
Master’s Thesis

Title

Analysis on Evolution of Network-related Functions

in the Linux Kernel

Supervisor

Professor Masayuki Murata

Author

Hirotaka Miyakawa

February 6th, 2017

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Analysis on Evolution of Network-related Functions in the Linux Kernel

Hirotaka Miyakawa

Abstract

With the spread of smartphones and tablet devices, the Internet has become increasingly im-

portant in our lives. In recent years, as with IoT (Internet of Things), everything is connected to

the Internet and information gathered through things. Services that control and predict devices

based on the collected information are under consideration. Recently, NFV (Network Function

Virtualization) attracts attention for flexible service development. NFV virtualizes the network

function which had been provided by the dedicated devices, and makes it operate as software on

general purpose hardware. The virtualization of the network function is to prepare the virtual ma-

chine on the hardware and execute the network function implemented as the software on the virtual

machine. The network administrator can easily develop a new network function on the network

infrastructure, for example, by creating a new virtual machine and executing the network function

implemented by the software on the virtual machine. As one application of NFV, edge computing

which flexibly expands and arranges functions by NFV in particular, has attracted attention. In

edge computing, edge servers are installed near the endhosts at the edge of the network, and (Part

of) the processing is performed at the edge server. By using edge computing, the end host only

needs to communicate with a relatively close edge server, so that the delay can be reduced and the

responsiveness of the service can be enhanced. By performing this edge computing with NFV, it

is possible to flexibly expand the functions and scale. However, since an edge server has lower

processing performance than a data center, it is not realistic to install all functions on edge servers.

Therefore, it is necessary to cut out some processing function (for example, filtering) and place it

on the edge. In this thesis, we focused on the Linux kernel implementation, extract commonly used

function group (core function), and saw how the core function is used from functions other than

core from the viewpoint of graph theory. As a result, Core was used by all components and found

to play a fundamental role. Furthermore, by applying the above analysis to multiple versions of

1

the Linux kernel, we analyzed the transition of core functions made by Linux kernel development

from the viewpoint of dependency and size between functions, and organize the requirements for

extraction and placement of core functions. Core does not change as development progresses, and

core is always used when new components are added. On the other hand, it is speculated that

ipv4 and irda are important rather than core when network functions are used from the outside of

the Linux kernel. Also, the functions in core and ipv4 do not change so much as development

progresses.

Keywords

Network Protocol

Protocol Stack

Linux Kernel

Graph Analysis

Software Engineering

Evolusion of Software

2

Contents

1 Introduction 6

2 Graph Representation of the Linux Kernel Implementation 8

2.1 Call Graph . 8

2.2 Obtaining a Call Graph for the Linux Kernel . 8

2.3 Fundamental Property of Linux Kernel Implementation 13

3 Characteristics of Network-related Implementation in the Linux Kernel 17

3.1 Call Graph for Network-related Functions in the Linux Kernel 17

3.2 Categorizing the Network-related Functions into Protocol Components 17

3.3 Analysis on Inter-connectivity between Protocol Components 17

3.4 Functional Core in the Linux Kernel . 22

4 Evolution of Network-related Implementation in the Linux kernel 25

4.1 Changes of Topological Characteristics . 25

4.2 Changes of the Inter-connectivity between Protocol Components 28

4.3 Evolution of Functional Core . 32

5 Conclusion 36

Acknowledgements 37

References 38

3

List of Figures

1 A call graph generated from an example program 8

2 Degree distribution of the call graph for the Linux kernel 4.7 14

3 Distribution of path length . 16

4 Changes of the number of nodes and links for each kernel 26

5 Changes of degree distribution for each kernel 27

6 Changes of numbers of protocol components 28

7 Connection between protocol components in the Linux kernel 4.7 and 3.0 29

8 Changes of modularity . 31

9 Changes of the number of the nodes and component size 33

10 Changes of the number of unchange functions 33

11 Changes of the number of nodes in core . 35

4

List of Tables

1 High degree functions in the Linux kernel . 15

2 High degree functions related to networking in the Linux kernel 18

3 Inter-connectivity between protocol components in the Linux kernel 2.4 19

4 Inter-connectivity between protocol components in the Linux kernel 4.7 20

5 Inter-connectivity between protocol components in the Linux kernel 4.7 (selected) 21

6 Number of links from network-unrelated functions 23

7 Number of nodes whose indegree is 0 . 24

8 unchanged functions in each protocol component 34

5

1 Introduction

With the spread of smartphones and tablet devices, the Internet has become increasingly impor-

tant in our lives. In accordance with diversification of devices and their functions, various services

have appeared on the Internet. In recent years, as with IoT (Internet of Things) [1–4], everything

is connected to the Internet and information gathered through things. Services that control and

predict devices based on the collected information are under consideration. For example, applica-

tions such as control of household appliances according to the situation and power transmission

control (smart grid) according to electric power demand are studied.

Recently, NFV (Network Function Virtualization) attracts attention for flexible service devel-

opment [5–8]. NFV virtualizes the network function which had been provided by the dedicated

devices, and makes it operate as software on general purpose hardware. The virtualization of the

network function is to prepare the virtual machine on the hardware and execute the network func-

tion implemented as the software on the virtual machine. The network administrator can easily

develop a new network function on the network infrastructure, for example, by creating a new

virtual machine and executing the network function implemented by the software on the virtual

machine.

As one application of NFV, edge computing [9–12] which flexibly expands and arranges func-

tions by NFV in particular, has attracted attention. In edge computing, edge servers are installed

near the endhosts at the edge of the network, and (Part of) the processing is performed at the edge

server. As processing, it is conceivable that, for example, collectint traveling data in a specific

area and distributint congestion information in ITS. By using edge computing, the end host only

needs to communicate with a relatively close edge server, so that the delay can be reduced and

the responsiveness of the service can be enhanced. By performing this edge computing with NFV,

it is possible to flexibly expand the functions and scale. Currently NFV is being standardized by

organizations such as ETSI NFV SGI that develops standard specifications and OPNF to establish

reference platform for NFV. Introduction on a commercial basis is also being advanced [13]. How-

ever, since an edge server has lower processing performance than a data center, it is not realistic to

install all functions on edge servers. Therefore, it is necessary to cut out some processing function

(for example, filtering) and place it on the edge.

In this research, we focus on the Linux kernel implementation, extract commonly used func-

6

tion group (functional core), and see how the functional core is used from functions other than core

from the viewpoint of graph theory. Furthermore, in this research, by applying the above analy-

sis to multiple versions of the Linux kernel, we analyze the transition of functional core made

by Linux kernel development from the viewpoint of dependency and size between functions, and

organize the requirements for extraction and placement of functional core. Furthermore, not only

static analysis but also analysis is performed in consideration of the frequency of use of network

functions. However, since the usage frequency changes according to the supply and demand of

network functions, it is difficult to obtain accurate usage frequency. Therefore, statistical values

related to protocol utilization are regarded as usage frequency in analysis.

7

))

int kernel_sendmsg(struct socket *sock,

struct msghdr *msg,

struct kvec *vec,

size_t num, size_t size)

{

mm_segment_t oldfs = get_fs();

int result;

set_fs(KERNEL_DS);

msg->msg_iov = (struct iovec *)vec;

msg->msg_iovlen = num;

result = sock_sendmsg(sock, msg, size);

set_fs(oldfs);

return result;

}

(a) program codes

������ ������

���	�
�

��	����

����

��	����

(b) a graph representation of function calls

Figure 1: A call graph generated from an example program

2 Graph Representation of the Linux Kernel Implementation

2.1 Call Graph

A call graph is a directed graph with function call as a node, and the relationship in a function call

as a link. Figure 1 shows an example of the program code and its call graph. In the program code,

the function kernel sendmsg calls the functions get fs, set fs and sock sendmsg. In

the call graph, the four functions are represented as nodes, and edges are drawn from the caller

functions to the callee funtions. The calling order in program codes is not reflected in the call

graph.

2.2 Obtaining a Call Graph for the Linux Kernel

We use fdump-rtl-expand, one of GCC’s debugging options to generate a call graph. CodeViz [14]

is one of the tools for generating a call graph from program code and codeviz is provide as a patch

to the specific version of the GNU Compiler Collection (GCC). It is commonly used for visualizing

program code to understand the structure of. However, even though functions with the same name

8

are declared differently, they are represented as the same node in the call graph generated by

Codeviz. GCC consists of a front-end that performs lexical analysis and syntax analysis, and a

back-end that generates and optimizes code. The front-end exists for each programming language,

but the back end is common to each programming language. Register Transfer Language (RTL)

is the intermediate language used when exchanging between the front-end and the back-end in

the GCC. The option “fdump-rtl” outputs the RTL in the path specified by the following string.

Among them, the option fdump-rtl-expand outputs RTL immediately after its generation when no

optimization etc. is performed. The file generated by the option fdump-rtl-expand describes what

kind of function is called from what function, and we use it to generate a call graph. The RTL of

a simple program (list 1) obtained by the option fdump-rtl-expand is shown in the list 2. The first

line of the rtl file is shown below.

;; Function foo (foo, funcdef_no=0, [...] symbol_order=0)

You can see that the function foo is declared. Similarly, it can be seen from line 55 of the RTL file

that the function main is also declared. The 86th line is shown below.

(call (mem:QI (symbol_ref:DI ("foo") [...]) [0 foo S1 A8])

From that line, you can see that main calls foo. Even if the same function is called more than once

from a function, it is expressed as an edge of weight 1 on the call graph. This is because we focus

on the topology. Some older Linux kernels cannot be compiled with GCC which can output dump

files as it is. Therefore, we applied a patch to such Linux kernel, which does not affect function

calls so that call graphs can be generated in all versions.

9

List 1: source code of sample program

1 #include <stdio.h>

2

3 int foo(int a)

4 {

5 return a*2;

6 }

7

8 int main (int argc, char *args[])

9 {

10 foo(2);

11 return 0;

12 }

List 2: RTL of sample program

1 ;; Function foo (foo, funcdef_no=0, decl_uid=1831, cgraph_uid=0, symbol_order=0)

2

3 ;; Generating RTL for gimple basic block 2

4

5 ;; Generating RTL for gimple basic block 3

6

7 try_optimize_cfg iteration 1

8

9 Merging block 3 into block 2...

10 Merged blocks 2 and 3.

11 Merged 2 and 3 without moving.

12 Merging block 4 into block 2...

13 Merged blocks 2 and 4.

14 Merged 2 and 4 without moving.

15 Removing jump 11.

16 Merging block 5 into block 2...

17 Merged blocks 2 and 5.

18 Merged 2 and 5 without moving.

19

20 try_optimize_cfg iteration 2

21

22 ;;

23 ;; Full RTL generated for this function:

24 ;;

25 (note 1 0 4 NOTE_INSN_DELETED)

26 (note 4 1 2 2 [bb 2] NOTE_INSN_BASIC_BLOCK)

27 (insn 2 4 3 2 (set (mem/c:SI (plus:DI (reg/f:DI 82 virtual-stack-vars)

10

28 (const_int -4 [0xfffffffffffffffc])) [0 a+0 S4 A32])

29 (reg:SI 5 di [a])) test.c:1 -1

30 (nil))

31 (note 3 2 6 2 NOTE_INSN_FUNCTION_BEG)

32 (insn 6 3 7 2 (set (reg:SI 89)

33 (mem/c:SI (plus:DI (reg/f:DI 82 virtual-stack-vars)

34 (const_int -4 [0xfffffffffffffffc])) [0 a+0 S4 A32])) test.c:2 -1

35 (nil))

36 (insn 7 6 10 2 (parallel [

37 (set (reg:SI 87 [D.1843])

38 (ashift:SI (reg:SI 89)

39 (const_int 1 [0x1])))

40 (clobber (reg:CC 17 flags))

41]) test.c:2 -1

42 (expr_list:REG_EQUAL (ashift:SI (mem/c:SI (plus:DI (reg/f:DI 82 virtual-stack-vars)

43 (const_int -4 [0xfffffffffffffffc])) [0 a+0 S4 A32])

44 (const_int 1 [0x1]))

45 (nil)))

46 (insn 10 7 14 2 (set (reg:SI 88 [<retval>])

47 (reg:SI 87 [D.1843])) test.c:2 -1

48 (nil))

49 (insn 14 10 15 2 (set (reg/i:SI 0 ax)

50 (reg:SI 88 [<retval>])) test.c:3 -1

51 (nil))

52 (insn 15 14 0 2 (use (reg/i:SI 0 ax)) test.c:3 -1

53 (nil))

54

55 ;; Function main (main, funcdef_no=1, decl_uid=1834, cgraph_uid=1, symbol_order=1)

56

57 ;; Generating RTL for gimple basic block 2

58

59 ;; Generating RTL for gimple basic block 3

60

61 try_optimize_cfg iteration 1

62

63 Merging block 3 into block 2...

64 Merged blocks 2 and 3.

65 Merged 2 and 3 without moving.

66 Merging block 4 into block 2...

67 Merged blocks 2 and 4.

68 Merged 2 and 4 without moving.

69 Removing jump 11.

70 Merging block 5 into block 2...

71 Merged blocks 2 and 5.

11

72 Merged 2 and 5 without moving.

73

74 try_optimize_cfg iteration 2

75

76 ;;

77 ;; Full RTL generated for this function:

78 ;;

79 (note 1 0 3 NOTE_INSN_DELETED)

80 (note 3 1 2 2 [bb 2] NOTE_INSN_BASIC_BLOCK)

81 (note 2 3 5 2 NOTE_INSN_FUNCTION_BEG)

82 (insn 5 2 6 2 (set (reg:SI 5 di)

83 (const_int 2 [0x2])) test.c:6 -1

84 (nil))

85 (call_insn 6 5 7 2 (set (reg:SI 0 ax)

86 (call (mem:QI (symbol_ref:DI ("foo") [flags 0x3] <function_decl 0x7fb13515d1b0

foo>) [0 foo S1 A8])

87 (const_int 0 [0]))) test.c:6 -1

88 ...

Egypt [15] is a simple perl program to generate a call graph from rtl-dump files. However,

it has the same problem as Codeviz. Egypt distinguishes functions only by name. Even though

functions with the same name are declared differently, they are represented as the same node in

the call graph. It is necessary to use information other than name to distinguish functions which

have the same name.

The method to distinguish functions is different between the calling function and the called

function. For the calling function, we distinguish the function using the path to the file where

the function is declared. Since the rtl-dump file is generated for each source file, we can easily

know in which file the function is declared. For the called function, we estimate the callee’s func-

tion based on following conditions. For example, since function calls from pcibios fixup irqs to

pcibios lookup irq are closed in a single source file arch/x86/pci/irq.c, we can easily estimate the

caller funtion. Also, when there is only one calling function, identification is easy. For example,

the function calling the function pci get device is only pcibios fixup irqs. For estimation, we use

assembly as well as rtl-dump file. In the Linux kernel, assembly files are used since assembly

results in a faster and smaller code [16]. However, the function defined in the assembly file is

not included in the rtl-dump file. For example, emulate vsyscall calls sys time. Emulate vsyscall

is declared in vsyscall 64.c. On the other hand, Sys time is not declared in any source file in C

12

language but in the assembly file: syscall64.tbl. Nothed that assembly is architecture dependent

and we examine x86-64 in this research.

• The function call is closed in a single file.

• The function is called only at one place in the entire Linux kernel.

• The directories of source files are close where caller function and callee function are de-

clared .

• The function is defined in an assembly.

Even if the estimation is made as described above, function calls that can not specify the caller

funtions are still exists. For example, in Linux kernel 3.18.28, there are about 100 function calls

that can not specify the caller functions. However, most of these functions are related to file

systems which is unrelated to the networking, and we can ignore them in analyzing the calling

relationship between network functions.

2.3 Fundamental Property of Linux Kernel Implementation

There are some papers that analyzed the Linux kernel [17–19]. The Linux kernel is analyzed

to help develop complex software systems in [17]. The degree distribution revealed that indegree

follows power law [20–24] and outdegree follows exponential distribution. In addition, they divide

the call graph into modules and analogize the function of each module by the functions contained

in each module. They foucus on the ratio of calling / invoking in each function and show that

the calling ratio of the basic function is about twice as much as the other functions. The degree

distribution of each component is examined in [18], regarding directory as a component. Also,

they shows that there is a difference between static components from source code and dynamical

components at runtime for connection between components. To know more about how software

has changed, some metrics such as degree distribution and clustering coefficient are foucused on,

and analysis of the evolution of the Linux kernel is perfomed in [19]. In addition, they propose

a method to find out where the change occur due to the property of small-world graph that the

average path length is proportional to lnN (N: number of nodes).

We confirmed whether these properties can be seen also in the latest version. We use Linux

kernel 4.7 for analysis. The number of nodes of the call graph is 164,945 and the number of links

13

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

P
ro

b
ab

il
it

y

Degree

indegree
outdegree

Figure 2: Degree distribution of the call graph for the Linux kernel 4.7

is 946,615. The degree distribution of the call graph generated from the entire Linux kernel is

shown in Figure 2. Although the average degree is 8.0, it can be seen some nodes have very large

degree. As with the results shown in [17], the distribution of the indegree follows the power law,

and the distribution of the outdegree follows the exponential distribution. Even as development

of the Linux kernel progresses, the structure of the Linux kernel has not changed significantly.

Table 1 shows function names and its degree for top-15 nodes. It is clearly shown that high

degree functions are a fundamental function (printk for debugging, logging, or CUI-interface)

or memory-related functions (kfree, memset, memcopy, and so on).

Figure 3 shows the distribution of path lengths in versions 2.4.0, 2.6.0, 3.0.101, 3.8.13 and

3.16.7. It is increasing from version 2.4 to version 2.6, but it decreases from 2.6 to 3 series.

The reason for this is that in version 2.6, there were major changes in IPv6 and IPsec in network

implementation. In the early stage of implementation, function calls are not optimized from the

viewpoint of speed and readability, and it can be thought that they were rewritten afterwards.

14

Table 1: High degree functions in the Linux kernel

function’s name degrees

printk 18707

builtin expect 17912

kfree 8417

mutex unlock 5867

spinlock check 5762

mutex lock 5331

memset 5318

memcpy 4999

raw spin lock irqsave 4901

spin unlock irqrestore 4723

builtin unreachable 4029

builtin constant p 3953

get current 3771

spin unlock 3602

spin lock 3527

15

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30

R
at

io

Path Length

2.4.0
2.6.0

3.0
4.0
4.7

Figure 3: Distribution of path length

16

3 Characteristics of Network-related Implementation in the Linux

Kernel

3.1 Call Graph for Network-related Functions in the Linux Kernel

The Linux kernel supports various functions such as CPU architectures, file systems, and net-

working. Since our focus is a network-related function, we need to extract the functions related to

networking. Fortunately, the directory structure of Linux kernel’s files is easy to extract functions

related to networking. Files of the Linux kernel are grouped into directories based on their func-

tions. Files related to network functions are gathered in the “net” directory whose sub-directories

are also grouped into more specific functions such as “ethernet” and “ipv4”. Because the RTL

file contains the information on the filepath where the function is declared, we can easily extract a

network-related function.

Table 2 shows high degree functions of them. In the table, degrees are much lower than

degrees in the Table. 1 and high degree functions are seemed to interfaces or triggers to serve

certain network functions.

3.2 Categorizing the Network-related Functions into Protocol Components

In the generated call graph, a function call is a node and a call relation in a function call is a link.

However, the function in the program code is too much atomic to analyze the behavior of network

functions. We, therefore, categorize functions in the program code into protocol components. For

the classification, we use the filepath of the source file. Since the source code of the Linux kernel

is divided into directories for each function, we assumed that the functions contained in the same

directory are assumed to have the same protocol component here.

3.3 Analysis on Inter-connectivity between Protocol Components

After classifying the function in the program code into several protocol components, we analyze

the characteristics of the connection between the protocol components. We consider the directory

under the directory “net” as a protocol component and examined the connection between the pro-

tocol components. Note that functions declared in the source file directly under the directory “net”

shall belong to the component “net”.

17

Table 2: High degree functions related to networking in the Linux kernel

function name degrees

netdev open 81

init one 75

e1000 probe 74

netdev close 59

ixgbe probe 56

hci cmd complete evt 56

il4965 pci probe 53

bond enslave 52

ieee80211 tx status 51

igb probe 50

dev ethtool 50

rtl init one 49

il3945 pci probe 49

inet6 init 48

ieee80211 do stop 48

Table 3 shows the number of links between protocol components in Linux kernel 2.4. We use

the Linux kernel 2.4 for analysis here since it is easy to analyze as it is simple. The numbers in

the table represent the number of calls from the protocol components of the first column to the

protocol components of the first row. Many components frequently call themselves and hardly

call other protocol components. For example, sunrpc calls its own 192 functions, but functions of

other components call only 24 total in total. Protocol components are highly modulared so that

an effect of change of functions is less likely to affect other protocol components. In addition, the

component “core” is used by all components, and it provides a general-purpose function for each

component. For instance, core has sock cmsg send, sock wmalloc and sock alloc send.

Noted that the function of TCP is implemented in source files under some directory such as

ipv4. In the figure, it is included in the component “ipv4”, indicating that TCP and IP are strongly

connected.

18

Table 3: Inter-connectivity between protocol components in the Linux kernel 2.4

802 appletalk ax25 bridge core ethernet ipv4 ipx irda net netlink netrom packet rose sched sunrpc unix

802 2 0 0 0 5 0 1 0 0 0 0 0 0 0 0 0 0

appletalk 4 63 0 0 51 0 0 0 0 2 0 0 0 0 0 0 0

ax25 0 0 292 0 61 0 4 0 0 2 0 0 0 0 0 0 0

bridge 0 0 0 118 23 1 0 0 0 0 0 0 0 0 0 0 0

core 0 0 0 0 162 0 1 0 0 4 6 0 0 0 7 0 0

ethernet 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

ipv4 0 0 0 0 382 0 697 0 0 5 7 0 0 0 0 0 0

ipx 6 0 0 0 40 2 0 52 0 2 0 0 0 0 0 0 0

irda 0 0 0 0 207 1 2 0 986 2 0 0 0 0 0 0 0

net 0 0 0 0 20 0 0 0 0 65 0 0 0 0 0 0 0

netlink 0 0 0 0 26 0 0 0 0 2 20 0 0 0 0 0 0

netrom 0 0 22 0 52 0 2 0 0 2 0 129 0 0 0 0 0

packet 0 0 0 0 49 0 0 0 0 0 0 0 5 0 0 0 0

rose 0 0 28 0 58 0 2 0 0 2 0 0 0 157 0 0 0

sched 0 0 0 0 9 0 0 0 0 0 0 0 0 0 4 0 0

sunrpc 0 0 0 0 8 0 0 0 0 16 0 0 0 0 0 192 0

unix 0 0 0 0 37 0 0 0 0 3 0 0 0 0 0 0 38

Table 4 shows the number of links between protocol components in Linux kernel 4.7. Table 5

is an extract of Table 4. The number of components increased from 17 in version 2.4 to 50 in

version 4.7. Many components related to wireless and security have been added. In addition,

components corresponding to the new communication protocol, such as IPv6, SCTP and MPLS,

were also added. Just like version 2.4, many components frequently call themselves and hardly

call other protocol components. Many of the newly added protocol components are connected to

the protocol components “core” and “ipv4”. The number of nodes of core increased from 159

to 1,020, and the number of nodes of ipv 4 increased from 419 to 1,521. Link to core and ipv

4 occupies 77% of links between protocol components. Also, 96% of protocol components use

core and 48% of protocol components use ipv4. Protocol components core and ipv4 became the

functional core. We analyze the evolutionary process in the next section.

19

Ta
bl

e
4:

In
te

r-
co

nn
ec

tiv
ity

be
tw

ee
n

pr
ot

oc
ol

co
m

po
ne

nt
s

in
th

e
L

in
ux

ke
rn

el
4.

7

80
2

ap
pl

et
al

k
ax

25
br

id
ge

co
re

et
he

rn
et

ip
v4

ip
x

ir
da

ne
tn

et
lin

k
ne

tr
om

pa
ck

et
ro

se
sc

he
d

su
nr

pc
un

ix
80

21
q

bl
ue

to
ot

h
ke

y
llc

xf
rm

9p
at

m
ba

tm
an

-a
dv

ca
n

dc
b

dn
s

re
so

lv
er

ip
v6

l2
tp

m
ac

80
21

1
ne

tfi
lte

rn
et

la
be

lr
fk

ill
w

ir
el

es
s

6l
ow

pa
n

ce
ph

dc
cp

ds
a

ie
ee

80
21

54
m

ac
80

21
54

m
pl

s
nf

c
op

en
vs

w
itc

h
rd

s
sc

tp
sw

itc
hd

ev
tip

c
vm

w
vs

oc
k

kc
m

80
2

53
0

0
0

42
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

ap
pl

et
al

k
4

61
0

0
72

0
0

0
0

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

ax
25

0
0

26
8

0
12

0
0

0
0

0
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

br
id

ge
3

0
0

60
4

23
3

1
15

0
0

4
5

0
0

0
3

0
0

5
0

0
1

0
0

0
0

0
0

0
11

0
0

11
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

15
0

0
0

co
re

0
0

0
0

15
16

5
6

0
0

18
49

0
0

0
19

0
0

1
0

0
0

7
0

0
0

0
0

0
1

0
0

3
0

0
3

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0

et
he

rn
et

0
0

0
0

9
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

ip
v4

0
0

0
0

11
30

2
20

14
0

0
46

25
0

0
0

0
0

0
0

0
0

0
72

0
0

0
2

0
0

10
0

0
33

5
6

0
0

0
0

0
0

0
0

0
0

0
0

0
6

0
0

0

ip
x

6
0

0
0

56
0

0
65

0
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

ir
da

0
0

0
0

33
8

2
0

0
93

9
4

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

ne
t

0
0

0
0

28
0

0
0

0
10

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

ne
tli

nk
0

0
0

0
78

0
0

0
0

4
13

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

ne
tr

om
0

0
22

0
99

0
0

0
0

4
0

11
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

pa
ck

et
0

0
0

0
11

7
0

1
0

0
6

3
0

56
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

ro
se

0
0

28
0

82
0

0
0

0
4

0
0

0
13

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

sc
he

d
0

0
0

0
42

7
1

1
0

0
1

11
0

0
0

92
7

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

su
nr

pc
0

0
0

0
41

0
1

0
0

39
0

0
0

0
0

12
81

0
0

0
0

0
0

0
0

0
0

0
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

un
ix

0
0

0
0

79
0

0
0

0
8

3
0

0
0

0
0

82
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

80
21

q
12

0
0

0
77

1
0

0
0

2
0

0
0

0
4

0
0

54
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

bl
ue

to
ot

h
0

0
0

0
40

6
2

0
0

0
26

0
0

0
0

0
0

0
0

21
36

0
0

0
0

0
0

0
0

0
0

0
0

0
0

6
0

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0

ke
y

0
0

0
0

48
0

0
0

0
4

0
0

0
0

0
0

0
0

0
85

0
66

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

llc
0

0
0

0
12

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

xf
rm

0
0

0
0

71
0

1
0

0
2

36
0

0
0

0
0

0
0

0
0

0
32

4
0

0
0

0
0

0
0

0
0

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

9p
0

0
0

0
2

0
0

0
0

7
0

0
0

0
0

0
0

0
0

0
0

0
17

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

at
m

0
0

0
0

15
6

5
4

0
0

8
0

0
0

0
4

0
0

0
0

0
0

0
0

14
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

ba
tm

an
-a

dv
0

0
0

0
14

2
4

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

92
3

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

ca
n

0
0

0
0

85
0

0
0

0
5

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
78

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

dc
b

0
0

0
0

15
0

0
0

0
0

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

33
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

dn
s

re
so

lv
er

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

ip
v6

0
0

0
0

98
9

1
16

5
0

0
40

13
0

0
0

0
0

0
0

0
0

0
91

0
0

0
0

0
0

15
83

0
0

22
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

l2
tp

0
0

0
0

13
0

1
17

0
0

13
16

0
0

0
0

0
0

0
0

0
0

3
0

0
0

0
0

0
28

93
0

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

m
ac

80
21

1
0

0
0

0
34

4
5

3
0

0
0

0
0

0
0

13
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

17
63

0
0

0
19

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

ne
tfi

lte
r

0
0

0
1

43
1

0
49

0
0

30
74

0
0

0
0

0
0

0
0

0
0

3
0

0
0

0
0

0
44

0
0

25
63

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

ne
tla

be
l

0
0

0
0

17
0

30
0

0
0

15
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

11
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

rf
ki

ll
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

43
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

w
ir

el
es

s
0

0
0

0
31

1
0

1
0

0
4

10
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

13
66

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

6l
ow

pa
n

0
0

0
0

26
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
42

0
0

0
0

0
0

0
0

0
0

0
0

0
0

ce
ph

0
0

0
0

3
0

0
0

0
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

66
8

0
0

0
0

0
0

0
0

0
0

0
0

0

dc
cp

0
0

0
0

16
7

0
63

0
0

9
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

0
0

0
26

0
0

1
0

0
0

0
0

32
4

0
0

0
0

0
0

0
0

0
0

0
0

ds
a

0
0

0
0

65
3

0
0

0
0

0
0

0
0

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

0
0

0
0

ie
ee

80
21

54
0

0
0

0
17

1
0

9
0

0
9

21
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
4

0
0

0
97

0
0

0
0

0
0

0
0

0
0

m
ac

80
21

54
0

0
0

0
55

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

14
74

0
0

0
0

0
0

0
0

0

m
pl

s
0

0
0

0
48

0
1

0
0

4
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

35
0

0
0

0
0

0
0

0

nf
c

0
0

0
0

35
8

0
0

0
0

4
42

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

6
0

0
0

0
0

0
0

0
57

5
0

0
0

0
0

0
0

op
en

vs
w

itc
h

0
0

0
0

15
7

2
4

0
0

0
16

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
6

0
0

24
0

0
0

0
0

0
0

0
0

0
0

37
4

0
0

0
0

0
0

rd
s

0
0

0
0

44
0

3
0

0
21

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

40
9

0
0

0
0

0

sc
tp

0
0

0
0

15
4

0
20

0
0

11
2

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
27

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

10
68

0
0

0
0

sw
itc

hd
ev

0
0

0
0

28
0

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

49
0

0
0

tip
c

0
0

0
0

20
1

0
7

0
0

17
19

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

54
4

0
0

vm
w

vs
oc

k
0

0
0

0
58

0
0

0
0

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
12

0
0

kc
m

0
0

0
0

63
0

1
0

0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
50

20

Table 5: Inter-connectivity between protocol components in the Linux kernel 4.7 (selected)

bridge core ipv4 irda sched sunrpc bluetooth ipv6 netfilter wireless mac80211 sctp

bridge 604 233 15 0 3 0 0 11 115 0 0 0

core 0 1516 6 0 19 0 0 1 3 3 0 0

ipv4 0 1130 2014 0 0 0 0 10 335 0 0 0

irda 0 338 0 939 0 0 0 0 0 0 0 0

sched 0 427 1 0 927 0 0 0 9 0 0 0

sunrpc 0 41 1 0 0 1281 0 3 0 0 0 0

bluetooth 0 406 0 0 0 0 2136 0 0 0 0 0

ipv6 0 989 165 0 0 0 0 1583 228 0 0 0

netfilter 1 431 49 0 0 0 0 44 2563 0 0 0

wireless 0 311 1 0 0 0 0 0 0 661 0 0

mac80211 0 344 3 0 13 0 0 2 0 193 1763 0

sctp 0 154 20 0 0 0 0 27 1 0 0 1068

21

3.4 Functional Core in the Linux Kernel

In previous analysis, we investigate which protocol component plays a central role to provide net-

work functions in network-related functions. Then, we examine the protocol components that are

important when external functions use network functions. Table 6 shows the number of links from

out of network functions to the protocol components providing network functions. Note that we

exclude some protocol components which are considered to be network-related under the “drivers”

directory. That’s because some functions under the “drivers” directory provide network functions

but now we focus on functions that use network functions. In the table, sunrpc responsible for in-

terprocess communication is called from outside frequently, but other components including core

are rarely called. The network function seems not to be used much inside the Linux kernel because

it is used from external applications.

However, we can not examine function calls from outside the Linux kernel for all applications.

Therefore, we investigate which protocol components are used frequently when network functions

are used from the out of the Linux kernel, paying attention to functions with indegree 0. The fact

that the indegree is 0 means that it is not called from any function in the Linux kernel, and such

a function is thought to be an interface with the outside of the Linux kernel. Table 7 shows the

number of nodes whose indegree is 0 for each protocol components. There are many nodes with

indegree 0 in irda and ipv4. When using the network function, it is considered that other com-

ponents is used as an interface instead of core frequently called in connections between protocol

components and core behaves as functional core.

22

Table 6: Number of links from network-unrelated functions

protocol components number of links from out of network functions

net 4

802 0

appletalk 0

ax25 0

bridge 0

core 3

ethernet 0

ipv4 0

ipx 0

irda 0

netlink 0

netrom 0

packet 0

rose 0

sched 0

sunrpc 175

unix 0

23

Table 7: Number of nodes whose indegree is 0

protocol components number of nodes with indegree 0

net 8

802 6

appletalk 28

ax25 31

bridge 10

core 36

ethernet 2

ipv4 167

ipx 25

irda 258

netlink 7

netrom 35

packet 13

rose 40

sched 5

sunrpc 53

unix 20

24

4 Evolution of Network-related Implementation in the Linux kernel

We investigate the changes of interconnectivity related to network functions in the development

of the Linux kernel. Version 2.4.0 (January 2001) to version 4.7 (July 2016) are subject to inves-

tigation. Notable changes during the development are supports of IPv6 (v3.0), VPN (v3.0), and

IPsec (v2.6). Needless to say, other network functions are also developed intensively; for example,

mobile ad-hoc networking (B.A.T.M.A.N) and Stream Control Transmission Protocol (SCTP). A

full of ChangeLog is available at [25].

4.1 Changes of Topological Characteristics

As the development of the Linux kernel progresses, we examine how the topology properties of

the call graph are changing.

Figure 4 shows the change in the number of nodes and the number of links in the call graph

consisting of functions related to the network. The horizontal axis is the number of days elapsed

since the release date of the oldest version to be analyzed. Since new function calls have been

added without deleting old function calls, the number of nodes and the number of links are in-

creasing as the development progresses. Due to the support of IPsec and IPv6, the number of

nodes and the number of links are rapidly increasing from version 2.4.0 to 3. IPsec and IPv6 have

been implemented since version 2.4.0, but it is experimental. In this research, we deal only with

results based on the default configuration. In version 3 and later, the change was large from 3.7.10

to 3.9.11, the number of nodes increased from 18,758 to 24,240, and the number of links increased

from 74,869 to 98,279. This is because Stream Control Transmission Protocol (SCTP) [26] is en-

abled by default from version 3.8.0. An increase in the number of links is remarkable compared

to the number of nodes, which means that functions are being actively reused. In general, reuse in

software is important for promoting development, but this leads to an increase in reliance among

functions, which makes it difficult to divide functions.

Figure 5 shows the degree distribution in version 2.4.0, 2.6.0, 3.0.101, 3.8.13, 3.16.7. Here,

we considered that both caller and callee were related to functions, and calculated the order distri-

bution with undirected graph. From Figure 5, all versions follow power raw. That is, while most

functions are called from several functions, the number of calls to fewer functions is significantly

greater than the average. Functions with higher degrees continue to be high degrees, suggesting

25

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2.4.0 2.6.0 3 4 4.7

N
u

m
b

e
r

Linux kernel version

Nodes

Links

Figure 4: Changes of the number of nodes and links for each kernel

that new functions tend to use functions with large orders.

26

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

P
ro

b
ab

il
it

y

Degree

2.4.0
2.6.0

3.0.101
3.8.13
3.16.7

Figure 5: Changes of degree distribution for each kernel

27

 0

 10

 20

 30

 40

 50

2.4.0 2.6.0 3.0 4 4.7

N
u

m
b

er

versions

components
components using core
components using ipv4

Figure 6: Changes of numbers of protocol components

4.2 Changes of the Inter-connectivity between Protocol Components

Figure 7 shows the connections between protocol components in the Linux kernels 3.0 and 4.7.

The size of the node expresses the number of calls in the component, and the thickness of the

edge expresses the number of calls between the protocol components. The number of components

increased from 35 to 50 by about 1.5 times, and the number of links between components also

increased. It seems that these correspond to addition of functions by development progress. All of

the newly added protocol components are connected to the protocol component “core” and 60% of

them are connected to the protocol component “ipv4”. Many components depend on these com-

ponents and are frequently used when new features are added. Figure 6 shows the transition of the

number of total protocol components and the number of protocol components using ipv4 and core.

Components that use core and ipv4 are increasing as the total number of components increases.

Core and ipv4 are almost always used from new components when networking functionality is

added. Thus, the components “core” and “ipv4” play a key role in providing network functions

and are considered as functional core.

Also, we investigate the changes of interdependency of network functions using the modu-

28

4.7

3.0

Figure 7: Connection between protocol components in the Linux kernel 4.7 and 3.0

larity metric [27] to understand the interdependency of protocol components. The modularity is

a measure of the quality that represents the gap between the number of inner-module links and

the number of inter-module links. The modularity takes 0.5 when the ratio of the number of

inter-module links and the number of inner-module links is (statistically) equals to the randomly

generated graph. The modularity increases as the ratio increases and vice versa.

We divide a call graph into modules, which consists of a set of nodes, to calculate the modular-

ity metric. We consider two scenarios for division; graph-theoretical division and function-based

division. The graph-theoretical division is obtained by applying Louvain method [28] which di-

vides a graph into modules such that the modularity metric is highest. The modularity metric

based on the Louvain method captures whether the modular software design, which is the basic

29

principles in software development, is performed or not. In general, high modular software is

easy to separate the functionality of a software into interdependent, interchangeable modules [29].

The function-based division is our own approach to dividing the call graph into groups based on

the protocol component that a function belongs to. Then, we calculate the modularity metric by

regarding a set of functions belonging to a protocol component as a module. The function-based

division captures rather a semantic relation of a call graph; whether network functions are easy to

separate into interdependent, interchangeable functions or not.

Figure 8 shows the changes of modularity dependent on the kernel versions. In the figure,

the modularity metric calculated by the function-based division is always lower than the mod-

ularity metric calculated by the graph-theoretical division. This indicates that interdependency

between the network functions is high, and therefore a lot of effort may require separating the net-

work function for the network function virtualization. The kernel development itself will benefit

from modular software design thanks to the high modularity value. However, the interdependency

or interchangeability of network functions goes toward a bad direction as the difference of the

modularity metrics is getting larger as the development of the Linux kernel progress. The more

sophisticated design concept for both software engineering and networking perspective may be

necessary to promote the upcoming network function virtualization.

30

 0

 0.2

 0.4

 0.6

 0.8

 1

2.4.0 2.6.0 3.0 4.0 4.7

M
o

d
u

la
ri

ty

Versions

function based division
louvain method

Figure 8: Changes of modularity

31

4.3 Evolution of Functional Core

Figure 9 shows the changes in the number of nodes in the net and component sizes in core, ipv4,

ipv6, mac80211 and netfilter. Until around 2.6.24, the size in ipv4 and core increased as the total

number of nodes increased while the increasing speed of size in ipv4 and core decreased after

2.6.24. In place of ipv4 and core, the size in newly added components such as ipv6 increases as

the total number of nodes increases. Regardless of the increase in the total number of nodes, the

size in irda has not changed very much. In deploying newer components to an edge server, it is

necessary to prepare for future increase in size. On the other hand, in deploying older protocol

components such as ipv4 and core, we don’t need much margin even if they are commonly used.

We will investigate what extent protocol components changes as development progresses and

new functions are added. Changes of the number of unchanged functions in each component for

each version are shown in the Table 8. Here, a function that does not change means that the calling

function is the same as the previous version. If the function does not exist in the previous version,

it is not counted as an unchanged function. Figure 10 is an extract of the Table 8. The unchanged

function in core, ipv4, ipv6, sched,sunrpc, bluettoh, mac80211 and netfilter has increased greatly.

For example, the unchanged function in core has increased from 159 in 2.4 to 979 in 4.7. The num-

ber of unchanged functions increases as component size increases. Many functions continue to be

used without being changed. In adding some functions to deployed component, a few changes to

existing parts of the component are required.

Next, we examined how the core responds to component additions. When a new component

was added, I checked whether the function of the core that the added component calls exists in

the previous version. 99% of the functions of core called from the new component already existed

in the previous version. These functions occupy 15% of the whole core (in version 4.7), and it

is possible that only some of the functions in the core are functional core. The number of nodes

called in new component added and rest of core are shown in Figure 11. The number of nodes

called from the new component does not increase even as the development progresses. Only a part

of the core is the functional core and it unchanges as the development progresses.

32

 0

 500

 1000

 1500

 2000

2.4.0 2.6.0 3.0 4.04.7
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000
C

o
m

p
o

n
en

t
si

ze

N
u

m
b

er
 o

f
n

o
d

es
 i

n
 t

h
e

n
et

versions

of nodes
core
ipv4
irda
ipv6

netfilter
mac80211

Figure 9: Changes of the number of the nodes and component size

 0

 500

 1000

 1500

 2000

2.4.0 2.6.0 3 4 4.7

N
u

m
b

er

versions

core
ipv4
irda

sched
sunrpc

bluetooth
ipv6

netfilter
mac80211

Figure 10: Changes of the number of unchange functions

33

Ta
bl

e
8:

un
ch

an
ge

d
fu

nc
tio

ns
in

ea
ch

pr
ot

oc
ol

co
m

po
ne

nt

ve
rs

io
n

nu
m

be
ro

fn
od

es
nu

m
be

ro
fu

nc
ha

ng
ed

no
de

s
80

2
ap

pl
et

al
k

ax
25

br
id

ge
co

re
et

he
rn

et
ip

v4
ip

x
ir

da
ne

tn
et

lin
k

ne
tr

om
pa

ck
et

ro
se

sc
he

d
su

nr
pc

un
ix

80
21

q
bl

ue
to

ot
h

ke
y

llc
xf

rm
ip

v6
ne

tfi
lte

rn
et

la
be

lr
fk

ill
w

ir
el

es
s

at
m

ca
n

m
ac

80
21

1
dc

b
l2

tp
dn

s
re

so
lv

er
ba

tm
an

-a
dv

9p
op

en
vs

w
itc

h
ce

ph
ds

a
nf

c
sc

tp
dc

cp
ie

ee
80

21
54

m
ac

80
21

54
rd

s
tip

c
vm

w
vs

oc
k

m
pl

s
6l

ow
pa

n
sw

itc
hd

ev
kc

m

2.
4.

0
19

44
19

44
13

63
15

0
61

15
9

5
41

9
49

55
1

0
19

97
13

11
4

14
14

5
31

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

2.
6.

0
30

18
21

54
11

42
11

2
57

18
6

5
56

5
20

46
1

0
22

63
18

92
27

1
14

0
27

23
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

2.
6.

10
31

03
30

49
15

63
13

2
18

6
29

9
6

78
9

55
55

0
0

17
80

12
94

22
2

22
8

5
21

79
37

11
92

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2.
6.

20
41

75
39

28
16

55
11

8
20

3
35

1
8

83
9

46
51

3
0

57
68

0
85

34
0

23
5

5
26

80
35

8
11

3
47

1
15

0
42

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

2.
6.

30
65

67
61

84
36

60
13

0
21

8
50

1
11

10
70

49
46

2
0

78
81

18
88

48
8

31
8

49
47

88
54

9
20

1
70

0
68

6
91

24
94

12
3

63
26

1
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

2.
6.

31
66

66
64

44
36

60
13

0
21

6
50

3
12

10
87

49
53

3
0

61
81

18
89

49
4

33
3

49
48

12
9

54
9

20
1

69
9

70
7

92
24

14
1

13
7

65
30

0
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

3.
0

83
61

80
38

36
55

13
2

27
8

62
8

10
11

47
44

49
4

0
71

81
28

89
57

0
53

5
53

44
19

1
53

9
21

5
72

9
11

46
95

44
33

1
14

3
61

46
8

17
19

3
13

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

3.
1

84
17

82
40

36
55

13
2

28
8

64
2

10
11

67
44

49
4

0
71

81
22

89
59

4
53

6
53

46
19

9
53

8
21

5
72

6
11

32
95

44
35

7
14

3
61

47
2

15
20

3
15

6
85

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

3.
2

84
88

83
23

36
55

13
2

29
7

64
8

10
11

66
44

49
4

0
71

81
28

89
59

0
54

1
51

43
18

8
53

8
21

4
73

4
11

77
94

44
36

1
14

3
64

46
2

25
19

3
17

9
82

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

3.
3

90
12

82
75

36
55

13
2

28
7

65
0

10
11

61
44

49
4

0
64

81
33

89
58

7
54

4
53

41
15

5
53

8
21

6
72

7
11

74
95

44
35

8
14

0
73

45
1

25
20

3
18

8
91

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

3.
4

91
37

86
76

36
55

13
2

30
1

65
3

10
11

86
44

49
3

0
68

81
37

89
59

1
52

4
60

50
40

8
53

8
20

6
73

7
11

54
87

44
34

5
14

3
72

48
2

18
20

3
19

9
90

99
0

0
0

0
0

0
0

0
0

0
0

0
0

0

3.
5

92
41

89
12

36
53

13
0

29
5

64
5

10
11

78
42

49
0

0
74

79
37

87
60

2
57

6
59

49
54

5
53

8
21

5
72

4
12

05
95

44
38

1
14

4
73

47
0

24
18

3
17

6
91

10
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3.
6

94
05

89
71

36
55

13
0

30
3

65
9

10
11

43
42

49
4

0
76

81
37

89
62

3
57

5
59

48
52

4
53

8
21

6
71

1
12

08
95

44
36

8
14

2
72

50
7

19
21

3
22

6
93

10
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3.
7

97
42

91
63

36
53

13
2

30
5

67
1

7
12

10
46

49
3

0
73

81
36

89
63

6
57

7
60

47
55

4
53

9
21

5
73

5
12

32
95

44
39

7
14

4
75

49
4

37
21

3
22

1
92

93
0

0
0

0
0

0
0

0
0

0
0

0
0

0

3.
8

10
57

1
94

85
36

56
13

2
29

9
68

3
7

11
93

48
49

6
0

76
81

42
89

63
5

59
1

61
51

60
9

53
10

21
5

74
3

12
86

95
44

38
5

14
2

75
48

4
37

20
3

20
3

80
10

6
22

2
0

0
0

0
0

0
0

0
0

0
0

0
0

3.
9

12
29

7
10

21
2

36
56

13
2

30
5

66
3

6
12

09
46

49
6

0
76

81
40

89
63

2
59

5
61

43
65

7
52

10
19

4
73

7
12

86
95

44
39

5
14

6
75

50
2

37
19

3
25

4
80

10
8

20
7

16
18

1
45

7
0

0
0

0
0

0
0

0
0

0

3.
11

12
64

3
11

69
8

55
56

13
2

33
0

70
2

9
12

58
49

49
5

0
63

81
36

89
64

0
66

7
61

57
60

8
56

10
23

2
84

7
12

86
92

46
37

5
14

6
75

65
4

37
10

1
3

23
7

99
83

20
9

16
16

7
45

9
22

5
74

21
32

6
25

3
92

0
0

0
0

3.
12

12
78

4
12

41
8

54
56

13
2

35
3

73
9

9
13

08
49

49
6

0
90

81
44

89
64

2
70

0
59

57
68

3
58

10
23

3
85

8
13

78
95

46
41

5
14

6
75

70
6

37
10

2
3

28
4

10
2

10
8

25
8

16
27

6
44

6
22

3
73

22
32

6
27

9
96

3
0

0
0

3.
13

13
21

9
12

48
0

57
56

13
2

35
2

73
8

9
13

18
49

49
5

0
88

81
45

89
65

8
72

5
61

56
66

0
58

10
23

9
90

8
13

69
92

46
41

4
14

6
75

70
8

37
10

2
3

24
7

10
2

13
0

25
8

16
26

9
46

5
22

6
75

22
32

5
27

3
96

3
0

0
0

3.
14

13
47

6
12

89
6

57
56

13
2

34
9

75
2

8
13

39
49

49
6

0
82

81
40

89
64

9
71

9
61

56
69

5
57

10
23

7
93

9
16

34
95

46
40

8
14

4
74

71
5

36
99

3
30

1
10

2
12

6
25

0
16

33
2

46
6

22
6

71
22

32
6

25
2

96
2

0
0

0

3.
15

13
54

4
13

20
1

57
56

13
2

35
9

77
5

9
13

33
49

49
6

0
83

81
46

89
67

7
72

6
61

55
69

0
58

10
23

4
96

8
16

59
95

46
48

8
14

6
75

79
6

36
10

1
3

32
9

10
2

13
7

25
9

16
33

1
46

3
22

5
65

19
32

6
24

2
95

2
0

0
0

3.
16

13
72

8
13

15
3

57
56

13
2

34
5

79
9

9
13

05
50

49
6

0
87

81
46

89
67

7
73

3
61

57
75

0
58

10
23

7
92

9
16

73
95

46
43

7
14

5
77

76
0

37
94

3
35

3
10

2
12

2
26

8
16

33
6

45
7

21
6

92
21

32
6

21
2

96
3

0
0

0

3.
17

13
81

3
13

49
3

57
56

13
2

38
6

81
3

9
13

51
50

49
6

0
85

81
48

89
67

3
73

2
61

58
73

6
58

10
24

5
97

6
17

17
95

46
46

2
14

5
78

76
6

37
99

3
36

1
10

2
13

5
24

1
16

33
9

46
7

22
4

12
5

71
32

6
23

7
96

3
0

0
0

3.
18

13
99

5
13

55
9

57
56

13
2

37
7

81
1

9
13

54
49

49
5

0
87

81
46

89
65

2
75

2
61

57
77

2
58

10
24

5
97

4
17

01
98

46
46

1
13

7
77

81
1

37
98

3
36

1
10

2
13

5
26

8
14

34
6

46
5

22
4

12
2

70
32

4
22

9
96

3
4

0
0

4
14

40
7

13
44

5
57

55
13

1
39

3
81

1
10

14
08

46
48

6
0

81
80

46
88

66
8

72
5

57
57

70
3

57
10

24
8

10
08

17
18

95
46

44
3

14
5

78
76

9
37

90
3

36
0

10
2

12
4

27
1

25
32

7
46

3
22

3
11

6
70

32
5

19
0

95
3

4
0

0

4.
2

14
68

7
13

74
2

52
55

12
9

40
2

83
0

13
13

90
50

49
8

0
79

81
44

88
65

8
75

5
60

53
73

3
58

9
24

5
10

11
16

83
98

46
48

2
14

6
77

80
1

37
10

0
3

35
8

10
0

19
1

27
7

16
38

1
46

4
21

3
12

5
84

31
9

23
8

96
3

2
8

0

4.
3

14
86

0
14

42
0

58
56

13
2

41
8

87
1

12
14

50
51

49
9

0
90

80
48

88
69

1
77

4
66

58
88

7
58

10
24

8
10

67
17

72
98

46
49

5
14

6
76

86
6

37
10

0
3

35
4

98
16

4
28

1
32

38
9

46
4

22
2

13
2

87
30

9
27

0
95

19
24

27
0

4.
4

14
96

3
14

51
5

53
55

12
5

41
0

89
1

12
14

53
50

49
7

0
90

79
46

87
69

7
77

4
59

57
89

7
58

9
24

6
10

93
18

04
98

46
50

0
14

6
75

86
1

37
10

1
3

35
7

98
18

4
27

7
27

38
4

46
4

21
4

12
9

93
32

5
27

8
98

26
25

25
0

4.
5

15
12

2
14

77
3

56
56

13
2

44
7

90
9

12
15

03
51

49
8

0
91

80
52

88
69

9
79

0
71

58
87

4
58

10
24

5
10

94
18

13
98

46
49

6
14

6
76

90
7

36
10

2
3

34
8

97
19

9
28

2
30

39
9

46
0

22
3

13
7

95
33

4
27

7
98

31
25

40
0

4.
6

15
32

5
14

71
1

56
54

13
2

43
6

92
7

14
14

86
51

49
8

0
91

80
48

88
65

5
78

9
72

58
92

2
58

10
24

5
10

82
18

47
98

45
49

3
14

6
76

91
1

36
10

2
3

22
4

97
18

9
27

8
33

40
1

47
7

22
3

13
9

95
32

3
30

6
98

33
41

43
0

4.
7

15
51

6
15

07
1

56
55

13
3

44
6

97
9

14
14

93
51

49
8

0
87

80
50

87
76

9
83

0
71

56
92

8
58

10
24

5
10

97
18

14
98

43
50

8
14

6
76

90
4

36
10

0
3

38
4

99
20

2
26

5
31

40
1

48
0

22
0

13
6

94
27

2
29

8
97

35
48

43
44

34

 0

 200

 400

 600

 800

 1000

2.4.0 2.6.0 3 4 4.7

o

f
n

o
d

es

versions

called by new component in core
rest of core

Figure 11: Changes of the number of nodes in core

35

5 Conclusion

In this thesis, we focused on the Linux kernel implementation, extract commonly used function

group (a knot of bow-tie structure), and saw how the core function is used from functions other than

core from the viewpoint of graph theory. As a result, Core was used by all components and found

to play a fundamental role. Furthermore, by applying the above analysis to multiple versions of

the Linux kernel, we analyzed the transition of core functions made by Linux kernel development

from the viewpoint of dependency and size between functions, and organize the requirements for

extraction and placement of core functions. Core does not change as development progresses, and

core is always used when new components are added. On the other hand, it is speculated that

ipv4 and irda are important rather than core when network functions are used from the outside of

the Linux kernel. Also, the functions in core and ipv4 do not change so much as development

progresses. From these facts, it is considered that the network function in the Linux kernel forms

a bow-tie structure with a core as a knot.

36

Acknowledgements

This thesis would not accomplish without a lot of great supports of several people. I really ap-

preciate Professor Masayuki Murata of Osaka University, for his invaluable advice, continuous

support and encouragement. Furthermore, I show my deepest appreciation to Associate Profes-

sor Shin’ichi Arakawa of Osaka University. He devoted a great deal of time for me and gave

me an excellent guideline of my research and considerable supports. This thesis could never be

achived without his support. Also, I am deeply grateful to Assistant Professor Yuichi Ohsita and

Assistant Professor Daichi Kominami of Osaka University, for helpful comments. Finally, I would

like to thank all the members of Advanced Network Architecture Research Laboratory of Osaka

University for their support.

37

References

[1] K. Ashton, “That‘ internet of things’thing,” RFiD Journal, vol. 22, pp. 97–114, June 2009.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision,

architectural elements, and future directions,” Future generation computer systems, vol. 29,

pp. 1645–1660, Sept. 2013.

[3] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer networks,

vol. 54, pp. 2787–2805, Oct. 2010.

[4] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things: Vision, appli-

cations and research challenges,” Ad Hoc Networks, vol. 10, pp. 1497–1516, Sept. 2012.

[5] J. Pan, S. Paul, and R. Jain, “A survey of the research on future Internet architectures,” IEEE

Communications Magazine, vol. 49, pp. 26–36, July 2011.

[6] A. Fischer, J. F. Botero, M. Till Beck, H. De Meer, and X. Hesselbach, “Virtual network

embedding: A survey,” IEEE Communications Surveys & Tutorials, vol. 15, pp. 1888–1906,

Feb. 2013.

[7] M.-K. Shin, K.-H. Nam, and H.-J. Kim, “Software-defined networking (SDN): A reference

architecture and open APIs,” in Proceedings of IEEE International Conference on ICT Con-

vergence, pp. 360–361, Oct. 2012.

[8] B. Partha, Z. Shuqiang, C. Pulak, L. Sang-Soo, L. J. Hyun, and M. Biswanath, “Software-

defined optical networks (SDONs): A survey,” Photonic Network Communications, vol. 28,

pp. 4–18, Aug. 2014.

[9] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of

things,” in Proceedings of the first edition of the MCC workshop on Mobile cloud computing,

pp. 13–16, Aug. 2012.

[10] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A platform for internet of

things and analytics,” in Big Data and Internet of Things: A Roadmap for Smart Environ-

ments, pp. 169–186, Sept. 2014.

38

[11] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications and issues,” in

Proceedings of Workshop on Mobile Big Data, pp. 37–42, June 2015.

[12] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,” in Proceedings of Intelli-

gent Systems and Control (ISCO), pp. 1–8, Jan. 2016.

[13] NTT DOCOMO, INC., “DOCOMO Develops First NFV Technology for Multi-vendor EPC

Software.” https://www.nttdocomo.co.jp/english/info/media center/pr/2016/0219 00.html.

Accessed: 15 Dec. 2016.

[14] M. Gorman, “Codeviz: A call graph visualiser.” Available at: http://www.csn.ul.

ie/˜mel/projects/codeviz/. Accessed: 1 Feb. 2015.

[15] M. Gorman, “Egypt - create call graph from GCC RTL dump.” Available at: http://www.

gson.org/egypt/egypt.html. Accessed: 1 Feb. 2015.

[16] “Linux Assembly HOWTO.” Available at: http://www.tldp.org/HOWTO/html_

single/Assembly-HOWTO/. Accessed: 1 Feb. 2017.

[17] Y. Gao, Z. Zheng, and F. Qin, “Analysis of Linux kernel as a complex network,” Chaos,

Solitons & Fractals, vol. 69, pp. 246–252, Dec. 2014.

[18] H. Wang, Z. Chen, G. Xiao, and Z. Zheng, “Network of networks in Linux operating system,”

Physica A: Statistical Mechanics and its Applications, vol. 447, pp. 520–526, Apr. 2016.

[19] L. Wang, P. Yu, Z. Wang, C. Yang, and Q. Ye, “On the evolution of Linux kernels: a complex

network perspective,” Journal of software: Evolution and Process, vol. 25, pp. 439–458,

May 2013.

[20] T. Bu and D. Towsley, “On distinguishing between Internet power law topology generators,”

in Proceedings of IEEE INFOCOM, pp. 638–647, June 2002.

[21] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. J. Shenker, and W. Willinger, “The origin of

power laws in Internet topologies revisited,” in Proceedings of IEEE INFOCOM, pp. 608–

617, June 2002.

39

[22] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the Internet

topology,” ACM SIGCOMM Computer Communication Review, vol. 29, pp. 251–262, Aug.

1999.

[23] C. Gkantsidis, M. Mihail, and A. Saberi, “Conductance and congestion in power law graphs,”

SIGMETRICS Performance Evaluation Review, vol. 31, pp. 148–159, June 2003.

[24] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger, “Network topolo-

gies, power laws, and hierarchy,” Computer Communication Review, vol. 32, pp. 1–26, Jan.

2002.

[25] “Linux Kernel Archives.” https://www.kernel.org/pub/.

[26] T. Dreibholz, E. P. Rathgeb, I. Rüngeler, R. Seggelmann, M. Tüxen, and R. R. Stewart,

“Stream control transmission protocol: Past, current, and future standardization activities,”

IEEE Communications Magazine, vol. 49, pp. 82–88, Apr. 2011.

[27] K. A. Eriksen, I. Simonsen, S. Maslov, and K. Sneppen, “Modularity and Extreme Edges of

the Internet,” Physical Review Letters, vol. 90, pp. 1–4, Apr. 2003.

[28] V. Blondel, J. Guillaume, R. Lambiotte, and E. Mech, “Fast unfolding of communities in

large networks,” Journal of Statistical Mechanics, pp. 1–12, July 2008.

[29] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of Modularity. MIT Press, 1999.

40

