of the Amount of Ghost Caches on LOOP-Resistant Property (Using Synthetic Trace in Units of Chunks
withα = 1.2 and L = 1.5KB)

CLOCK-Pro(real) and CLOCK-Pro(ideal) are the
same as used in the previous section.

In the evaluation, we adopt the synthetic workloads
in units of chunks described previously according to the
purpose of analysis the LOOP-resistant properties. Figure
8 shows the hit rates for the synthetic workloads where
L = 15K and α changes from 1.0 to 1.4. Figure 9 compares
the hit rates for the synthetic workloads with L = 1.5K and
α = 1.2 among different implementations of a ghost cache.
The larger k is, the better performance becomes typically.
On the other hand, when k = 1 or 2, the hit rates with b = 4
is inferior to the hit rates with b = 1 or 2. This indicates a
part of LOOP becomes accidentally a hot chunk when the
number of ghost caches are too small to detect the repetition
part of LOOP. This is because a high collision probability
(i.e., small b) causes a cold chunk to turn into a hot chunk
randomly. In fact, the hit rates of CUSH-ht4(x4) are best be-
cause this case fulfills both a low collision probability and
many ghost caches enough to enable collision-free detec-
tion of a part of LOOP. Thus, we can enhance the LOOP-
resistant properties by only adding bits to each entry without
a significant change to the data structure of CUSH.

Table 2: Number of Chunks Per Second[pck/sec]
Chunk size 1.5KB 15KB 60KB

SD(600[kbps/min]) 50 5 1.25
HD(1.2[Mbps/min]) 100 10 2.50

5.3 Cache Hit Rate with Real Traffic Trace

To justify the results using synthetic traffic, we also use the
real traffic traces. We collected traces of VoD (e.g, YouTube,
DailyMotion, and NicoVideo) from a network gateway at
Osaka University campus. The traces are gathered from July
26th 2013 to February 26th 2015. The number of unique
content is 1,451,558; the number of content requested at
least twice is 381,527; and the number of total accesses
is 3,378,925. The popularity distribution of the real traffic
trace follows the Zipf-like distribution, as depicted in Fig.
10. We also show the statistics of the real traffic traces in
units of chunks in Table 3. The inter arrive time for chunks
is assumed to be constant according to Table 2, which is de-
termined by the statistics of our observed real traffic.

Figure 11 presents the simulation results. Here, we
use CUSH-ht4(x4) to exhibit the benefits of an enhanced
ghost cache. In the real environment, it is important to
deal with access patterns caused by the volatility of popu-

10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

 0

 0.2

 0.4

 0.6

 0.8

 1

101 102 103 104 105 106

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]

OPT
FIFO

CLOCK
Compact CAR

CLCOK-Pro (real)
CLOCK-Pro (ideal)

CUSH(ht4x4)

(a) Trace in Units of Content

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

0 10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Ca
ch

e
hi

t
ra

tio
Cache size [Chunks]

(b) Trace in Units of Chunks (L = 15KB)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

0 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ca
ch

e
hi

t
ra

tio

Cache size [Chunks]

(c) Trace in Units of Chunks (L = 60KB)

Fig. 11: Results for Real Traces

Fig. 10: Popularity Distribution of a Real Trace

Table 3: Statistics of Workloads in Units of Chunks
L # of total

accesses
of observed
unique chunks

of chunks
requested at
least twice

15 K 14,557,548 5,321,617 552,631

60 K 16,606,810 8,006,084 1,769,759

larity such as CORRELATED-REFERENCE and FICKLE-
INTEREST. We can find that CUSH achieves higher hit
rates than the others in the results for workloads in units
of content shown in Fig. 11(a), which reveals the SCAN-
resistant properties of CUSH. Figures 11(b) and 11(c) show
the results for workloads in units of chunks, which con-
tain LOOP. As CLOCK-Pro(real) is as bad as simple
policies, CLOCK-Pro is difficult to cope with the chang-
ing popularity. CUSH outperforms the other policies except
CLOCK-Pro(Ideal). Thus, CUSH has the properties to
cope with four access patterns discussed in Section 3.1, and
therefore can adapt to real network traffic.

5.4 Analysis on Space and Time Complexities

5.4.1 Space Complexity

We analyze the space complexity of some cache replace-
ment policies to elucidate CUSH is scalable. There are three
types of memory costs: a control information to manage

 0 M

100 M

200 M

300 M

clock clockpro clockpro
+lookup

cush
(k=1)

cush
(k=4)

cush
(k=16)

210 Mbit

Sp
ac

e
co

m
pl

ex
ity

 [
bi

t]

Fig. 12: Space Complexities of CLOCK, CLOCK-Pro, and
Our Proposal When n = 107

actually cached entries, a control information for a ghost
cache, and the additional cost of lookup table for a ghost
cache.

Table 4 summarizes the results of calculation with the
big O notation. Our analysis compares seven algorithms:
FIFO, LRU, CLOCK, CAR, Compact CAR, CLOCK-Pro,
and CUSH. Because there are several ways to implement
LRU, we consider the method using a doubly-linked list (de-
noted by LRUDLL) in this analysis. Although an additional
cost of a lookup table depends on how to implement the
lookup table, we assume the lookup table for ghost caches
is implemented as a hash-table without collision resolution
and its additional memory cost is O(x log x) when the num-
ber of ghost caches is x. We also define the following nota-
tions and variables. n is the number of cache entries. The
number of ghost cache entries is k times of n in CUSH.

FIFO requires only a pointer to remember the head of
the queue. The pointer requires at least ⌈log n⌉ [bit] to iden-
tify n individual entries; therefore, its space complexity is
O(log n). To implement LRUDLL, it is necessary to main-
tain a sorted doubly-linked list, where each entry has two
pointers. Thus, LRUDLL requires O(n logn) memory over-
head. The space complexity of CLOCK is O(n) to store n
R-bits.

The cache replacement policies using a cache his-
tory information (CAR, CLOCK-Pro, Compact CAR, and
CUSH) add a memory cost of ghost caches in addition to

OOKA et al.: SCALABLE CACHE COMPONENT IN ICN ADAPTABLE TO VARIOUS NETWORK TRAFFIC ACCESS PATTERNS
11

Table 4: Space Complexity of Cache Replacement Algorithm’s Overhead
Policies Cache management [bit] Ghost cache [bit] Lookup table for

ghost cache [bit]
FIFO O(logn) - -

LRUDLL O(n logn) - -
CLOCK O(n) - -

CAR (with LRUDLL) O(n logn) O(n logn) O(n logn)
Compact CAR O(n) O(n) O(n logn)
CLOCK-Pro O(n) O(n) O(n logn)

CUSH O(n) O(kn) -

Table 5: Average hand movement count of CLOCK-based policies
Average per access Average per miss

Cache hit rate n CLOCK CLOCK-Pro CUSH Compact
CAR

CLOCK CLOCK-Pro CUSH Compact
CAR

0.0–0.1 10 0.98 4.33 1.17 2.91 1.06 3.79 1.35 3.25
0.1–0.2 32 0.92 8.05 1.09 2.78 1.11 6.29 1.41 3.46
0.2–0.3 100 0.84 13.82 0.99 2.52 1.14 9.52 1.45 3.52
0.3–0.4 317 0.74 22.44 0.86 2.21 1.17 13.33 1.47 3.56
0.4–0.5 1000 0.65 32.26 0.71 1.85 1.20 16.11 1.47 3.68
0.5–0.6 3163 0.55 62.34 0.58 1.52 1.25 25.20 1.51 3.73
0.6–0.7 10000 0.45 618.03 0.43 1.17 1.32 190.44 1.51 3.78
0.7–0.8 31623 0.34 3402.53 4.18 0.83 1.46 734.00 20.79 3.86
0.8–0.9 100000 0.23 32.68 0.65 0.40 1.73 4.20 5.14 3.20

a cost to manage actually cached entries. The implementa-
tion of CAR is based on doubly-linked lists and the number
of ghost caches is n; therefore, the costs for cache manage-
ment and ghost caches are O(n log n).

Compact CAR and CLOCK-Pro use two CLOCK lists
with n entries; therefore, the memory costs for cache man-
agement and ghost caches are O(n). In contrast to these
policies that add the overhead cost to a lookup table, our pro-
posal is free from additional cost of a lookup table. CUSH
requires the cost of cache management that is equivalent to
that of CLOCK. CUSH furthermore can enlarge the capacity
of ghost caches k times.

We also calculate the actual memory cost added by
CLOCK, CLOCK-Pro, and our proposal when the number
of cache entries n is 10 million according to the previous
literature [23], [25]. Figure 12 shows the results of the cal-
culation. A policy based on a CLOCK list typically requires
a memory overhead of several bits per chunk. CLOCK con-
sumes 10 Mbits because it assigns only R-bit to each chunk.
CLOCK-Pro has a modified CLOCK list, which contains
2n entries and assigns three bits to each entry (R-bit, H-
bit, and a bit called a test flag), and so consumes 60 Mbits.
CUSH assigns two bits to n entries and has n-bits hash-
tables; therefore it consumes 30 Mbits when k = 1.

When taking account of the costs for ghost caches,
CLOCK-Pro additionally consumes 240 Mbit for looking-
up ghost caches. Thus, the total cost becomes 300 Mbit
(denoted by “clockpro+lookup” in Figure 12). This
cost is prohibitive because of the severe constraints of fast
memory enough to be employed in an ICN router such as
SRAM, whose available size is 210 Mbit [26]. On the other
hand, CUSH is free from additional cost of a lookup table.
In addition, CUSH can conserve the cost when enhancing a

hash-table for ghost caches. Even if k = 16, the total mem-
ory overhead cost of CUSH is 180 Mbit. Thus, CUSH is
a low-overhead and scalable cache replacement policy that
satisfies the memory requirements of an ICN router.

5.4.2 Time Complexity

We analyze the time complexity in this section. We fo-
cus on the policies based on a CLOCK list because of their
low space and time complexities enough to be installed into
an ICN router. The CLOCK-based policy decides whether
the replacement process continues or terminates every hand
movement; therefore, we can estimate its time complexity
by counting the hand movement.

Table 5 shows the number of hand movement. We
evaluated the four policies: CLOCK, CLOCK-Pro, CUSH
and Compact CAR. The number of hand movement intu-
itively depends on a cache hit rate because the process con-
tinues when there are many entries with R = 1 caused by
many cache hits. For clarity, we use the synthetic trace with
α = 1.0, where a hit rate increases in proportion to log n.
We show both the average counts for the all accesses and the
average counts for the cache misses because a cache miss
begins the hand movement process. We omit an evaluation
of the worst case because the worst-case complexity is ob-
viously O(n).

We find that the time complexities of CLOCK-based
policies except for CLOCK-Pro are constantly low. The
average hand movement count of CLOCK per miss is less
than two. The count of CLOCK-Pro is at most hundreds or
thousands times as many as that of CLOCK. This is because
CLOCK-Pro has three hands and the hands pass the chunks
unrelated to each of them (e.g., HANDcold and HANDhot

ignore all ghost cache entries). Although Compact CAR

12
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

also has two types of chunks, the average hand movement
count of Compact CAR is constantly less than four because
the two types of chunks are maintained separately.

CUSH can also achieve the hand movement count
equivalent to that of CLOCK in almost all the cases. The
data structure of CUSH is devised to reduce the extremely
large overhead of CLOCK-Pro by maintaining ghost caches
separately. However, when the hit rate is about 0.8, the
count becomes relatively large as well as CLOCK-Pro. If
this computational cost is prohibitive and appears in an ac-
tual environment, it may be required to maintain the rest
two types of chunks separately just as Compact CAR does
although the cost will increase under the other conditions.

6. Conclusion

We proposed a novel cache replacement algorithm named
CUSH which would be an important component in the de-
sign of a resource-restricted ICN router for IoT. CUSH out-
performs compared to conventional cache replacement al-
gorithms in terms of cache hit rates and reduction of mem-
ory usage. In detail, the proposed algorithm achieves cache
hits against the traffic traces with access patterns that simple
conventional algorithms hardly cause any hits. In particular,
the difference becomes significant where the cache memory
is restricted such as IoT devices. CUSH can enhance the
mechanism to cache a content item worth caching without
expensive additional cost, which is important to deal with
various traffics in ICN.

Acknowledgment

This work was supported by the Strategic Information and
Communications R&D Promotion Programme (SCOPE) of
the Ministry of Internal Affairs and Communications, Japan.

References

[1] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J.D. Thornton, D.K.
Smetters, B. Zhang, G. Tsudik, K. Claffy, D. Krioukov, D. Massey,
C. Papadopoulos, T. Abdelzaher, L. Wang, P. Crowley, and E. Yeh,
“Named data networking (NDN) project,” October 2010.

[2] F. Guillemin, B. Kauffmann, S. Moteau, and A. Simonian, “Exper-
imental analysis of caching efficiency for YouTube traffic in an ISP
network,” Proceedings of the 25th International Teletraffic Congress,
pp.1–9, September 2013.

[3] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An effective
improvement of the CLOCK replacement,” Proceedings of the
USENIX 2005, pp.323–336, April 2005.

[4] N. Megiddo and D.S. Modha, “ARC: a self-tuning, low overhead
replacement cache,” Proceedings of the 2Nd USENIX Conference
on File and Storage Technologies, pp.115–130, March 2003.

[5] S. Bansal and D.S. Modha, “CAR: Clock with adaptive replace-
ment,” Proceedings of the 3rd USENIX Conference on File and Stor-
age Technologies, pp.187–200, March 2004.

[6] T. Johnson and D. Shasha, “2Q: a low overhead high performance
buffer management replacement algorithm,” Proceedings of the 20th
International Conference on Very Large Data Bases, pp.439–450,
September 1994.

[7] S. Jiang and X. Zhang, “Making LRU friendly to weak local-
ity workloads: a novel replacement algorithm to improve buffer

cache performance,” IEEE Transactions on Computers, vol.54, no.8,
pp.939–952, August 2005.

[8] F.J. Corbato, “A paging experiment with the Multics system,” tech.
rep., DTIC Document, May 1968.

[9] J. Wang, “A survey of web caching schemes for the Internet,” ACM
SIGCOMM Computer Communication Review, vol.29, no.5, pp.36–
46, October 1999.

[10] K.Y. Wong, “Web cache replacement policies: a pragmatic ap-
proach,” IEEE Network, vol.20, no.1, pp.28–34, January 2006.

[11] A.M.K. Pathan and R. Buyya, “A taxonomy and survey of content
delivery networks,” tech. rep., University of Melbourne Grid Com-
puting and Distributed Systems Laboratory, February 2007.

[12] G. Zhang, Y. Li, and T. Lin, “Caching in information centric net-
working: A survey,” Computer Networks, vol.57, no.16, pp.3128–
3141, 2013.

[13] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mecha-
nisms in Information-Centric Networking,” IEEE Communications
Surveys Tutorials, vol.17, no.3, pp.1473–1499, April 2015.

[14] J. Ran, N. Lv, D. Zhang, Y. Ma, and Z. Xie, “On performance of
cache policies in named data networking,” Proceedings of the Inter-
national Conference on Advanced Computer Science and Electron-
ics Information 2013, pp.668–671, July 2013.

[15] L. Wang, S. Bayhan, and J. Kangasharju, “Optimal chunking and
partial caching in information-centric networks,” Computer Com-
munications, vol.61, no.1, pp.48–57, May 2015.

[16] W.K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache“ less for
more” in information-centric networks,” Computer Communica-
tions, vol.36, no.7, pp.758–770, May 2012.

[17] A. Safari Khatouni, M. Mellia, L. Venturini, D. Perino, and
M. Gallo, “Performance comparison and optimization of ICN proto-
types,” Proceedings of 2016 IEEE GLOBECOM, pp.1–6, December
2016.

[18] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more),” tech. rep., Telecom
ParisTech, July 2011.

[19] A. Ooka, S. Eum, S. Ata, and M. Murata, “Compact CAR: Low-
overhead cache replacement policy for an ICN router,” December
2016. arXiv:1612.02603.

[20] S. Arianfar, P. Nikander, and J. Ott, “Packet-level caching for
information-centric networking,” tech. rep., Finnish ICT SHOK,
June 2010.

[21] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: evidence and implications,” Proceedings
of IEEE INFOCOM’99, pp.126–134, March 1999.

[22] A. Jaleel, K.B. Theobald, S.C. Steely, Jr., and J. Emer, “High per-
formance cache replacement using re-reference interval prediction
(RRIP),” ACM SIGARCH Computer Architecture News, vol.38,
no.3, pp.60–71, June 2010.

[23] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng,
H. Dai, X. Tian, Z. Xu, H. Wu, and D. Yang, “Wire speed name
lookup: a GPU-based approach,” Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation,
pp.199–212, April 2013.

[24] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic
mix on caching performance in a content-centric network,” Proceed-
ings of the IEEE Conference on Computer Communications 2012,
pp.310–315, March 2012.

[25] A. Ooka, S. Ata, K. Inoue, and M. Murata, “High-speed design
of conflict-less name lookup and efficient selective cache on CCN
router,” IEICE Transactions on Communications, vol.E98-B, no.04,
pp.607–620, April 2015.

[26] D. Perino and M. Varvello, “A reality check for Content Centric
Networking,” Proceedings of the ACM SIGCOMM workshop on
Information-centric networking, pp.44–49, August 2011.

