
Murakami et al.

RESEARCH

Robustness and efficiency in interconnected
networks with changes in network assortativity
Masaya Murakami1*, Shu Ishikura1, Daichi Kominami2, Tetsuya Shimokawa3 and Masayuki Murata1

*Correspondence:
m-murakami@ist.osaka-u.ac.jp
1Department of Information
Science and Technology, Osaka
University, 1-5 Yamada-oka, Suita,
560-0871 Osaka, Japan
Full list of author information is
available at the end of the article

Abstract

In this study, the effect of assortativity on the robustness and efficiency of
interconnected networks was investigated. This involved constructing a network
that possessed the desired degree of assortativity. Additionally, an interconnected
network was constructed wherein the assortativity between component networks
possessed the desired value. With respect to single networks, the results indicated
that a decrease in assortativity provided low hop length, high information
diffusion efficiency, and distribution of communication load on edges. The study
also revealed that excessive assortativity led to poor network performance. In the
study, the assortativity between networks was defined and the following results
were demonstrated: assortative connections between networks lowered the
average hop length and enhanced information diffusion efficiency, whereas
disassortative connections between networks distributed the communication loads
of internetwork links and enhanced robustness. Furthermore, it is necessary to
carefully adjust assortativity based on the node degree distribution of networks.
Finally, the application of the results to the design of robust and efficient
information networks was discussed.

Keywords: Interconnected network; assortativity; brain network; modular
structure; graph theory; Internet of Things (IoT)

Introduction
Information networks are characterized by rapid growth and increased complexity.

Many sensor devices collect a variety of environmental information and are placed

at different locations and connected to the Internet [1, 2]. It is estimated that tens

of billions of such devices will be connected to the Internet by 2020 [3]. Additionally,

services operated over the network to improve human life will further diversify and

the network will be considerably improved to meet changing requirements. Hence,

control and management of huge networks, such as the Internet of Things (IoT),

will be difficult and involve increasing communication and computational costs.

As information networks constitute important infrastructure at present and in the

future, high reliability, efficiency, and scalability are important for the control and

management of these networks.

The interconnecting structure of multiple networks is important in ensuring the

aforementioned properties in information networks. A set of networks with scales

that are not too large to be controlled and managed is considered as a large network,

which is termed as an interconnected network. The Internet itself is an intercon-

nected network wherein numerous mutually connected networks are operated by

Internet service providers [4]. Future information networks, including the future In-

ternet, will involve an enormous number of interconnected networks managed by



Murakami et al. Page 2 of 21

different administrators [5]. It is not possible to guarantee the reliability and effi-

ciency of the network since it is not feasible for a single administrator to manage

the entire network. To limit this potential drawback, this study examines the design

of interconnected networks to provide high robustness and efficiency.

Structures similar to those in the interconnected networks are observed in net-

works with modular structures, such as regulatory gene networks, protein-protein

interaction networks, and human brain networks [6]. In a modular structure, a

module is defined as a subset of network units wherein connections between subset

members are denser when compared with connections in the rest of the network.

Recent advancements in neuroimaging techniques have allowed the analysis of the

human brain at a considerably finer spatial resolution. Thus, extant research has

examined the structural network of the brain as represented by anatomical connec-

tions among the regions of interest. Previous studies indicated that brain networks

possess high topological efficiency and robustness while minimizing wiring cost.

Furthermore, the human brain can adaptively tackle a large variety of tasks. It was

considered that these advantages were obtained during the process of human growth

and evolution.

It is necessary to focus on human brain networks to examine the manner in which

interconnected networks can be built. The human brain is a complicated network

composed of neuronal cell bodies residing in cortical gray matter regions joined

by myelin-insulated axons. Advances in methods to analyze human brains revealed

that brain networks include topological features observed in complex networks in-

cluding small-world properties, a hierarchical modular structure, and an assortative

structure [7, 8, 9]. These topological features are considered to provide advantages

to the brain such as robustness against node failure and efficiency at tackling tasks

adaptively [10]. Extant studies discussed applying a human-brain structure to in-

formation networks [11].

It is essential to clarify the effects of the structural properties of the human brain

to apply the structural properties of the human brain. It is considered that small-

world properties of brain networks facilitate efficient communication. However, ex-

tant research does not focus on topological advantages of hierarchical modularity.

Current opinions on the same are divided. However, hierarchical modularity ap-

pears to be associated with communication efficiency, robustness, maintenance of

dynamic activity, and adaptive evolution. An understanding of the manner in which

the fore-mentioned topological properties contribute to the function of brain net-

works would contribute significantly to understanding the human brain and the

manner in which these properties can be applied.

This study accounted for the modular structure and investigated assortativity,

which is defined as the distinctive nodal degree correlation of brain networks. As-

sortativity represents the degree of correlation between connected nodes. Nodes of

similar degree tend to be connected to each other in networks that exhibit high

assortativity (termed as assortative mixing). In contrast, in networks with low as-

sortativity (disassortative mixing), nodes are more preferentially connect to each

other if they have a larger gap on degree [12]. Generally, an assortative-mixing

network is robust against selective node failure, and this accelerates the spread

of information generated by high-degree nodes [13, 14]. Brain networks exhibit a
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modular structure in which nodes are densely connected to compose a module and

modules are sparsely connected with each other. The modules exhibit assortative

mixing in this structure. Previous research did not focus on the effect of degree

correlation with respect to the formation of edges between modules.

In this study, the effect of assortativity in interconnected networks in terms of

robustness and efficiency was investigated. To examine the interaction effects of

assortativity within a network and assortativity between networks in detail, net-

works with different assortativities were constructed and analyzed with respect to

the following metrics: (1) edge betweenness centrality [12], (2) average hop length,

(3) robustness against node failure, and (4) information diffusion efficiency [15, 16].

First, a single network was examined, and the basic properties of assortative

networks were demonstrated. This involved constructing a network with a specified

value of assortativity by using a rewiring-based method proposed in a previous

study [17]. To analyze the assortativity between networks, assortativity was defined

as the universal assortativity coefficient as proposed in an extant study [18]. This

was followed by proposing a method with two networks connected such that the

assortativity between the networks corresponded to the desired value.

First, we focus on a single network and show the basic properties of assortative

networks. For this, we construct a network that has a specified value of assortativity

by the rewiring-based method proposed in [17]. For analyzing the assortativity

between networks, we define assortativity as the universal assortativity coefficient

proposed in [18]. Then, we propose a method of connected two networks in such a

way that the assortativity between them is the desired value.

Method
Overview

This subsection provides an overview of the method that was used to reveal the

effects of assortativity. Two types of assortativity were discussed, namely assorta-

tivity within a network and assortativity between networks. In order to examine

the influence of these types of assortativity on robustness and efficiency, network

construction methods were proposed to achieve the desired assortativity. First, a

method to construct a single network with the specific assortativity was discussed.

This was followed by proposing a method to construct an interconnected network

that consisted of two networks constructed by the first method such that the set of

edges connecting the networks yielded the specified assortativity. An example of an

interconnected network is shown in Fig. 1.

First, single networks were examined, and the properties of assortativity within

a network were demonstrated. This was followed by focusing on interconnected

networks to examine the assortativity properties between networks. Additionally,

the interaction between within-network assortativity and between-network assorta-

tivity was investigated. Networks with different assortativities were constructed to

examine the influence of assortativity, and the constructed networks were analyzed

relative to graph-theoretic metrics.

Subsection Definition of Assortativity provides an explanation of the definitions

of assortativity within a network and of assortativity between networks. Its sub-

subsections discusses a method to construct a network with a specific assortativity.
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Assortativity could influence various metrics and four metrics were used for the eval-

uation in this study by considering requirements essential to information networks.

Subsection Metrics for Evaluation describes these metrics in detail.

Figure 1 Interconnected modular network

Definition of Assortativity

This subsection focuses on an explanation of the definition of assortativity. Two

types of assortativity were defined, namely assortativity within a network and be-

tween networks. Assortativity within a network is measured by the assortativity

coefficient proposed by Newman [19]. The assortativity coefficient is shown in Sub-

section Assortativity within a Network. In contrast, a method to quantify assorta-

tivity between networks does not exist to the best of the authors’ knowledge. Hence,

the term universal assortativity coefficient [18] that corresponds to a dilatation of

the assortativity coefficient was used to address this gap. The universal assortativity

coefficient is described in Subsection Assortativity between Networks.

Assortativity Within a Network

Newman proposed measuring the assortativity of a network with the assortativity

coefficient [12]. The assortativity coefficient is calculated from the remaining degree

distribution q(k) defined as follows:

q(k) =
(k + 1)p(k + 1)∑

j jp(j)
, (1)

The remaining degree distribution is related to the degree distribution p(k) that

describes the probability that the degree of a randomly chosen node corresponds to

k. The remaining degree of a node in a path corresponds to the number of edges

leaving a vertex separate from the vertex that was arrived along. In other words,

the remaining degree of a node in a path is equal to the node’s degree minus one.

The joint probability distribution e(j, k) can be introduced given q(k) wherein the

joint probability indicates the probability that two endpoints of a randomly chosen

edge have the remaining degrees k and j. Hence, the assortativity coefficient r is

defined as follows:

r =
1

σ2
q

[∑

j,k

jke(j, k)−
(∑

j

jq(j)
)2

]
, (2)
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where σq denotes the standard deviation of the remaining degree distribution q(k),

given as follows: σ2
q =

∑
k k

2q(k) −
(∑

j jq(j)
)2

. The range of values that r can

belong to corresponds to [−1, 1]. Positive and negative values of r indicate an

assortative network and a disassortative network, respectively. When r corresponds

to zero or is near zero, nodes are randomly connected with each other independent

of their degrees. The range of feasible values of r is based on the degree distribution.

Assortativity Between Networks

Universal assortativity coefficient proposed in a previous study [18] was used to

define the assortativity between networks. This coefficient reflects the contribution

of an individual edge’s to the global assortativity coefficient of the entire network.

This was used to analyze the assortativity of any part of a network in a previous

study [18]. The universal assortativity coefficient for a set of targeted edges Etarget

is represented as the sum of the contribution of each edge to the assortativity of the

entire network as described in the previous subsubsection. The contribution of each

edge to global assortativity is based on the global assortativity r in Eq. 2. Global

assortativity r can be expressed as follows:

r =
1

σ2
q

(
E[(J − Uq)(K − Uq)]

)
, (3)

where Uq =
∑

j jq(j) denotes the expected value of the remaining degree, and J

and K denote variables of the remaining degree, which have the same expected

value Uq. Then, the contribution ρe of the edge e is then defined as follows:

ρe =
(J − Uq)(K − Uq)

Mσ2
q

, (4)

where M denotes the number of edges in the whole network, and j and k denote

the remaining degrees of the two endpoints of the edge e. Finally, the universal

assortativity coefficient ρ is defined as follows:

ρ =
∑

e∈Etarget

ρe =
∑

e∈Etarget

(J − Uq)(K − Uq)

Mσ2
q

. (5)

The universal assortativity coefficient ρ is a part of global assortativity. Thus, if

Etarget is considered as the set of all edges, then ρ is equal to Newman’s global

assortativity. In this study, each edge between networks corresponds to an element

of Etarget. The assortativity between networks is calculated from Eq. (5) based on

the Etarget.

Network Construction Methods for Different Assortativities

This subsection presents two methods of constructing a network. The first sub-

subsection presented a method of constructing a single network that included the

specified assortativity within the network as proposed in a previous study. The sec-

ond subsubsection includes the proposal of a method to construct an interconnected

network with the specified assortativity between two component networks.
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Single Networks with Different Assortativities within a Network

A network with a target assortativity was constructed by repeatedly rewiring the

edges of a given network. In this method, the assortativity was changed without

changing the degree distribution because the individual rewirings did not change the

degree distribution. Although this rewiring method did not necessarily achieve the

overall maximum or minimum assortativity, this method has been widely used in

previous researches relevant to assortativity due to its low computational cost [17,

20, 21], and it was also discussed that rewiring method can well approximate optimal

solutions [22].

Repeated rewiring of the edges in the network proceeded in the following manner.

First, two edges that did not share a common endpoint were randomly selected. This

was followed by selecting four nodes as the new endpoints for the edges. Two pairs of

nodes were rewired such that r approached the desired value, as shown in Figure 2.

In the rewiring process, only the degree was considered to determine the nodes

that should be connected with each other. Two nodes with degrees that exceeded

the degrees of the other nodes were wired to increase assortativity. This contrasted

with both the previously mentioned rewiring methods that decreased assortativity.

Increasingly effective patterns to decrease assortativity were selected by calculating

both assortativity coefficients. It should be noted that the two initially selected

edges were not rewired when the connection pattern without rewiring was the most

suitable and when the rewiring disconnect the network.
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Figure 2 Rewiring patterns: decreasing assortativity (left) and increasing assortativity (right)

Inter-connected Network with Different Assortativities between networks

Interconnected Network with Different Assortativities Between Networks Two iden-

tical networks were connected to each other by M edges to construct an intercon-

nected network with the specified assortativity between networks. In order to obtain

a suitable mixing pattern, edges between the networks were repeatedly deleted and

added. This was performed stochastically with the mixing pattern determined by

the following procedure:

1 Two networks were randomly connected via M edges. At this time, an end-

point node did not have multiple edges.
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2 The assortativity between the networks was calculated. If the assortativity

between the networks corresponded to the target value, then the set of connec-

tions at this point was adopted. Otherwise, the following steps were repeated

until the assortativity between the networks reached the desired value.

3 An edge between the networks was randomly selected and deleted.

4 An edge was randomly added between the networks. If the assortativity did

not approach the target value to a closer extant than the prior assortativity

value, then the added edge was deleted, and the edge deleted in step 3) was

re-added. The selection of an additional link was then repeated.

In contrast with assortativity within a network, edges that influence assorta-

tivity could arbitrarily be chosen free from any degree constraints. Therefore,

the maximum or minimum values of assortativity between networks for given

networks were easily calculated.

Metrics for Evaluation

The metrics for the evaluation included the following: (1) the edge betweenness

centrality, (2) the average hop length, (3) robustness relative to node failure, and

(4) information diffusion efficiency. The details of these metrics are described in the

following subsections.

Edge Betweenness Centrality The edge betweenness centrality of a network is de-

fined as the number of shortest paths that passed through an edge in the net-

work [12]. This could be considered as the communication load on the edges, and

it indicated a possible concentration of the communication load. In the context of

information networks, edges with high edge betweenness centrality were associated

with a higher probability of experiencing traffic congestion.

Average Hop Length The average path length corresponds to the average of the hop

count of all shortest-hop paths. This is used widely in the field of graph theory and

can be used to characterize data-transfer efficiency. Since we define the information

diffusion efficiency in a network as a speed that information is diffused throughout

the network in a probabilistic model for information diffusion, a network that has

a small average hop length achieves a high information diffusion efficiency.

Robustness With respect to single networks, robustness was evaluated by using gi-

ant component size following the removal of a few nodes. The giant component size

is the number of nodes in the largest connected component. Networks that main-

tained a high giant component size were considered to possess higher connectivity

and consequently robustness.

With respect to the robustness of interconnected networks, it is inappropriate to

use the giant component size because only a limited number of nodes include edges

between networks, and the removal of other nodes corresponds to a considerably

small influence on the performance of assortativity between networks. Removing

nodes with the fore-mentioned interconnected edges could constitute a future re-

search topic. However, all the nodes remain connected until all interconnecting

edges are removed unless the endpoint nodes include extreme bottlenecks within
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the corresponding belonging network. Therefore, in order to evaluate the effect of

interconnecting edges, average hop length between networks was used while remov-

ing endpoint nodes of the edges. With respect to the average hop length, paths

between two nodes in the same network were ignored because they were barely

influenced by the edges between networks. Thus, an interconnected network was

considered robust if it retained its original value of average hop length following the

removal of a few endpoint nodes.

Information diffusion efficiency The susceptible-infected-recovered (SIR) model in

a previous study [23] was used to model the diffusion of information. In this model,

each node could belong to three states, namely susceptible (S), infected (I), and

recovered (R) state. An infected node transmitted infection to neighbor nodes with

probability β, and recovered with probability γ. A recovered node did not infect

nor pass its infection to other nodes. When γ = 0 in the SIR model, it was termed

as a susceptible-infected (SI) model [24] wherein when a node in a network was

infected, all other susceptible nodes converged into an infected state. This SI model

could purely measure the information diffusion speed of a network, i.e., the degree

to which a network can diffuse information. Conversely, when γ > 0, all infected

nodes eventually recovered and some nodes remained susceptible. In this case, areas

that were more likely to be infected could be detected after a number of simulations

selected an initial infected node randomly.

Several other models could be used to simulate the diffusion of information. How-

ever, the SIR model was used in the present study for two reasons. First, it was

widely used in modeling the diffusion of information. Second, it offered immediate

convergence.

Results
Single Networks

In this study, single networks with different assortativities were investigated. This

involved using two types of networks that have different nodal degree distribution.

The first type corresponded to a scale-free network (SF network) whose degree dis-

tribution follows power-law. Power-law distribution has been found in many com-

plex networks, such as airline networks, social networks, the Internet, and so on.

This type of networks is generated by two steps. First, we generate Barabási-Albert

networks [25] which leads to the degree distribution p(k) ∼ k−3. Second, we keep

its degree distribution and rewire all edges so that the characteristics of Barabási-

Albert networks do not affect our evaluation. A single SF network consists of 100

nodes and 295 edges in which each node degree corresponded to a minimum of

3. Networks with different assortativities were generated by rewiring the edges of

this network as described in the previous section. Assortativities within a range of

−0.69 ≤ r ≤ 0.58 could be obtained by rewiring the edges of this network.

The second type corresponded to a Erdös-Eényi random network (RN network).

The degree distribution of the RN network followed a Poisson distribution that is

similar to the distribution observed in wireless sensor networks. A single RN network

consists of 100 nodes and 300 edges. The network was generated by repeatedly

selecting pairs of nodes at random and connected these pairs. For this type of
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Figure 3 average hop length in single networks with different assortativities

network, assortativities in the range of −0.79 and −0.97 were obtained. It was

observed that the assortativity range of an SF network was narrower than that of a

RN network, this reflected that the distribution of node degree was more strongly

biased in SF networks. In particular, the number of nodes of high degree was lower,

and thus, such nodes were rarely connected to other nodes of the same degree,

thereby decreasing assortativity.

In the following results for single networks, we construct 25 topologies for each

value of ρ; the results shown below are the averages across all 25 topologies.

Average Hop Length

The relation between average hop length and assortativity is shown in Figure 3.

Both SF and RN networks exhibited the same tendency except with respect to the

range of assortativity. As shown in Figure 3, the average hop length value increased

when r increased. Specifically, the average hop length value rapidly increased when

r approached its highest value for each network. With respect to information net-

works, an increase in the value of average hop length often degraded performance

by increasing communication delays.

It was important to identify the reason for the sudden increase in average hop

length when assortativity approached its highest value. This was performed by con-

sidering SF topology with assortativity r = 0.58 that corresponded to the peak.

Figure 4 shows this network. Additionally, these clusters could be organized in or-

der of degree. In this topology, almost all nodes were connected to other nodes of

the same degree, and thus sets of same-degree nodes formed clusters. The results

indicated that RN networks exhibited the same tendency. A chain-like topology pos-

sessed a high average hop length when compared with that of small-world topology,

and thus a highly assortative topology implied a higher average hop length value.

This tendency grew stronger as the assortativity of the network increased.

Hence, it was concluded that average hop length rapidly increased as assortativity

approached its maximum value mainly because there were fewer shortcut edges and

a few shortcut edges can markedly reduce average hop length, as demonstrated in
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Figure 4 SF network topology with high assortativity (r = 0.58)
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Figure 5 Edge betweenness centrality of all edges in a single SF network (left) and in a single RN
network (right).

a previous study [26]. However, these types of shortcut edges are likely to be lost

when assortativity is very high because a clustered topology of the type shown in

Figure 4 emerged. The observations indicated that the network lost these shortcut

edges when the value of r was very high. Consequently, average hop length rapidly

increased as assortativity approached a maximum value.

Edge Betweenness Centrality

Figure 5 shows edge betweenness centrality of each edge in a single SF and RN

network. As shown in the figure, edges were arranged along the x-axis in increasing

order of edge betweenness centrality. The figure indicated that with respect to the

topology with maximum r (1), a few edges indicated extremely high edge between-

ness centrality, and (2) the total edge betweenness centrality was also considerably

high. This was attributed to the clustered structure shown in Figure 4. There were

also very few shortcut edges in this topology, and the load on these edges increased.

The lack of shortcut edges also caused an increase in the average hop length value as

shown in the previous section. Therefore, edges were included in the shortest paths

several times. With respect to the other topologies, the total communication load
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Figure 6 Change in giant component size with respect to deliberate node failure in a single SF
network (left) and in a single RN network (right)

over all edges drastically decreased due to the emergence of shortcut edges. Further-

more, it was observed that the distribution of edge betweenness centrality became

more homogeneous as the assortativity decreased. This was because the connec-

tions between high-degree nodes changed into connections between a high-degree

node and a low-degree node, and the communication load was distributed. Specifi-

cally, single RN networks with minimum assortativity r completely distributed the

edge betweenness centrality since its node degree followed a Poisson distribution in

contrast to SF networks that possess a Power law distribution.

Table 1 summarizes the relation between edge betweenness centrality and degrees

of the endpoints of the edges in a single SF network. High-degree nodes are impor-

tant for a communication load in single disassortative networks, while low-degree

nodes that connect different clusters are important in single assortative networks.

Robustness

Figures 6 and 7 show the change in giant component size of networks when nodes

are removed from the highest degree node either at each step or randomly. Simula-

tions of removal were run 50 times with respect to each topology. With the exception

of networks with maximum assortativity, assortative topologies were robust with re-

spect to selective failure and weak with respect to random failure. As explained in

the previous section, an assortative topology consisted of clusters connected in a

Table 1 Relation between edge betweenness centrality and degrees of endpoints of edges in a SF
network. Only 5 out of 295 edges that correspond to the highest or lowest edge betweenness
centrality are selected.

Most disassortative
(r = −0.69)

Most assortative
(r = 0.58)

EBC Endpoint 1 Endpoint 2 EBC Endpoint 1 Endpoint 2
8.26 7 7 1.00 13 13
9.70 7 7 1.00 15 15
11.7 7 7 1.00 8 8
15.0 7 7 1.00 13 13
15.1 7 7 1.00 13 13

...
83.0 25 6 1070 6 5
88.8 19 6 1078 6 7
97.7 13 7 1136 4 4
100 15 7 1421 4 3
168 25 7 1455 5 4
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Figure 7 Change in giant component size with respect to random node failure in a single SF
network (left) and in a single RN network (right)

chain. In the selective node-failure scenario, node failure commenced at the high-

degree side of this chain. Therefore, nodes with lower degrees remain connected

to each other even when high-degree nodes failed. Conversely, the probability for

the breaking of edges between clusters in the chain increased if the sequence of

node failure did not follow any order. Thus, assortative topologies were fragile with

respect to random node failure.

Robustness with respect to selective failure suddenly decreased when assortativity

reached a maximum value. This corresponded to a topology with a minimum num-

ber of edges between clusters because the edges between clusters connected nodes

of differing degrees. Thus, connectivity between clusters was fragile with respect to

selective node failure.

An interesting point was that single RN networks exhibited considerably lower

robustness when compared with that of SF networks given that both networks

possessed maximum values of assortativity. This difference reflects the difference

in the mode of degree. Many nodes in an SF network possess a minimal degree

and they construct a cluster. Thus, selective node failure does not divide the giant

component until additional nodes fail.

The aforementioned observations indicated that single assortative networks were

robust with respect to selective failure albeit not with respect to random failure.

However, when the fore-mentioned networks were extremely assortative, then gen-

erated networks were weak with respect to both types of failures.

Information-diffusion Efficiency

As shown in Figure 8, speed of information diffusion is measured using a SI model

with β set to 0.05. The x-axis represents time steps of diffusion, and the number of

infected nodes is counted on the y-axis at each time step. Simulations of diffusion

were executed 50 times with respect to each topology. A shown in Figure 8, infor-

mation diffused poorly when the topology possessed high assortativity in both SF

and RN networks. With respect to an assortative network, the low- and high-degree

nodes involved few connections between them, and this resulted in a network with

low efficiency of information diffusion.

Additionally, SIR models of β = 0.05 and γ = 0.10 were used to identify the areas

that were more likely to be infected, and the number of infections on every node
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Figure 8 Information diffusion speed in a single SF network (left) and in a single RN
network (right)

= 0.55 = 0.3

Figure 9 Number of infections of each node

until a diffusion converged was counted. It should be noted that the SI model did

not match this measurement because the infected nodes propagated infection per-

manently. Figure 9 shows the number of infections of each node in the SF topologies

with r = 0.55 and −0.30. The total number of simulations run for each topology

corresponded to 5,000 (50 simulations for every 100 node). All nodes were uniformly

infected with respect to the topology with r = −0.30. In contrast, with respect to

the assortative topology with r = 0.55, it was not likely that the information would

diffuse in sparse areas and stack in high-degree dense areas.

Interconnected Networks

In this subsection, interconnected networks with differences between-network assor-

tativities ρ were investigated. Each interconnected network consisted of two single

networks of the same type that were connected to each other. Thus, a single SF

network based on Barabási-Albert model included 1000 nodes and 2995 edges. Ad-

ditionally, a RN network based on Erdös-Rényi model included 1000 nodes and 3000

edges. Two single networks of the same type were connected to each other via M

edges, i.e., SF-SF networks and RN-RN networks.

Before starting the evaluation, it was important to clarify the appropriate value

of M to measure the effect of changing assortativity ρ. Figure fig:Inter-limit shows
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Figure 10 Relationship between the number of edges between networks and the maximum and
minimum values of assortativity between networks.

the relationship between the number of edges between networks and the maximum

and minimum values of assortativity ρ. In this figure, edges were added in order of

the influence on assortativity ρ. First, the range of ρ for RN-RN networks exceeded

that of SF-SF networks since a SF network included a wider range of node degrees.

However, it did not necessarily mean that larger limit of assortativity caused larger

effect on the performance of RN-RN networks. We showed details about this point

in the following evaluation of interconnected networks. Second, we also found that

only a small fraction of edges could considerably increase or decrease assortativity ρ.

Increment of all of the four curves was the largest at first, and as adding more edges

the curves became gentler. To our surprise, the curve of SF-SF disassortative went

so far as to cross the x-axis. This was because the average degree of a SF network

is almost double of that of a RN network. Therefore, SF-SF networks has fewer

combination of endpoints that contributes to increase disassortativity. Considering

the above, M was set to 50 in the following evaluation.

The range of assortativity ρ between the networks was from −0.0054 to 0.0124 for

SF-SF networks and from −0.037 to 0.0385 for RN networks. In the evaluation, the

target assortativity ρ was changed, and edges were generated between networks. The

construction method for interconnected networks included a probabilistic process.

Thus, 25 topologies for each value of ρ were constructed and the results shown below

correspond to the averages across all 25 topologies.

Edge Betweenness Centrality

Figure 11 shows the edge betweenness centrality of interconnecting edges. The

edge betweenness centrality could be considered as the communication loads on

edges. In a manner similar to the single networks shown in Figure 5, disassortative

edges between the networks could distribute communication loads in both SF-SF

and RN-RN networks. All edges between networks connected high-degree nodes

with low-degree nodes when networks were connected disassortatively. Therefore,

communication loads were distributed to all edges between networks.
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Figure 11 Edge betweenness centrality of every edges in SF-SF networks (left) and in RN-RN
networks (right)

In contrast, topologies with larger ρ exhibited different and interesting properties

when compared with those of single networks. First, edge betweenness centrality on

the edges were more biased as ρ increased in single networks. However, a heavy com-

munication load was assigned to edges with low-degree nodes in single assortative

networks, as summarized in Table 1. In contrast, in interconnected networks, edges

between the high-degree nodes carried a heavy communication load as shown in Ta-

bles 2-3 because those nodes were accessible to other nodes in each network. Thus,

features on node degrees of edges that possessed high edge betweenness centrality

differed between single and interconnected networks. Another interesting property

was that there was a sudden increase of edge betweenness centrality in the topolo-

gies with extremely high ρ. This was because the types of interconnecting edges

were clearly separated into connection between high-degree nodes and connection

between low-degree nodes. The ratio of increase in the edge betweenness central-

ity was more significant in SF-SF networks due to the power-law distribution of

node degree. The relation between edge betweenness centrality and node degree is

confirmed in Tables 2-3.

Robustness

With respect to the evaluation of robustness of interconnected networks, endpoint

nodes of interconnecting edges were deliberately or randomly broken, and average

Table 2 Relation between edge betweenness centrality and degrees of endpoints of the
interconnecting edges in a SF-SF network. Only 5 out of 50 edges with the highest or lowest values of
edge betweenness centrality are selected.

Most disassortative
(ρ = −0.0054)

Most assortative
(r = 0.012)

EBC Network 1 Network 2 EBC Network 1 Network 2
5.6× 103 36 7 1.2× 103 4 4
7.3× 103 7 24 1.3× 103 4 4
8.2× 103 26 7 1.3× 103 4 4
9, 2× 103 22 7 1.4× 103 4 4
1.0× 104 7 22 1.4× 103 4 4

...
3.3× 104 49 4 6.1× 104 51 51
3.4× 104 87 4 6.6× 104 59 59
4.8× 104 4 104 9.0× 104 65 65
6.6× 104 86 4 1.3× 105 87 87
1.0× 105 104 4 1.7× 105 104 104



Murakami et al. Page 16 of 21

!

"

#!

#"

$!

$"

! " #! #" $! $" %! %" &! &" "!

!"
#$
%&
#
'
()

*#
+&
,-

!"#$%& '( ()*+%, %,-%.

'()!*!!"&
'()!*!!$!
'(!*!!$!
'(!*!!+!
'(!*!#$&

!

"

#!

#"

$!

$"

! " #! #" $! $" %! %" &! &" "!

!"
#$
%&
#
'
()

*#
+&
,-

!"#$%& '( ()*+%, %,-%.

'()!*!%+
'()!*!$#
'(!*!!!
'(!*!$#
'(!*!%,"

Figure 12 Change of average hop length against deliberate failure on endpoints of
inter-connecting edges in SF-SF networks (left) and in RN-RN networks (right)

hop length between networks was calculated. In this context, average hop length did

not include paths between two nodes in the same network. Simulations of removal

were executed 25 times with respect to each topology.

Figures 12–13 show the results, and it was observed that SF-SF and RN-RN net-

works exhibited almost identical tendencies. First, prior to checking the robustness,

it was observed that the average hop length decreased with topologies with high

ρ. The main reason for this corresponded to the connections between high-degree

nodes. As observed in the previous section, assortatively interconnected networks

involve several connections of high-degree nodes that include a high communication

load. Therefore, they contribute to a decrease in the average hop length.

With respect to the selective failure shown in Figure 12, assortative networks

possess lower average hop length, and are therefore initially efficient. However, sub-

sequently as endpoint nodes were selectively removed, there was a performance

reversal between assortative and disassortative networks. This could be attributed

to the loss of connections between high-degree nodes. Conversely, as shown in Fig-

ure 13, the performance of average path length simply decreased while maintaining

the order of assortativity.

In summary, as shown in Figure 14, topologies with low ρ were tolerant of both

random and selective failure, while topologies with high ρ provided efficient average

hop length and were tolerant of random failure albeit vulnerable to selective failure.

Table 3 Relation between edge betweenness centrality and degrees of endpoints of the
interconnecting edges in a RN-RN network. Only 5 out of 50 edges with the highest or lowest values
of edge betweenness centrality are selected.

Most disassortative
(ρ = −0.036)

Most assortative
(r = 0.037)

EBC Network 1 Network 2 EBC Network 1 Network 2
8.0× 103 2 13 1.7× 103 2 2
1.1× 104 14 2 1.8× 103 2 2
1.1× 104 14 2 1.8× 103 2 3
1.1× 104 2 13 2.1× 103 2 2
1.2× 104 13 2 2.1× 103 3 2

...
2.8× 104 3 12 3.2× 104 13 13
3.0× 104 13 2 3.3× 104 13 14
3.1× 104 2 17 3.3× 104 13 14
3.3× 104 2 13 3.7× 104 17 13
4.1× 104 3 12 4.3× 104 15 15
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Figure 13 Change of average hop length against random failure on endpoints of inter-connecting
edges in SF-SF networks (left) and in RN-RN networks (right)
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Figure 14 Relation between average hop length and assortativity between networks in SF-SF
networks (left) and in RN-RN networks (right)

Information-diffusion Efficiency

Figure 15 shows the speed of information diffusion. Interestingly, SF-SF networks

and RN-RN networks behaved differently. Assortative topologies spread information

slightly faster in SF-SF networks. This was probably due to powerful highest-degree

nodes termed as hubs in SF networks. However, a SF network itself constituted an

efficient network with respect to information diffusion, and thus differences be-

tween topologies with different ρ were small. More interestingly, with respect to

RN-RN networks, the efficiency of assortative and disassortative networks exceeded

that of non-assortative networks. This could be because both assortative and dis-

assortative interconnected networks involved edges with high-degree nodes, while

non-assortative networks did not. Another interesting point was that although low

assortativity led to a low performance in terms of average hop length, it also caused

fast information diffusion. As summarized in Table 3, endpoints of edges in dis-

assortative RN-RN network homogeneously contained high-degree nodes, and this

property could help in the diffusion of information over all the nodes. These re-

sults indicated that information-diffusion efficiency could not be uniquely defined

by assortativity between networks and instead depended on types of each network.
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Figure 15 Information diffusion speed in SF–SF networks (left) and in RN–RN networks (right)

Discussion
Effect of Assortativity on Robustness and Efficiency

With respect to single networks, the results of the present study indicated that an

increase in assortativity caused the following

1 High average hop count

2 High robustness relative to the failure of high-degree nodes

3 Low robustness relative to random node failure

4 Low efficiency of information diffusion

5 Concentration of communication loads on the edges connecting clusters

It should be noted that disassortative networks exhibited opposite features, i.e.,

a decrease in assortativity caused a low hop count, high information diffusion ef-

ficiency, and distribution of communication load. An intuitive explanation of the

effects as detailed in the aforementioned points 1-5 was that high assortativity re-

sulted in fewer shortcut links between high-degree nodes and low-degree nodes and

formed a chain-shape network. It should be noted that extremely high assortativity

led to fragile connectivity. The results indicated that the assortativity of a network

should be within an appropriate range of values.

With respect to interconnected networks, the results revealed that an increase in

assortativity led to the following:

1 Low average hop count

2 Low robustness against the failure of high-degree nodes

3 Normal robustness against random node failure

4 High efficiency of information diffusion

5 Concentration of communication loads on edges connecting hub nodes

In this case, disassortative networks exhibited opposite features with the exception

of the efficiency in information diffusion (it also exhibited high efficiency). The

results also indicated that the performance of assortativity between networks was

based on the degree distribution of each network. For example, communication

loads of interconnecting edges were considerably biased when networks possessed

power-law of degree distribution. The range of assortativity was also influenced by

the degree distribution. Thus, the fore-mentioned results characterized the relations

among robustness, efficiency, and assortativity within a network.
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Assortativity in Brain Networks

In the study, assortativity in interconnected networks was evaluated, and the effect

of assortativity on robustness and efficiency was demonstrated. In this section, the

results of the present study were compared with those related to the assortativity

of human brain networks as obtained in a previous study (see Appendix). With

respect to within-module assortativity, human brain networks exhibited an assor-

tative mixing pattern when weak edges were included, and this could indicate that

weaker edges were important to robustness relative to node failure in the human

brain, although they reduced the efficiency of communication. In contrast, strong

edges exhibited a disassortative mixing pattern. This result indicated that the im-

portant edges in modules were connected such that the average hop length was

reduced.

With respect to human brain networks, the network exhibited between-module

assortativity when both strong and weak edges were included. This indicated that

the human brain could communicate efficiently between modules. In contrast, mod-

ules were connected disassortatively when only strong edges were considered. This

could facilitate concurrent processing between two modules. In order to design in-

formation networks, different values for assortativity were used based on the edge

importance.

Information-Network Design with the Consideration of Assortativity

The effect of assortativity on the robustness and efficiency of interconnected net-

works was examined. The correlation of the assortativity with only the robustness

and efficiency of a network were demonstrated previously, and thus assortativity

could not be used to determine whether or not a given network was robust and effi-

cient. However, it was important to discuss the construction of a new network such

that it possessed good robustness and efficiency. Networks aimed at disseminating

information should be constructed such that they possess low assortativity. In con-

trast, low assortativity was desirable to construct networks that could spread data

quickly. Furthermore, when multiple networks were integrated, the results indicated

that the assortativity between networks could be adjusted to control the trade-off

between efficiency and load balancing.

For an example, an ad-hoc network composed of IoT devices was considered as an

application of the results of the present study. In this case, the entire network was

composed of ad-hoc networks that were in turn composed of homogenous devices.

The construction of an assortative network has various advantages in this case

and include high robustness and good robustness with respect to computer-virus

infections. This type of an assortative network also included disadvantages such as

high average hop length and a concentration of communication loads. However, the

average hop length of the network was not exceedingly high if the assortativity of

the network was not too high. Thus, an appropriate setting for the assortativity is

important.

A detailed method for constructing an assortative ad-hoc network is beyond the

scope of this study. However, this could be achieved by selecting node deployment

techniques and transmission-power control techniques. For example, nodes with

similar degrees are likely to be connected when more nodes are arranged near the
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center of the field. Constructing shortcut links between nodes with similar degrees

also contributed toward an assortative network and reflected cases in which nodes

used directional beams or long-range omnidirectional transmission.

The following advantages were observed when networks were connected with each

other assortatively. The connections between high-degree nodes reduced the average

hop length. Connections between low-degree nodes improved the robustness relative

to the failure of high-degree nodes. The type of network failures considered here

reflected the depletion of electric power that resulted from the concentration of

communication. Communication loads are distributed if networks are connected

disassortatively.

Conclusion and Future Work
In this study, the effect of assortativity on the robustness and efficiency of intercon-

nected networks was examined. With respect to the assortativity of single networks,

it was observed that an increase in assortativity caused (1) an increase in the hop

count, (2) high robustness of connectivity with respect to the failure of high-degree

nodes, (3) low robustness of connectivity with respect to random node failure, (4)

low efficiency for information diffusion, and (5) concentration of communication

loads on a few edges. Simultaneously, these results implied that single disassor-

tative networks involved opposite features. It was also observed that an increase

in assortativity reduced the shortcut links in networks. Therefore, an excessive in-

crease in assortativity harmed the network in terms of communication efficiency,

robustness, and communication load on network links.

With respect to the assortativity between networks, the following results were

observed: (1) a decrease in the hop count, (2) low robustness of connectivity with

respect to the failure of high-degree nodes, (3) normal robustness of connectivity

with respect to random node failure, (4) high efficiency with respect to information

diffusion, and (5) concentration of communication loads on a few edges.

Additionally, it was observed that the performance of assortativity between net-

works depended on the degree distribution of each network. Although, the results of

this study demonstrated the effect of assortativity on the robustness and efficiency

of interconnected networks, the results were only applicable to networks involving

the Barabási-Albert model and Erdös-Rényi random network model. The study

also investigated assortativity in the case of networks with nodes of uniform de-

gree. However, interconnected networks composed of networks with various degree

distributions were not investigated, and this will be the subject of a future study.

The study also discussed methods to construct a network that was robust and

efficient. In actual networks, various constraints affect the construction of assorta-

tive or disassortative networks. For example, with respect to ad-hoc networks of

wireless sensor devices, it is necessary to consider the battery life of sensors and

communication distances. This study did not propose a model to generate a net-

work topology, and thus, a future study will include the proposal of a generation

model for assortative or disassortative networks and the application in an actual

network.
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