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Abstract

Many hosts are still infected by drive-by download attacks despite the efforts of many security

researchers and venders. In the drive-by download attacks, the attackers maliciously change pop-

ular web sites. Then, the users are redirected via the redirect URLs to the exploit URLs. At the

exploit URLs, an exploit code is executed, and malware is downloaded from malware distribution

URLs [1]. By using the redirections via multiple URLs, which is called a redirection chain, the

attacker can separate functions such as redirections and attack. As a result, the attacker can eas-

ily change the URLs for the redirections and attack in a short time, which makes it difficult for

researchers and vendors to analyize them [1].

Blacklists including URLs and domains related to malicious web sites are widely imple-

mented [2]. The blacklists are created by using honeyclients [3], which have decoy browsers.

However, the URLs used for attacks are frequently changed. Thus, there may be many web sites

that are used by the drive-by download attacks but are not included in the blacklists.

When a drive-by download attack occurs, the corresponding URL sequence includes the redi-

rection chain. In this thesis, we focus on the features of the URL sequences, including the features

of malicious URLs and their order. We propose the method to detect drive-by download attacks

using the convolutional neural network (CNN), which achieves high accuracy in the field of ana-

lyzing sequence data [4]. In addition to simply applying CNNs, we introduce an Event De-noising

CNN (EDCNN) [5], which is a neural network extended from the CNN so as to mitigate the impact

of the benign URLs included in the URL sequence.

To detect drive-by download attacks from the proxy logs, we need to consider the case that

multiple web sites are accessed simultaneously. In this case, the URL sequence includes the URLs
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of multiple web sites. If one of the web sites included in the URL sequence is related to the drive-

by download attacks, the sequence must be detected as malicious. However, such URL sequences

are difficult to be identified as malicious by the CNN or EDCNN, because most of the URLs

included in the sequence are not related to the drive-by download attacks. Therefore, we also

propose a method to detect the drive-by download attacks even in such cases. In this method, we

input the subsequences of the URL sequence to the CNN or the EDCNN. Then, if one of them is

classified as malicious, the sequence is detected as malicious.

We evaluate our method by using the URL sequences collected by a honeyclient accessing

popular/blacklisted web sites and the URL sequences collected at the gateway of our laboratory.

The results show that the EDCNN using the subsequences achieves the true positive rate higher

than 95 % even when URL sequences include URLs of multiple web sites. However, the EDCNN

may cause the FPR higher than 39%. To improve the accuracy, we integrate multiple EDCNNs.

The method integrating four EDCNNs achieves TPR higher than 97% and FPR lower than 20%.
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1 Introduction

Many hosts are still infected by drive-by download attacks despite the efforts of many security

researchers and venders. In the drive-by download attacks, the attackers maliciously change pop-

ular web sites. Then, the users are redirected via the redirect URLs to the exploit URLs. At the

exploit URLs, an exploit code is executed, and malware is downloaded from malware distribution

URLs [1]. By using the redirections via multiple URLs, which is called a redirection chain, the

attacker can separate functions such as redirections and attack. As a result, the attacker can eas-

ily change the URLs for the redirections and attack in a short time, which makes it difficult for

researchers and vendors to analyize them [1]. Furthermore, in the redirect URLs, the client envi-

ronment is identified by browser fingerprinting, then the attacker changes the next redirect URLs

based on the identified client environment; if the client has the target vulnerability, it is redirected

to the URLs related to the attacks. Otherwise, the client is redirected to the benign web sites [6].

This makes it difficult for the researchers and venders to collect malwares.

Blacklists including URLs and domains related to malicious web sites are widely imple-

mented [2]. The blacklists are created by using honeyclients [3], which have decoy browsers.

However, the URLs used for attacks are frequently changed. Thus, there may be many web sites

that are used by the drive-by download attacks but are not included in the blacklists. Another

approach to detecting the drive-by download attacks is to analyze the content of web sites [7].

However, this method requires the collection of the web content, which is unrealistic for network

administrators because it requires a large amount of resources. On the other hand, access history

information such as proxy logs is generally stored [8]. We can obtain a sequence of URLs ac-

cessed by a user from the logs, though the logs do not include the content of web sites. In this

thesis, we call it a URL sequence. When a drive-by download attack occurs, the corresponding

URL sequence includes the redirection chain. In this thesis, we focus on the features of the URL

sequences, including the features of malicious URLs and their order.

A URL sequence consists of multiple URLs occurred by accessing web sites. Furthermore,

a URL sequence includes many pairs of URLs related by redirections. This relation of URLs in

URL sequences is similar to the relation of words in sentences. In the field of natural language

processing such as analysis of sentences, the convolution neural network (CNN) achieves high

accuracy [4]. Therefore, we use a CNN to detect drive-by download attacks.
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In addition to simply applying CNNs, we introduce an Event De-noising CNN (EDCNN) [5],

which is a neural network extended from the CNN so as to mitigate the impact of the benign

URLs included in the URL sequence. To detect drive-by download attacks from the proxy logs,

we need to consider the case that multiple web sites are accessed simultaneously. In this case,

the URL sequence includes the URLs of multiple web sites. If one of the web sites included

in the URL sequence is related to the drive-by download attacks, the sequence must be detected

as malicious. However, such URL sequences are difficult to be identified as malicious by the

CNN or EDCNN, because most of the URLs included in the sequence are not related to the drive-

by download attacks. Therefore, we also propose a method that detects the drive-by download

attacks by using the learned CNNs or EDCNNs even in such cases. In this methods, we input

the subsequence to the CNNs or EDCNNs. By using the subsequences, we can detect drive-by

download attacks accurately, because the URLs of the same web site tend to be close in the URL

sequences. Therefore, one of the subsequences includes malicious redirections. As a result, the

method using the subsequences detects the malicious URL sequences.

The rest of this thesis is organized as follows. In Section 2, we introduce the related work

including the existing methods to detect malicious web sites, and the research on the neural net-

works. Section 3 explains details of the proposed method. Section 4 evaluates the proposed

method. Section 5 concludes this thesis and future work.
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2 Related Work

2.1 Malicious Website Detection

A honeyclient is a decoy system for visiting and detecting malicious web sites. There are two types

of the honeyclient; high interactive honeyclients and low interactive honeyclients. High interactive

honeyclients use actual browsers with vulnerabilities and detect malicious web sites by observing

malicious processes and access to file systems. Capture-HPC [9] is a high interactive honeyclient,

which monitors events such as access to files and registries, process control, and detects malicious

content that violates predefined rules. However, most high interactive honeyclients depend on

certain operating systems and applications, and they collect only the malicious web sites whose

targets match the operation systems and applications installed in the honeyclients. On the other

hand, low interactive honeyclients use browser emulators to detect malicious web sites using web

content and various heuristics [10, 11].

Many methods to detect attacks focusing on web content have been proposed because mali-

cious web sites includes redirection code and exploit code. Curtsinger et al. proposed Zoozle [7],

which classifies malicious JavaScript using hierarchical structure features of abstract syntax trees.

Canali et al. proposed Prophiler as a lightweight filter against malicious web sites. It identifies

non-malicious web sites by HTML-, JavaScript-, URL-based features. Then, the web sites that are

not identified as non-malicious are checked by the other method. However, this method requires

the collection and analysis of web content, which requires a large amount of resources. On the

other hand, our system can detect malicious URLs from only the sequence of the URLs accessed

by users.

Antonakakis et al. proposed Notos [2], which finds unknown malicious domains focusing on

the history of domain usage and their corresponding IP addresses. Ma et al. detected malicious

web sites using the lexical structure of the URL of the phishing site [12]. On the other hand, our

system uses URL sequences to detect by the latest learning method based on the redirection chain

which is characteristic of the current drive-by download attacks.

There are also studies that detect malicious sites by reconstructing user traffic. Mekky et al.

proposed a method to detect malicious web sites by constructing the redirection structures of the

HTTP [13]. Taylor et al. proposed a system to check a large amount of traffic using a honeyclient

and reduce the cost of analysis by caching web content and selecting only suspicious content [14].
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WebWitness [15] is a system that traces the HTTP event of malware downloads. The purpose of

this method is not to detect drive-by download attack, but it can reasonably label a malicious HTTP

event. Because our system can detect malicious URL sequences without inspection of content, it

plays a role differently from these studies.

2.2 Deep Neural Network

In recent years, deep neural networks have demonstrated high performance in many fields. A

CNN is a feed-forward neural network composed of multiple convolution layers and max pool-

ing layers. CNNs have demonstrated high performance in image recognition since Pereira et al.

showed a lower misrecognition rate than other state-of-the-art methods at the time [16]. CNNs are

also applied to sequential data for video classification [17] and natural language processing [4].

Borgolte et al. applied a CNN to the security field [18], but it was a CNN of image recognition

that uses a webpage as an input image and detects alteration of the web site.

In this thesis, we applied CNNs to the URL sequences. Benign URLs exists between malicious

URLs in the sequences, which is a noise that has an impact on the detection of a malicious URL

sequence. Although CNNs which perform noise elimination of images have been proposed [18],

they cannot be used in our study because the noise eliminated by this method is different from the

noise that should be eliminated in our study; the noise of the URL sequence is inserted between

the malicious URLs, while the noise is added to the true values in image. Therefore, we propose

a CNN to handle such noise, which is the first CNN designed for security.

A recursive neural network (RNN) is another class of neural networks that has recurrent struc-

tures. In the computer security field, Shin et al. used an RNN for binary function recognition [19].

Because the structure of a CNN can be flexibly modified according to the characteristics of URL

sequences compared to an RNN, we apply a CNN to detect malicious URL sequences.
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Figure 1: Overview of our system.

3 Drive-by Download Attacks Detection System

3.1 Overview

Fig. 1 shows the overview of our system. In this system, a URL sequence is extracted from the

proxy log. Then, the features of the URLs in the sequence are extracted, and are used as input of

the EDCNN classifier. The outputs of the classifier is malicious or benign.

Each step of our method will be explained in the rest of this section.

3.2 URL Sequence Extraction

The proxy logs the URLs accessed by the terminals, time stamps of the accesses, and the source

terminals of the accesses. Our method extracts URL sequences from the proxy log. The extracted

URL sequence should include all URLs of the redirection chain. However, the proxy log does not

include the information related to the redirection chain each URL belongs to.

In this thesis, we divide the URLs in the proxy log into URL sequences by using the time

stamp of the access to the URL. If a URL is redirected from another URL, the redirected URL

is accessed soon after the first URL is accessed. On the other hand, when a user accesses a new

web site, the time between the access to the web site and the access to another web site is long.

Therefore, in this thesis, we regard the set of the URLs that are accessed from the same terminal

without large time intervals as a URL sequence. There may be a service that continuously access

the URLs. We set the maximum time length of a URL sequence, considering such cases. That is,

we terminate the URL sequence when the predefined time is elapsed from the first URL access of

the URL sequence.
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3.3 Feature Extraction

In this thesis, we use neural networks to classify the URL sequences. The input of the neural

networks should be a vector. Therefore, we vectorize the URL sequence.

The features of the URLs used by attackers have been proposed. There are two kinds of

features, historic domain-based features [2, 20] and momentary URL-based features [12, 21]. No-

tos [2] uses historic domain-based features based on information extracted from Related Historic

IP addresses (RHIP) and Related Historic Domain Names (RHDN). RHIP is the set of all resolved

IP addresses for each fully qualified domain name (FQDN), its third-level domain (3LD) part, and

its second-level domain (2LD) part in the past. The features such as the number of related BGP

prefixes, the number of applicable IP addresses, the number of related ASs and so on are extracted

from RHIP. On the other hand, RHDN means a set of resolving to IP addresses in the same ASN of

the past IP addresses of each FQDN. The features such as the number of domains, the number of

distinct TLDs, the average/standard deviation of domain name lengths, average/median/standard

deviation of the frequency of N-grams, each TLD appearance, and so on are extracted from RHDN.

Various momentary URL-based features have also been proposed. Unlike the domain-based

features, they are extracted from the URL. Prophiler [21] extracts the features such as presence of

subdomain, presence of an IP address, TTL for the DNS A/NS record, country code, and so on.

Because these two types of features are designed from different viewpoints, they play different

roles. Therefore, we use both types of features without including duplicate features. Note that our

methods can use any features, though this thesis uses the features proposed by the existing work.

In our method, we vectorize the URL sequence by extracting the features for each URL in-

cluded in the URL sequence.

3.4 URL Sequence Classifier

In our method, the URL sequence is classified by the neural network. In this subsection, we

introduce two types of the neural networks used in our method.

3.4.1 Convolutional Neural Network

Fig. 2 shows the overall structure of the CNN. Convolution and pooling are repeated two times.

Most of the redirection chains include 3 or 4 malicious URLs. Therefore, features of malicious
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Figure 2: Architecture of the CNN; ch1 and ch2 represent number of channels in convolution

layers.

URLs can be integrated with two convolution layers. After that, two fully-connected layers inte-

grate the extracted information. The CNN has six kinds of layers, and has eight layers in all.

Input layer The input layer arranges our features extracted from URLs to input them into our

CNN. Similar to the RGB values in pixels of images, our features have no order relation to each

other. Similar to pixels in images, URLs are aligned in temporal order. Therefore, each URL is

expressed as three-dimensional data of 1 row, 1 column, and N channels, where N is the number

of the features of the URL. For convenience, three-dimensional data of i rows, j columns and k

channels is written as k@i× j. If the number of URLs is m, the input is represented as N@m×1.

Each feature is normalized so that the average is 0 and the variance is 1 in the training data.

Convolution layer In each neuron of the convolution layer, the output is calculated from the re-

ceptive field of the previous layer. xi,1,k denotes the value of the i-th row, 1st column k-th channel

of the previous layer. wc
h,0,k denotes the weight to calculate the c-th channel by multiplying the

value of the neurons at the h-th row, 0th column and k-th channel from the receptive field. yi,1,c,

which is the output value of i-th row, 1st column, and c-th channel, is calculated by the following

equation:

yi,1,c = tanh

 H∑
h=−H

chpre∑
k=1

wc
h,0,kxi+h,1,k

 , (1)

where H is the distance from the center of the receptive field to its boundary in the row direction,

and chpre is the number of channels in the previous layer. If xi+h,1,k is outside the region of the
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previous layer, it is treated as 0. Here, letting chconv be the number of output channels of the

convolution layer, if the input is chpre@m × 1, the output will be chconv@m × 1. This layer

extracts the local relationships.

Max pooling layer In this layer, the maximum value of receptive field in the previous layer is

extracted. The output yi,1,k is calculated as follows:

yi,1,k = max
−H≤h≤H

(xi+h,1,k). (2)

where H is the distance from the center of the receptive field to its boundary. If xi+h,1,k is outside

the region of the previous layer, it is treated as 0. If the input is ch@m × 1, the output will be

ch@m
2 × 1. As a result, even if the input position is slightly shifted, the output does not change.

Temporal pooling layer Our method accepts inputs of any length. However, the input size to

the fully-connected layer must be fixed. Therefore, we introduce the temporal pooling layer so as

to make the vectors of the fixed length from the vector of any length.

In the temporal pooling layer, we divide the input from the previous layer into s regions. Then

the maximum value for each region is extracted. Finally, we construct the vector of the extracted

maximum values.

The spatial pyramid pooling (SPP) layer [22] is the similar method to the temporal pooling

layer. The SPP layer is the layer for processing the images with different sizes. The SPP divide

the inputs into multiple square areas. Unlike the images, a URL sequence has features of only one

direction. Thus, we use the temporal pooling layer instead of the SPP.

Fully-connected layer In this layer, the output is calculated from all values of the previous layer.

Neurons in this layers are connected to all neurons in the previous layer. xi denotes the value of

the i-th neuron in the previous layer, yj denotes the value of the j-th neuron in this layer, and

wijdenotes the weight between them. yj is calculated by

yj = tanh

(∑
i

wijxi

)
. (3)

When learning the weight, we apply Dropout [23] that eliminates randomly selected neurons. This

layer integrates all the information propagated from the previous layers.
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Output layer This layer outputs the classification result. The number of neurons in the output

layer is equal to the number of classes to be identified. The network structure in this layer is a

complete bipartite graph. Similar to the fully-connected layer, the output value of this layer is

calculated by the Softmax function; that is,

yj =
ezj∑
i e

zi
. (4)

where zi is defined by zj =
∑

iwijxi.

By using the Softmax function, the output values are positive and the sum of them becomes 1.

Therefore, the output can be treat as the probability that the input belongs to the class.

In this thesis, the weight of each layer of the CNN is learned by the backpropagation to min-

imize the classification errors. We use AdaDelta [24] in this optimization, which automatically

adjusts the learning rate.

3.4.2 Event De-noising Convolutional Neural Network

The URL sequences related to the drive-by download attacks also include the benign URLs. Such

benign URLs may have an impact on the malicious URL sequence detection. Therefore, we

introduce the Event De-noising CNN (EDCNN), which is an extended CNN to reduce the impact

of benign URLs mixed in malicious URL sequences. An EDCNN performs convolution from two

URLs, whose sequential order is close so that malicious URLs related to drive-by download attack

can be convolved. In order to realize this convolution, we introduce an allocation layer.

The overall structure of EDCNN is shown in Fig. 3. The EDCNN has ten layers. There are

seven kinds of layers. The rest of this subsection explains the allocation layer, which is newly

introduced in the EDCNN, the convolution layer and the max pooling layer that are changed from

the CNN.

Allocation layer Malicious URLs are highly likely to be close in the URL sequence, even if a

few benign URLs are inserted. Therefore, as shown in Fig. 4, for the i-th URL in the sequence,

i-th URL and (i+1)-th URL, i-th URL and (i+2)-th URL ..., and i-th URL and (i+R)-th URL

are allocated so that they are adjacent.
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Figure 3: Architecture of the EDCNN; ch1 and ch2 represent number of channels in convolution

layers.

Figure 4: Allocation layer.

The output y in the allocation layer is calculated by

y2i,j,k =


xi,1,k (i+ j ≤ m)

0 (otherwise)

(5)

y2i+1,j,k =


xi+j,1,k (i+ j ≤ m)

0 (otherwise),

(6)

where xi,1,k denotes the value of the i-th row, 1st column and k-th channel in the previous layer,

yi,j,k denotes the value of the i-th row, j-th column and k-th channel in this layer, and m is the

number of rows in the previous layer. If the input is N@m×1, the output will be N@2(m−1)×R.

Convolution layer In the allocation layer, we arrange the neurons to convolute the data of the

2i-th row, j-th column and data of the (2i + 1)-th row, j-th column. In the convolution layer,

we convolute these two neurons. wc
h,0,k denotes the weight to calculate the c-th channel in the

convolution layer by multiplying the value of the neuron at the h-th row, 0-th column, and k-th

channel from the center of the receptive field. xi,j,k denotes the value of the i-th row, j-th column

15



and k-th channel in the previous layer. The output of the i row, j column, c channel ,yi,j,c is

calculated by

yi,j,c = tanh

(
1∑

h=0

N∑
k=1

wc
h,0,kx2i+h,j,k

)
. (7)

The receptive field is moved by two neurons in the row direction. If the input is N@2(m−1)×R,

the output will be N@(m− 1)×R.

Max pooling layer Each column in the output of the convolution layer may include the con-

volution of the candidates of the malicious redirection. In the max pooling layer, we extract the

convolution that is possible to correspond to the actual malicious redirection.

In the max pooling layer, the output yi,1,k is

yi,1,k = max
0≤j≤R

(xi+h,j,k). (8)

When x is outside the previous layer, it is treated as 0. If the input is N@(m− 1)×R, the output

will be N@(m− 1)× 1.

Weight learning is performed by backpropagation similar to CNN. In the backpropagation,

errors in the allocation layer are propagated through the connected neurons to the previous layer.

3.4.3 Malicious URL Sequence Detection

URL sequences extracted by the method in Section 3.2 may include URLs related to multiple

web sites, because a user may access multiple web sites continuously. If one of such web sites

is related to the drive-by download attack, most of the URLs included in the extracted sequences

are benign. In this case, it is difficult to identify the malicious redirection chain from the extracted

URL sequence.

Even if a user accesses multiple web sites, the accesses of the web sites are not completely

simultaneous. The intervals of the redirect URLs are shorter than the interval of the accesses of

the web sites. Therefore, the URLs of the same web sites tend to be close in the URL sequences.

In this method, we generate the subsequences of the URL sequence, and classify each subse-

quence by using CNNs. If one of the subsequences is classified as malicious, we regard the URL

sequence as malicious. If all subsequences are classified as benign, we use the whole sequence as

the input of the neural network.
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By doing this, even if a user accesses multiple web sites continuously, we can detect the

redirection chain from the subsequence of the URLs which includes multiple URLs related to the

malicious redirection. If the URL sequence includes the URLs related to a single web site, we

perform the classification by using the whole URL sequence.

In this thesis, we set the length of the subsequences based on the length of the URL sequence.

Specifically, first the subsequence of l URLs from the beginning of the URL sequence is extracted

and input into the model. Then the subsequence of the same length l shifting downward by h

URLs is extracted and input into the model. Subsequently, inputting the subsequence at the same

interval is continued until the end of the URL sequence. If one of the subsequences is classified

as malicious, the URL sequence is classified as malicious. If all subsequences are not classified as

malicious, the whole URL sequence is input last, and the output is used as the classification result.
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4 Evaluation

In this section, we evaluate our method. In this evaluation, we check whether the malicious URL

sequences can be detected before the honeyclient detects the sequence. We use URL sequences

collected before a certain day as training data. Then, we evaluate the accuracy of identification of

the URL sequences collected after the day.

4.1 Environment

4.1.1 Dataset

For this evaluation, we prepared two data sets. The first data set is collected by a honeyclient that

accesses web sites listed in public blacklists [25, 26] and alexa [27].

Another data set is collected at the gateway of our laboratory. Our laboratory has about 30

users. The URL sequences collected at the gateway of our laboratory do not include the access to

the malicious web sites. Therefore, we regard the URL sequences collected at our laboratory as

benign. In this evaluation, URL sequences are terminated if 5 seconds are elapsed from the last

accessed URL or 15 seconds are elapsed from the first URL.

We construct two sets of the training data and test data from the above data. First, in the former

case, the training data is constructed based on the data collected before October 25, 2016, and the

test data is constructed based on the data collected from October 26 to November 25. Second, in

the later case, the training data is constructed based on the data collected before November 25,

2016, and the test data is constructed based on the data collected from November 26 to December

25. The following paragraphs explain the details of the training data and the test data.

Training Data We need the malicious and benign URL sequences for the training data. We use

the malicious URL sequences collected by the honeyclient as the training data for malicious URL

sequences.

The training data for the benign URL sequences is generated by mixing the URL sequences

collected by the honeyclient and URL sequences collected in our laboratory. The benign URL

sequence collected by the honeyclient includes the popular web sites, while the URL sequence

collected in our laboratory reflects the behaviors of the people in our laboratory. That is, these

data sets have different characteristics. Therefore, by mixing these data sets, classifier learns both
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Table 1: Number of URL sequences in the training data for each patterns.

Label Benign Benign Malicious

Data source Laboratory Honeyclient

The lab 3195 0 3310

former labhc1 3195 2974 3310

case labhc2 1596 1487 3310

labhc3 1065 992 3310

The lab 3219 0 3321

later labhc1 3219 2903 3321

case labhc2 1610 1452 3321

labhc3 1073 968 3321

of the characteristics of the benign URL sequences.

The number of collected benign URL sequences is much larger than that of malicious URL

sequences. Therefore, we used the sampled benign URL sequences as the training data set. In each

case of our evaluation, we generate four patterns of the training data of the benign URL sequences

shown in Table 1; one is sampled from the data collected at our laboratory, and the others are

sampled from the data collected at our laboratory and the data collected by the honeyclient.

Test Data We generate two kinds of the test data from the collected URL sequences. The first

data is the data of URL sequences without multiple web sites. This data set includes the collected

URL sequences. Some URL sequences collected for the test data may be included in the training

data set. We eliminate such URL sequences from the test data.

The other data is the data including URL sequences with multiple web sites. The benign

URL sequences included in this data set are the same as the previous data sets. The malicious

URL sequences included in this data set are generated, considering the case that multiple web

sites are accessed by a user and one of them is related to the drive-by download attacks. Such

malicious URL sequences are generated by replacing the URLs related to a web site in the URL

sequences collected in our laboratory with the malicious URLs collected by the honeyclient. For

each malicious URL sequence, two benign URL sequences including multiple web sites are chosen

randomly. In one benign sequence, the URLs of the web site accessed first are replaced with the
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Table 2: Number of URL sequences in the test data.

Label Benign Malicious Malicious

Number of web sites Single Multiple

The former case 14,285 949 1898

The later case 15,905 461 922

URLs of the malicious URL sequence. In the other benign sequence, the URLs of a web site

accessed later are replaced. Therefore, the number of the malicious URL sequences including

multiple web sites is doubled from that of the collected malicious URL sequences. Table 2 shows

the number of URL sequences in each test data.

4.1.2 URL Features

As described in Section 3.3, in this thesis, we use historic domain-based and momentary URL-

based features. We get RHDN and RHIP of the domain of each input URL, and the features shown

in the left and center of Table 3 are extracted. These features are the same as the domain-based

features used in Notos introduced in Section 3.3. Then, features shown on the right of Table 3 are

extracted for the input URL. Features ”Length of X” in No. 36-38 by defining the filename, path

and query included in the URL. In this thesis, they for the URL ”http://host:port/folder/file?query”

is

• Filename: file

• Path: folder/file

• Query: query.

In table No. 39-41, ”Presence of X” indicates whether there is a corresponding item in the

URL by 0 (none) or 1 (present).

4.2 Classification Method

4.2.1 Sequence-based Approach

The CNN or EDCNN has the following parameters; the number of channels in convolution layers,

the number of neurons in fully-connected layers, the number of rows in receptive field for convolu-
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Table 3: Features used in this evaluation.
No. RHIP Features No. RHDN Features No. URL Features

1 # BGP Prefixes (FQDN) 19 # FQDNs 36 Length of filename

2 # BGP Prefixes (3LD) 20 Mean (Lengths) 37 Length of path

3 # BGP Prefixes (2LD) 21 SD (Lengths) 38 Length of query

4 # Countries (FQDN) 22 Mean (1-gram) 39 Presence of IP addresses

5 # Countries (3LD) 23 Median (1-gram) 40 Presence of a subdomain

6 # Countries (2LD) 24 SD (1-gram) 41 Presence of a port number

7 # IP addresses (3LD) 25 Mean (2-grams)

8 # IP addresses (2LD) 26 Median (2-grams)

9 # Organizations (FQDN) 27 SD (2-grams)

10 # ASN (FQDN) 28 Mean (3-grams)

11 # ASN (3LD) 29 Median (3-grams)

12 # ASN (2LD) 30 SD (3-grams)

13 # Registries (FQDN) 31 # TLDs

14 # Registries (3LD) 32 Ratio of .com

15 # Registries (2LD) 33 Mean (TLD)

16 # Dates (FQDN) 34 Median (TLD)

17 # Dates (3LD) 35 SD (TLD)

18 # Dates (2LD)

tion. In this evaluation, we obtain the hyperparameters which achieves high accuracy for training

data. As a result, the number of the convolution layers is set to 200 and the number of the neurons

in fully-connected layers is set to 500. The number of rows in receptive field for convolution is

set to 5 for the CNN, 4 for the first convolution layer of the EDCNN, 3 for the second convolution

layer of the EDCNN.

As described in Section 3.4.3, we generate the subsequences of the URL sequences, and

classify them by the neural network. In this evaluation, we set the length and the interval of the

subsequence of the URL sequence including N URLs by

l = ⌊
√
N⌋, h = ⌊

√
l⌋.
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4.2.2 Individual-based Approach

In this thesis, we compare our method with the method that classifies individual URLs. By this

comparison, we demonstrate the effectiveness of using URL sequences. In this method, if one of

the URLs in the sequence is classified as malicious, the sequence is classified as malicious.

We use Random Forest (RF) as the classifier of each URL. We train the RF by using the

URLs captured in our laboratory as the benign data and the URLs that are identified as exploit

URL by the honeyclient as the malicious data. The samples in the training data set of the later

case includes only a small number of URLs that are identified as exploit URL. Therefore, in this

section, we compare our method with RF by using only the data set of the former case in Table 1

and 2.

4.3 Classification Performance

In this subsection, we first investigate the classification performance of the trained neural networks.

In this evaluation, we use the data set of URL sequences without multiple web sites. We classify

the whole URL sequences without generating the subsequences. Table 4 shows true positive rate

(TPR) and false positive rate (FPR).

Table 4: Classification performance for the data without multiple web sites including malicious

URLs.
The former case The later case

Model TPR FPR TPR FPR

CNN lab 0.967 0.036 0.937 0.070

labhc1 0.952 0.068 0.792 0.008

labhc2 0.948 0.271 0.804 0.010

labhc3 0.961 0.070 0.879 0.019

EDCNN lab 0.952 0.041 0.954 0.129

labhc1 0.959 0.079 0.894 0.024

labhc2 0.959 0.152 0.915 0.021

labhc3 0.975 0.085 0.879 0.024

RandomForest 0.946 0.003 - -
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The result shows the TPR of RF is the lowest. This is because the RF is based on the charac-

teristics of the exploit URLs detected by the honeyclient. Thus, the RF cannot detect the malicious

URL sequences that use the exploit URL whose characteristics are different from the exploit URLs

detected by the honeyclient.

On the other hand, the CNN and EDCNN achieve higher TPR. This is because these methods

uses the features of the URL sequences instead of the features of the individual URLs. Therefore,

even if the attacker uses a new exploit URL whose characteristics are different from the past

exploit URLs, the CNN or EDCNN can detect the malicious URL sequences from the features of

the redirections, which hardly change.

In this result, there are no clear differences between the CNN and the EDCNN, even though

the CNN does not consider the benign URLs included in the malicious URL sequences. This is

because we have sufficient training data to train a CNN so that the benign URLs included in the

malicious URL sequences do not affect the classification by the CNN.

We next investigate the accuracy of the classification when multiple web sites are included

in a URL sequences. To handle such URL sequences, we generate the subsequences. Table 5

shows the result. For comparison, we also show the result when classifying the malicious data

without subsequences. This result shows that the CNN and EDCNN without using subsequences

cannot detect a large number of malicious URL sequences, if the URL sequences include URLs

of multiple web sites. This is caused by that most of the URLs included in the URL sequences are

benign URLs when URLs of the multiple web sites are included in the URL sequences and only

one of the web sites is related to the drive-by download attacks. As a result, the URL sequences

tend to be classified as the benign URL sequences.

On the other hand, the CNN and EDCNN using subsequences achieve high TPR. This is

because the URLs of the same web sites tend to be close in the URL sequences. Therefore, one

of the subsequences includes the redirections related to the drive-by download attacks, and such

redirections are detected by the CNN and EDCNN. However, the URLs of the same web sites tend

to be close in the URL sequences cause the high FPRs. This is because the CNN and EDCNN

using subsequences identify the URL sequences as malicious if at least one of the subsequences is

mistakenly classified as malicious. Therefore, we need a method to decrease the false positives.

The neural networks, which learn the different data sets, may learn the different characteristics

of the malicious and benign URL sequences. Therefore, the classifier integrating multiple neural

23



Table 5: Classification performance for the URL sequences including multiple web sites.

The former case The later case

Model TPR FPR TPR FPR

CNN lab 0.886 0.113 0.898 0.120

using labhc1 0.942 0.193 0.785 0.054

subsequences labhc2 0.983 0.365 0.823 0.067

labhc3 0.956 0.220 0.876 0.086

EDCNN lab 0.910 0.144 0.936 0.155

using labhc1 0.980 0.257 0.907 0.104

subsequences labhc2 0.989 0.391 0.915 0.069

labhc3 0.973 0.270 0.881 0.088

CNN lab 0.467 0.036 0.663 0.070

without labhc1 0.482 0.068 0.320 0.008

subsequences labhc2 0.725 0.271 0.362 0.010

labhc3 0.609 0.070 0.541 0.019

EDCNN lab 0.419 0.041 0.838 0.129

without labhc1 0.537 0.079 0.501 0.024

subsequences labhc2 0.560 0.152 0.915 0.021

labhc3 0.509 0.085 0.504 0.003
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networks may achieve higher accuracy of the classification. We integrate the four EDCNNs by the

following rule. Each classifier classifies a URL sequence by using the subsequences of it. If n or

more classifiers classify it as malicious, it is classified as malicious. Otherwise, it is classified as

benign. Table 6 shows the results.

Table 6: Classification performance for the URL sequences including multiple web sites when

integrating the outputs of the four EDCNNs using subsequences.

The former case The later case

n TPR FPR TPR FPR

1 0.997 0.492 0.977 0.227

2 0.988 0.278 0.946 0.123

3 0.973 0.196 0.900 0.072

4 0.895 0.095 0.816 0.039

If n = 1, TPR and FPR become high. This is because a URL sequence is classified as

malicious if any one of the four models classifies it as malicious. On the other hand, if n = 4,

TPR and FPR become low, because malicious URL sequences are not detected unless all models

classify them as malicious. If n is 2 or 3, the method integrating outputs of the EDCNNs achieves

high TPR and low FPR. This is because four models learn the different characteristics of the

benign and malicious URL sequences. If a model cannot detect a malicious URL sequence, the

other models may detect the URL sequence. As a result, the method integrating the models can

detect the sequence. Similarly, even if a model mistakenly identifies a benign URL sequence as

malicious, the method integrating the models does not identify the URL sequence as malicious

unless one of the other models also identifies it as malicious. As a result, integrating the outputs

of the models increases the TPR and decreases the FPR.

4.4 Discussion

Our evaluation results demonstrate that the EDCNN using the subsequences achieves the TPR

higher than 95% even when URL sequence includes multiple web sites and one of them is related

to the drive-by download attacks. In addition, by integrating the outputs of the EDCNNs which

learned with the different data sets, we can increase the TPR and decrease the FPR.
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The EDCNN using the subsequences may cause some false positives, even if we integrate the

outputs of multiple EDCNNs. This is because the EDCNN using the subsequences identifies a

URL sequence as malicious when one of the subsequences are identified as malicious. As a result,

long URL sequences tend to be identified as malicious.

Table 7 shows the relation between the length of URL sequences and the FPR of the corre-

sponding URL sequences. In this table, FPRs are the averages for the results of the four EDCNNs.

Table 7: FPR according to the length of the URL sequence.

Range of length -5 6-10 11-20 21-40 41-80 81-160 161-320 321-

Number of samples 4995 2743 1797 1730 1405 869 456 290

False positive rate 0.141 0.196 0.270 0.342 0.401 0.541 0.640 0.520

Table 7 indicates the FPR increases as the length of the sequence becomes long. By investi-

gating URL sequences in our data set, we find that the number of URLs actually related to attack

is small, compared with the length of the malicious URL sequences. That is, long URL sequence

may be useless for classification. Therefore, FPR can be decreased by modifying the parameter of

the URL sequence extraction so that the length of the extracted URL sequences becomes short.
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5 Conclusion and Future Work

In the thesis, we proposed a method to detect drive-by download attacks from URL sequences

extracted from proxy log information. We focused on the similarity in the data structure of URL

sequences and sentences, and applied convolutional neural networks to classification of URL se-

quences. We also introduce an Event De-noising CNN, which is an extended CNN so as to perform

convolution from two adjacent URLs in the sequence.

The evaluation demonstrated that the methods using URL sequences achieves higher TPR than

the method using the features of individual URLs.

URL sequences extracted from the proxy log may include URLs of multiple web sites ac-

cessed at the same time. To handle such URL sequences, we propose a method that uses the

subsequences. The evaluation results show that EDCNN using the subsequences achieves the high

TPR even when URL sequences includes URLs of multiple web sites. However, the EDCNN

using subsequences cause high FPR. To improve accuracy of the classification, we integrated mul-

tiple EDCNNs that learns different data sets. The evaluation results show that integrating multiple

EDCNNs achieve high TPR and low FPR.

However, EDCNNs using subsequences cause some false positives, even if we integrate mul-

tiple EDCNNs. In this thesis, we investigated the false positives, and clarified that the long benign

URL sequence is likely to be mistakenly identified as malicious. Therefore, we need to extract

URL sequences so that the lengths of the URL sequences do not become too large.

In our evaluation, we use the URL sequences monitored for 6 months as the training data.

However, there may be tradeoffs. By focusing on recent URL sequences, we can learn the fea-

tures of the recent attacks. However, the number of malicious URL sequences that are recently

monitored is limited. On the other hand, by using old URL sequences, we can use more data to

train the models. However, the current characteristics of the attacks may be different from the old

URL sequences. In this case, the old URL sequences may be useless. Considering above points,

we plan to investigate how to collect suitable training data.
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