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Abstract

Interconnected modular networks have been observed in many complex systems in biology,

society, science and technology, as well as the Internet. Among those types of complex systems,

the Internet is rapidly developing toward the next generation of the Internet of Things (IoT), which

accelerates the emergence of interconnected modular architectures even further. However, the best

way how to design such interconnected networks, which can meet various changes in environment

and service demands, remains an important issue that has not been addressed yet. When providing

Internet services, the Network of Networks (NoN) architecture should not spread malicious infor-

mation or fall into the state of cascading failures, while on the other hand, it should pass urgent and

important legitimate information to the network. In this thesis, we propose an NoN model inspired

by the nature of interconnected modular networks in the brain. Even though our proposed NoN

model can prevent malicious information from diffusing from inside of a subnetwork to another, it

cannot prevent diffusion starting from interconnecting links. Therefore, interconnecting links still

have potential to serve as sources of both legitimate and malicious information. In order to find a

strategy for changing the speed of information diffusion, we establish a method for configuring the

connectivity within and between subnetworks of the interconnected networks from the viewpoint

of nodal influence and its correlations, i.e., assortativity. To achieve this goal, we simulate infor-

mation diffusion and investigate the relationship between connectivity and diffusion speed. We

confirm through simulation experiments that our proposed model can diffuse information as fast

as a purely interconnected networks, which do not prevent any information on the interconnect-

ing links, when we configure highly influential nodes within subnetworks and interconnect them

assortatively. The results also show that our proposed model reduces the speed of information

diffusion to the nearly the slowest case of an independent subnetwork without any interconnecting

links, when we configure stretched subnetworks and disassortatively select non-influential nodes

as endpoints of interconnecting links.
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1 Introduction

Interconnected modular networks, often referred to as Network of Networks (NoN), have been

observed in many complex systems in biology, society, science and technology, for exampe the

Internet [2–7]. Among those types of complex systems, the Internet is rapidly developing toward

its next generation as the Internet of Things (IoT), which permits connecting various kinds of

interconnected devices in everyday life via the Internet protocol and is expected to accelerate the

emergence of modular architectures even further.

An example of such modular architectures in the future Internet is the functionally intercon-

nected networks in smart cities [8]. In the future IoT society, the number of devices connected to

the Internet and the type of services provided through the Internet are expected to show an explo-

sive and continuous increase. Smart cities automatically collect data from IoT devices and intel-

ligently integrate them for improving services for healthcare, surveillance, infrastructure, public

utilities, etc., resulting in the realization of smart homes, smart grid, and more. Simple examples

in smart homes are air conditioning systems that capture temperature, humidity, and air circulation

from IoT devices and provide best services responding to a variety of situations. Another example

is the collaboration of a number of motion sensors embedded in IoT devices, that will be useful

for health-care of elderly people or anomaly detection in security surveillance. In a more macro-

scale situation like smart grids, conventional standalone metering systems in basic infrastructures,

such as electricity, gas, or water will be integrated into a more intelligent and automated system

that can conserve energy resources. In these situations of smart cities, a processing halt in one

service module stops the functions in other interdependent modules. Adding to the situations we

can predict at the moment, the number of such automated and independent service systems over

the IoT infrastructure is expected to increase in future smart cities.

Although these new interconnected Internet services are currently appearing, the way to design

an NoN architecture that can meet various changes in environment (e.g. disasters or epidemics) and

service demands (e.g. availability, communication efficiency, or cost) remains an important issue

that has not been addressed yet. When providing Internet services, the NoN architecture should

not spread malicious information and fall into the state of cascade failures, while on the other hand

it should pass urgent and important legitimate information to the network. Regarding the design

of the NoN architecture, the procedure can be divided into two parts: controlling information flow
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and configuring topological connectivity.

Therefore, we first focus on systematic interdependent models of NoN for controlling infor-

mation flow, which is a highly discussed topic in the research field of modular interconnected

networks and has been previously discussed [1, 9]. A conventional and well-known NoN model

is based on a real-world cascading failure between power grid network and supervisory control

networks that took place in Italy, 2003 [9]. In this case, the heavy interdependence between the

two networks caused a small fraction of failures in one of the networks to increase to a large

scale cascade in both networks, resulting in a massive blackout in the major part of Italy. How-

ever, many biological systems have in fact high robustness against network failures. Morone et

al. [1] proposed another NoN model from the perspective of neuroscience, i.e., with respect to

networks in the brain. This NoN model, termed as Brain NoN hereafter, incorporates the charac-

teristics of activation rules of neural firings in brain networks that are well-known for their high

robustness [10, 11]. Because of the only local interdependencies of each network, node failures

in Brain NoN affect only nodes of the same network, in contrast to the power grid NoN model.

This robustness against cascade failures on interdependent Brain NoN can also be applied to the

interconnection of information networking services. Application of such activation rule from the

Brain NoN to services in information networking, however, has not been considered so far, and in

this thesis we reinterpret this rule so that it can match the situations we mentioned above.

Second, regarding topological connectivity, there are still two important questions to be an-

swered in order to satisfy the environmental changes and service demands in those interconnected

information networks: (i) how is the connectivity within modules? and (ii) how is the connec-

tivity between modules? In this thesis, we attempt to answer those questions from the viewpoint

of influential nodes and its correlations. Influential nodes in networks are defined as those nodes

that have a large influence on acceleration or suppression of diffusion, and they have been inves-

tigated in many complex systems [12–22] as the control of the influence from a tiny fraction of

nodes over the whole network. Node correlation [23,24] is formulated based on the correlation of

node degrees of two nodes and termed as assortativity. In this work, we expand the definition of

assortativity so as to measure the correlation of any kind of nodal influence.

The aim of our work is to design an NoN architecture for information networking services

that meets environmental changes and service demands of each service module, which can be

summarized as high robustness and communication efficiency. The ideal NoN architecture should
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prevent malicious information from spreading out, while it should diffuse important information as

quickly as possible. It should be noted that the term “robustness” is used from software viewpoint,

not hardware. For this aim, we first propose an NoN model inspired by the Brain NoN that

matches situations in information networking with service interdependence, which never leads

to cascading failures. Second, by taking the nodal influence and its correlation into account,

we propose a method to configure the intra- and inter-modular connectivities and evaluate the

performance of our proposed NoN. Evaluation results reveal that this NoN model can realize both

ideally fast and slow speed of information diffusion by changing its topological connectivity, and

thus it can achieve robustness and efficient communication, unlike the conventional NoN model

without control on interconnectivity.
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2 Related Work

In this section, we introduce existing NoN models [9, 25] and explain the mechanism of Brain

NoN [25]. Furthermore, we provide the definition of nodal influence and nodal assortativity,

which are basic ideas of our proposed method to design interconnected NoN with robustness and

communication efficiency.

2.1 Models of Network of Networks

With the emergence of the interconnected modular architecture in today’s networks, several NoN

models have been proposed [9,25] to reproduce this interdependency between interconnected net-

works. A prominent example in this field is the interconnected architecture of a power-grid net-

work and its supervising network [9]. The two networks mutually depend on each other and

cannot be operationed separately: the power-grid depends on the supervising network for its con-

trol, while the supervising network depends on the power-grid for electrical supply. Thus, a small

network failure can result in a cascading failure over a wide range of the network, as seen in a

real-world massive blackout in Italy, 2003 [26].

By contrast with this fragile NoN model, another NoN model, called Brain NoN, was proposed

to get inspiration from the modular architecture in the mammalian brain network [25]. The brain

network is composed of a number of modules, which have different functions respectively, and

intra- and inter-modular links play different roles in the processing. Intra-modular links simply

transfer information among nodes (i.e. neurons) within the same module, whereas inter-modular

links control the cooperation of different functions in the brain, e.g., vision, recognition, move-

ment, etc.. For these different roles, the former intra-modular links are always on standby while

the latter inter-modular links are activated only when the two endpoint nodes are activated. The

inter-modular dependency does not affect intra-modular connectivity. The modular structure of the

Brain NoN’s architecture and its local interdependency makes it more robust than the conventional

NoN model of the power grid with its network-wise interdependency, which causes cascading of

failures.

In the Brain NoN model, nodes can have three different states: active, input, and no-input.

Each node can be active only when its own and its neighbors’ input satisfy a certain condition.

These three states of node i are determined by two variables, input variable n and activation
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Figure 1: Activation rule in Brain NoN model [1]

variable σ, as follows:

⃝● : active (ni = 1, σi = 1)

● : input (ni = 1, σi = 0)

○ : no-input (ni = 0, σi = 0)

The patterns of each circle represent the node states corresponding to Figure 1, which shows an

example of state transition in a Network of 2 Networks (2-NoN) of the Brain NoN model. The

values for the input variable n are assumed as given and they sequentially determine the values

for the activation variables σ. When node i has no inter-modular links, the input signal n is just

interpreted as activation state, and the value of σ is defined as

σi = ni, for kouti = 0,

where kouti represents nodal out-degree for inter-modular links of node i.

Then, when node i has one inter-modular link, inputs on both node i and its counterpart node

j are required for activating node i, and the value of σ is defined as:

σi = ninj , for kouti = 1.

Moreover, in the generalized case that node i has multiple inter-modular links, i.e., when

kouti ≥ 2, node i can be active only when its own input and the input of at least one node in
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onother modules exists. The value of σ is defined as follows:

σi = ni

[
1−

∏
j∈F(i)

(1− nj)

]
, (1)

where F(i) denotes the set of nodes connected to node i via inter-modular links.

2.2 Identification of Influence in Networks

The existence of influential nodes and identifying them are important in many research domains

such as computer networks, social networks, infrastructure networks, etc. [12–22], since con-

trolling these nodes is key to the efficient operation of networks. Our study also focuses on the

vital nodes in order to control acceleration/suppression of information diffusion in interconnected

networks. For instance, strong information diffusers play a prominent role for efficient commu-

nication, whereas the existence of the strong diffusers could also causes a quick pandemic in the

case of viruses. Identification of a set of nodes that maximizes the influence over a network is

known as an NP-hard problem [13], and a great number of heuristic solutions have been proposed

so far [19, 20, 22].

We focus here on [18] which proposed the Collective Influence (CI) algorithm to identify in-

fluential nodes. CI of node i represents its influence on other nodes in the same network centered

around node i, and it can be regarded as a kind of centrality metric, like betweenness central-

ity, pagerank, or k-core. The CI algorithm showed superior performances for the identification

of influential nodes to other methods using conventional centrality measurements by finding the

smallest set of nodes that totally collapses the connectivity of the networks. In other words, re-

moval of nodes found by the CI algorithm is the fastest way to lead a network to a number of

micro-connected components. CI of node i is defined as follows:

CIl=0(i) = (ki − 1)ki

CIl≥1(i) = (ki − 1)
∑

j∈∂Ball(i,l)

(kj − 1)
(2)

where ki denotes the degree of node i, Ball(i, l) denotes the set of nodes within l hops centered

around node i, and ∂Ball(i, l) denotes the set of nodes on the edge of Ball(i, l), see Figure 2.

In other words, ∂Ball(i, l) denotes the set of nodes located exactly l hops away from node i. It

has been shown that the algorithm reaches its best performance with parameters l ∈ {3, 4} in a

network with 100,000 nodes [18].
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Figure 2: Description of Ball(i, l) and ∂Ball(i, l) in Collective Influence algorithm

2.3 Universal Assortativity

Assortativity, i.e., the correlation of nodal degrees, is one of the common characteristics for the

evaluation of complex networks proposed by Newman [23]. Furthermore, universal assortativity

coefficient was introduced to analyze the assortativity of any part of a network in [24], and it

was also used to define the assortativity between networks. In this thesis, we propose a method

to construct interconnected networks and change its interconnectivity based on the knowledge of

assortativity between networks.

Newman proposed measuring assortativity of a network with the assortativity coefficient [23].

The assortativity coefficient is calculated from the remaining degree distribution q(k) defined as

follows:

q(k) =
(k + 1)p(k + 1)∑

j jp(j)
, (3)

where p(k) denotes the probability that a randomly selected node has node degree k. The remain-

ing degree of a node in a path corresponds to the number of edges except for the vertex that was

arrived along. In other words, the remaining degree of a node in a path corresponds to the node’s

degree minus 1.

The assortativity coefficient r is defined as follows:

r =
1

σ2
q

(
E[(J − Uq)(K − Uq)]

)
, (4)

where, and J and K denote variables of the remaining degree, which have the same expected value
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Uq =
∑

j jq(j). The term σ2
q =

∑
l j

2q(j)−
(∑

k kq(k)
)2

denotes the variance of the remaining

degree distribution q(k). Positive and negative values of r indicate an assortative network and

a disassortative network, respectively. When r is near zero, nodes are randomly connected with

each other independent of their degrees. The range of feasible values of r is based on the degree

distribution.

Then, the universal assortativity coefficient ρl on a link l can be introduced given q(k). This

coefficient reflects the contribution of an individual link to the global assortativity coefficient r of

the entire network. The definition of the universal assortativity of link l is as follows:

ρl =
(j − Uq)(k − Uq)

Mσ2
q

, (5)

where j and k denote the remaining degrees of the two endpoints of link l, and M denotes the

number of edges in the whole network. When ρl > 0, the link is called an assortative link;

otherwise when ρl < 0, the link is called a disassortative link. A link with ρ = 0 has no correlation

13



3 Information Diffusion Model for Interconnected Networks

Although input to nodes and activation as the result of this input were considered in the Brain NoN

model [1], effects of node activation on its neighbor nodes have not been considered. We expand

the activation rule of the Brain NoN model to express the communication flow in interconnected

networks.

First, we change the interpretation of the node states in the Brain NoN model to states of nodal

interfaces (network devices) in information networks NoN, termed as IN NoN. The activation of

interconnecting links, referred to as control links in [1], is coupled with the activation of endpoint

nodes of the interconnecting links in the Brain NoN model. For instance, when an interconnecting

link is deactivated, both endpoint nodes are also deactivated. This is natural behavior for nodes

in the Brain NoN, i.e., neurons, because each neuron cannot control all the connected links sep-

arately. In information networks, however, even if one endpoint node is deactivated and thus the

interconnecting link is also deactivated, the other endpoint node should maintain its process within

the module of the node.

For this reason, the meaning of the states defined by σ in the Brain NoN are re-interpreted as

shown in Table. 1, where the activation of nodes is replaced with outer-interfaces. In this context,

the input variable n in the Brain NoN represents the input state of information. It should be noted

that inner-interfaces are always actively independent of the values of σ or n, so that every node

can send or receive information within its module even if outer-interfaces are deactivated. The

essential feature of IN NoN is that it never passes unexpected information from one module to

another, which is based on the robust feature of the Brain NoN model. Beside IN NoN, we also

define Pure NoN in Table 1, a basic model that does not consider the interdependence between

modules. IN NoN can control the diffusion speed depending on the connectivity as we show in

this thesis, whereas Pure NoN always diffuses at the maximum speed the topological connectivity

can produce. This implies that Pure NoN would occasionally not be preferable.

Table 1: Re-interpretation of variables of Brain NoN for information networking

variables Brain NoN Pure NoN IN NoN

σ = 0 node is inactive node (outer-interface) is active outer-interface is inactive

σ = 1 node is active node (outer-interface) is active outer-interface is active

14



Second, in order to express the flow of information, IN NoN also adopts the notion of time-

scale. In this model, the value of variables n and σ at time step t is given by the previous states at

time step t − 1. We then introduce a probability function pt for nodes to decide whether to have

input or not, depending on the states of neighbor nodes. Here, we suppose that each node can pass

information at probability δ through active outer- and inner-interfaces whenever they have inputs.

Therefore, the probability function pt(i) for node i is written as follows:

pt(i) = 1−
∏

j∈S(i)

(1− δnt−1
j )

∏
k∈F(i)

(1− δσt−1
i σt−1

k nt−1
k ), (6)

where S(i) denotes the set of neighbors of node i within the same module, and F(i) denotes the

set of neighbor nodes in the other modules. It should be noted that all inner-interfaces are active,

while outer-interfaces are active only when σ = 1. This equation states that when δ = 1, node

i can receive input at time step t if at least one of the neighbor nodes connected via active links

has input at the previous time step t− 1. An important point this equation expresses is that when

δ < 0, node i can behave differently depending on the number of input neighbor nodes: the more

input neighbors node i has, the more likely node i has input. This expression particularly matches

the emergence cases or epidemic cases in information networking, because connectivity of each

link is fragile in emergency cases like disasters, and it is not assured that information can reach

from a node to neighbor nodes in a short duration.

Then, activation state of node i is rewritten based on the rule in Eq. (1) of the Brain NoN

model as follows:

σt
i = nt

i

[
1−

∏
j∈F(i)

(1− nt
j)

]
. (7)

Eq. 7 shows that the inter-modular interface of node i becomes active only when node i and at

least one neighbor node via inter-modular link has input.

Regarding Pure NoN, the only point differing from IN NoN model is the activation of the outer-

interface. The outer-interface in Pure NoN is always active, therefore, the difference appears only

on the variable σ, and for Pure NoN it can simply be defined as follows:

σt
i = 1.
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4 Method for Configuring Connectivity of Interconnected Networks

4.1 Overview

The number of NoN architecture for the Internet services is increasing, and thus we proposed an

NoN model that prevents diffusion of malicious information in consideration of interconnectiv-

ity in Section 3. However, even though the behavior of information diffusion is tightly related

to the topological connectivity, the way to design topologies of interconnected networks that ac-

celerates/suppresses information diffusion has not been investigated so far, particularly under the

condition of NoN model like our proposal.

The best strategy for configuring topological connectivity of interconnected networks differs

according to the situations: the case of emergency where quick information diffusion is required,

and the case of infection where gaining time is important. Furthermore, it is virtually impossible

to calculate performance of all combinations of intra- and inter-modular connectivity. Therefore,

in our strategy, we configure intra-modular connectivity from the perspectives of node influence

identification mentioned in Section 2.2, since node influence and diffusion speed is closely related.

Regarding inter-modular connectivity, we propose a method to control the connectivity combining

the knowledge of node influence and its correlation.

4.2 Configuring Connectivity within Subnetworks

In order to increase/decrease the power of influential nodes in terms of information diffusion

speed in subnetworks, we expand the conventional preferential attachment method and generate

topologies with control parameter γ. Given a seed network, we successively add nodes with m

links and connect the links to existing nodes. The probability for each link of a new node to be

connected to an existing node i is defined as follows:

p(i) =
kγi∑
j k

γ
j

, (8)

where ki denotes the degree of node i. The process finishes when all N nodes are added to the

network. Note that ideally preference for Collective Influence CIl(i) mentioned in Section 2.2

should be used to for calculating the preference instead of node degree. In this case, however, we

start the generative method with small seed networks, while CIl(i) works for large scale networks,

and thus node degree is adopted here.
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Figure 3: Topologies of subnetworks with various connectivity

Figure 3 shows some examples how the topological shape of subnetworks changes with the pa-

rameter γ. When γ decreases, the topology tends to have uniform degree distribution with average

degree k̄ ≃ 2m, and variance of degree approaches zero, thus, also distributing node influence.

Whereas when γ increases, more highly influential nodes emerge. As a result, topologies show

node degree distribution following power-law p(k) ∼ k−η. This variability in node influence

distribution is the reason why we focused on the preferential attachment model.

4.3 Configuring Connectivity between Subnetworks

When generating an interconnecting link between modules that have n nodes respectively, there

are n2 patterns for choices of endpoint nodes of the interconnecting link. Moreover, if we consider

multiple interconnecting links, the number of possible pairs of endpoints extends to O(n2 log n).

On that condition, exploring the best configuration of interconnecting links costs enormous com-

putational cost by a brute force method, and it would be impossible in a large-scale network.

Therefore, for the purpose of getting hints on configuring the interconnectivity, we focus on prop-

erties of endpoint nodes. When adding an interconnecting link to an NoN, we consider two points:

(i) dependency on centrality of both endpoint nodes within each module, and (ii) dependency on

correlation of centrality of the two endpoint nodes. All the possible pairs of nodes with a certain

centrality value can be expressed by changing these two dependencies respectively, Based on this

17



idea, we investigate which nodes should be preferentially selected as endpoint nodes of intercon-

necting links for achieving an NoN topology with fast/slow information diffusion. In the following

part of this section, we formulate each dependency as Dependency Coefficient (DC). Controlling

the two DCs enables a variety of connectivity between modules.

4.3.1 Coefficient for Node Centrality

To begin with, we define the DC of the dependency on centrality itself as DCcnt. Here, we

consider the dependency on centrality of each endpoint of interconnecting links independently,

and then DCcnt is simply defined as sum of centrality of each endpoint nodes as follows:

DCcnt(h, i) = ch + ci, (9)

where ch denotes the centrality value of node h within its subnetwork. A high value represents

high centrality, and vice versa.

4.3.2 Coefficient for Correlation of Node Centrality

We measure the correlation of node centrality based on the ideas of universal assortativity men-

tioned in Section 2.3. The universal assortativity is introduced to measure the correlation of node

degree centrality between networks as follows.

ρl =
(j − Uq)(k − Uq)

Mσ2
q

, (5)

When calculating universal assortativity ρl of an inter-modular link l using Eq. (5), the ex-

pected value Uq =
∑

j jq(j) is based on the remaining degree. This is because the universal

assortativity just measures the contribution of a link to the entire network; although the univer-

sal assortativity can measure assortativity of an interconnecting link between networks, the two

networks are regarded as a system, and the interconnecting link is nothing more than a link in

a subnetwork. Therefore, the expected value of each endpoint of an interconnecting link must

follow the remaining degree of the entire network the link belongs to.

Here, we assume that interconnecting links are generated between two different subnetworks

independent of the connectivity within each subnetwork. The probability for nodes in each sub-

network to be selected as an endpoint node is the same. When we set p(c) as node centrality
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distribution of a subnetwork, the expected value of the centrality on an endpoint node of an in-

terconnecting link is also expressed as p(c). Therefore, we define another generalized universal

assortativity ρ′l of an interconnecting link l between network 1 and 2, modifying Eq. (5), as follows

ρ′l =

(
cl1 − Up1

)(
cl2 − Up1

)
σp1σp2

, (10)

where cl1 and cl2 denote node centrality of endpoint nodes in network 1 and 2, respectively. Up1

and Up2 denote the expected value of node centrality, defined as Up =
∑

j jp(j). σ2
p1 and σ2

p2

denote the variance of node centrality distribution p(c), given as follows σ2
p =

∑
l l

2p(l) −(∑
mmp(m)

)2
. We removed the variable M that represented the number of links in the en-

tire network, since this coefficient does not represent contribution of link l to the entire network.

Particularly, if networks 1 and 2 have the same node centrality distribution p(c), Eq. (10) can be

rewritten as follows:

ρ′l =

(
cl1 − Up

)(
cl2 − Up

)
σ2
p

. (11)

Finally, we define DCcor of the dependency on correlation of node centralities of the two

endpoint nodes h and i slightly changing the generalized universal assortativity as

DCcor(h, i) =

(
ch − Up

)(
ci − Up

)
σ2
p

. (12)

4.3.3 Coefficient for Varying Connectivity between Subnetworks

To configure the connectivity between networks, we consider two aspects as mentioned above:

(i) dependency on centrality of both endpoint nodes, and (ii) dependency on correlation of the

centrality of the two endpoint nodes. In other words, we combine DCcnt and DCcor into DC and

express various interconnectivity between networks. The definition of DC is as follows:

DC(h, i) =

[
DCcnt(h, i)−DCmin

cnt

DCcnt −DCmin
cnt

+ 1

]r cos θ

+

[
DCcor(h, i)−DCmin

cor

DCcor −DCmin
cor

+ 1

]r sin θ

, (13)

where the parameter θ varies in the range of [0, 2π], and the parameter r ∈ {0, 1}: r = 0 for

random connectivity, and r = 1 for various connectivity. Each dependency coefficient is divided

by its average so that the effect of the both coefficients becomes the same on average. We then

added 1 to both coefficients so that the minimum dependency coefficient among all pairs of nodes

always stays 1 as a standard value independent of θ.
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Fix r = 1, and when θ ∈ (0, π), interconnecting links become assortative; otherwise when

θ ∈ (π, 2π), the links become disassortative. When θ ∈ (3π/2, π/2), high centrality nodes tend

to be selected as endpoints of interconnecting links, while when θ ∈ (π/2, 3π/2), low centrality

nodes are preferred. These variability is shown in Figure 4. However, it should be noted that there

is a point we should be careful regarding the affinity between the preference toward assortativity

and centrality. As Figure 5 shows, that assortative connectivity and high or low centrality pairs

of endpoint nodes can coexist. Whereas, disassortative connectivity prefers to connect high and

low centrality nodes. Because of this conflict between disassortative preference and centrality

preference, the intra-modular connectivity would be delicate against a slight change of θ in the

range of θ ∈ (π, 2π).
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5 Simulation Evaluation

In this section, we evaluate the performance of NoN models and topologies. Our aim is to re-

veal the way to accelerate or suppress information diffusion for communication efficiency and

robustness by configuring the activation rules of NoN models and the topological connectivity.

Therefore, we simulate information diffusion on NoN with various settings and measure the re-

quired time to completely diffuse. The evaluation results are shown in following subsections.

5.1 Simulation Settings

We evaluate the performance of information diffusion NoN models changing their topological

connectivity. We use the IN NoN model as our proposal and the Pure NoN as a basic comparison.

Their behaviors are described in Section 3.

To conduct the evaluation, we configure the parameter settings on NoN models and topologies

according to Table 2. First, we generate subnetwork topologies with the preferential attachment

method varying the parameter γ within the range of γ ∈ [−50, 20]. γ is an important parameter

for changing the connectivity within a module. Although it is possible to take a wide range, higher

or lower values of γ do not changes the topologies with our settings, and thus we set the range as

it is shown in Table 2. Besides, we set N = 100 for the number of nodes in a subnetworks and

m = 2 for the number of edges. m is used in the generating process of preferential attachment:

every time a new node is added to an existing network component, m links are also added at the

same time. We also set kmax
in = 25 as the maximum nodal degree of intra-modular links, for it is

common to set a finite number of nodal degrees in information networking.

Then, we generate interconnecting links between pairs of generated subnetworks. In this the-

sis, we focus on interconnected networks between two subnetworks. At this time, we vary the

dependency on centrality and correlation of centrality to realize various patterns of interconnec-

tivity, changing the parameter θ. We only consider as positive r the case of r = 1, since we are not

interested in random topologies in this study and because the scale of cos θ and sin θ in Eq. (13)

does not affect the sequence of DC. θ can vary from 0 to 2π and this is another important pa-

rameter to change the connectivity between modules. Here we define E = 25 as the number of

interconnecting links, and kmax
out takes 1 or 3. This variability of kmax

out is also important for us to

know whether we should let only a few nodes have many interconnecting links or the links are
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Table 2: Parameter settings

Variables Values Description

δ 0.5 parameter for information passing probability

γ [-50,20] parameter for bias in preferential attachment

m 2 parameter for the number of links in preferential attachment

r 1 parameter for connectivity between networks

θ [0,2π] parameter for connectivity between networks

N 100 number of nodes in a subnetworks

E 25 number of inter-modular links

kmax
in 25 maximum nodal degree of intra-modular links

kmax
out {1,3} maximum nodal degree of inter-modular links

distributed among many nodes.

In this evaluation, we measure the required time steps for information to diffuse over the entire

NoN topology in order to determine the speed of the NoN information diffusion. As we described

in Section 3, the diffusion of information follows a probabilistic method, and the probability of an

input node to successfully pass the information during a time-step is defined as δ. This time, the

value of δ is not so much of interest to us, and we fix it as 0.5. The starting points of the diffusion

are (i) the highest loaded inter-modular links, and (ii) randomly selected inter-modular links, and

this setting is a key point in this evaluation. Throughout this study we assume that different

service network modules are cooperating as another service over the interconnectivity. In such

situations, not only actions within modules, but also those taking place between modules are the

very interest point in our research. It is also natural for interconnecting links and their endpoint

nodes to be a source of important information or epidemics, since they are concentring a large

amount of traffic. Although in its original behavior in the IN model nodes become empty after

passing their information, we designate the source inter-modular link, i.e., the source endpoint

nodes, to continuously send the information. This is because the diffusion is probabilistic and it is

possible for the diffusion to disappear from the network in the first few steps.
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5.2 Evaluation on Basic Properties of Interconnected Networks

Before we start evaluating the information diffusion efficiency, we investigate the basic properties

of subnetworks and interconnected networks, that will allow deeper understandings on evaluation

of interconnected networks in the following section.

5.2.1 Subnetworks

For the verification of the method proposed in Section 4.2 that can control the bias from the

existence and power of influential nodes, we generated subnetworks with N = 100, m = 2,

kmax
in = 25, and γ ∈ [−50, 20], and checked their influential nodes. We run simulations of infor-

mation diffusion in these subnetworks, so that we can compare the results later when evaluating

interconnected networks. Here, we set the node with maximum collective influence as the source

node of the diffusion.

Figure 6(a) shows maximum collective influence and required steps for information diffusion

in subnetworks. We can confirm that as the parameter γ increases, maximum collective influence

successively grows and the required steps decrease. This result implies that the power of influen-

tial nodes can be summarized and distributed by changing the parameter γ. However, there is a

limitation on the feasible values of maximum collective influence and required steps. Figure 6(b)

shows that when γ ≤ −30, the topology obtains almost completely uniform degree distribution,

while when γ = 10, the nodes are separated into two groups: nodes with degrees of kmax
in = 25

and other peripheral nodes. Further extending the parameter γ does not lead to a change in the per-

formances. From Figures 6(c) and 6(d) we can see a clear tendency that the speed of information

diffusion increases when γ or δ increase. From those results, we can conclude that the topology

construction method for subnetworks using preferential attachment we proposed in Section 4.2

certainly controls the power of influential nodes.

5.2.2 Interconnected Networks

We continue to evaluate the basic properties of interconnected networks constructed following the

method described in Section 4.3. In this evaluation, we use CI as a centrality measure. In the

construction of interconnected networks, we vary the value of the parameter θ and change the

connectivity between networks. Figure 7 shows how the connectivity changes when θ varies. The
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(a) Required steps for information diffusion and maxi-

mum Collective Influence
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(c) Information diffusion with δ = 0.5
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(d) Information diffusion with δ = 1.0

Figure 6: Properties of subnetworks with various γ

red lines in the figures indicate the average centrality, i.e., collective influence, of endpoints over

all interconnecting links in the interconnected network, and the blue lines indicate the average

correlation of the centrality over all the interconnecting links. In other words, red lines represent

the average value of DCcnt in Eq. (9) and blue lines represent DCcor in Eq. (12).

Although appearing complex at first sight, it turns out to follow a quite simple and fundamental

rule: when θ = 0 the collective influence is maximal, when θ = 0.5π assortativity is maximum,

when θ = π collective influence is minimal, and when θ = 1.5π assortativity is minimal. This is

because both centrality and correlation are ignored on these four points of θ, which is expressed

in Eq. (13). On the other hand, when θ differs from these four points, a delicate interdependency

between centrality and correlation arises and the values fluctuate.

Another notable point is that when γ increases, the range of centrality and correlation changes

24



differently, and the line shapes become angular. The increase in the range of centrality is due to

the emergence of influential nodes in topologies with larger γ. The shrink of the correlation range

is caused by the change in nodal centrality distribution: when the centrality distribution becomes

biased like the power-law shape, the feasible range of correlation becomes smaller. Besides, we

can also find that topologies with kmax
out = 1 have narrower range of centrality and correlation.

This is the result from the constraint of upper limit on nodal degree; the constraints prevents ideal

interconnectivity.

5.3 Evaluation Results

In this subsection, we investigate the performance of NoN models, IN NoN, and Pure NoN,

through the simulation of information diffusion.

5.3.1 Information Diffusion Starting from Influential Sources

First, we simulate information diffusion selecting influential edges, i.e., an interconnecting link

with influential nodes, as a source of the diffusion. We select such interconnecting links based

on the average collecting influence of both endpoint nodes. An interconnecting link with the

highest average is regarded as the most informative connection in the interconnected network and

its endpoints play the role of source nodes of an information diffusion. The results are average of

2,000 times repetition on each parameter settings.

In Figures 8 and 9, the required time steps for information to completely diffuse all over the

network is described. Solid lines are for IN NoN, and dotted lines are for Pure NoN. Shapes of

the lines in Figure 8 correspond to the blue lines in Figure 6(a), which describes the information

diffusion in a subnetwork. As γ increases, influential nodes gradually appear and they minimizes

the diameter of each subnetwork in the interconnected network. However, the behavior of lines

differ among each other, depending on the types of NoN models and the parameter θ.

The most striking point is that solid lines of IN NoN vary more extensively than the dotted lines

of Pure NoN. When γ is small, the diffusion speed greatly slows down, because each subnetwork

becomes uniformly connected as we confirmed in Section 5.2.1. In such stretched networks, the

endpoints of interconnecting links in each network are located far away. The activation rule for

outer-interfaces of the IN NoN model requires both endpoint nodes of an interconnecting link to
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(b) γ = −10
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(c) γ = 0

��

����

�����

�����

�����

�����

�����

�����

�����

�	���

�����

�� ��
� ��
� ��
� ��
� �� ��
� ��
� ��
� ��
� ��
��
������

��
������

��
������

��
������

��
������

�
�����

�
������

�
������

�
������

�
������

�
������

�
�
�
��
�
�

��
�
�
	�
�

�	
�

�
�
�
��
�
�

��

��
�

�
	�

�

�������������	�
�����

��
�����
�	
���

��
�����
�	
���

��
�����
�	
���

��
�����
�	
���

(d) γ = 1
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(f) γ = 10

Figure 7: Centrality and correlation of interconnecting links
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have input when the outer-interfaces needs to be activated. Therefore, the outer-interfaces tend to

be turned off in interconnection composed of such stretched subnetworks.

On the other hand, IN NoN achieves almost the same speed of information diffusion with Pure

NoN. This nature can be seen when γ ≥ 2 and θ ∈ (−0.3π, 0.8π), corresponding to Figure 7(f). In

this range of parameters, the source interconnecting link is assumed to connect highest centrality

nodes in each subnetwork according to Figure 7. Therefore, the strong diffusion sources enabled

quick information diffusion for IN NoN.

When comparing kmax
out = 1 and kmax

out = 3, the diffusion speed of Pure NoN with kmax
out = 3

is slightly slower than that of kmax
out = 1. This might simply suggest that interconnecting links had

better be distributed rather than concentrated on a certain set of nodes.

5.3.2 Information Diffusion Starting from Random Sources

Subsequently , we simulated information diffusion which starts from randomly selected intercon-

necting links and measured the required steps for complete diffusion. Figure 10 shows the required

steps for information diffusion against the parameter γ. From this figure, we can find that the range

of possible values of the required steps is slightly higher than the one in Figure 8. This is because

in this simulation we choose the interconnecting links as diffusion source at random, and thus the

centrality of the endpoint nodes becomes lower on average.

Another conspicuous point can be found in Fiugure 11. The results in the previous subsub-

section showed the interconnected networks can reduce the diffusion time the best when θ ∈

(−0.3π, 0.8π) and whatever the value of γ is. However, in this case, the range of parameters

that enables to minimize the diffusion speed becomes narrower as the parameter γ decreases. For

example, topologies with γ = 10 can minimize the diffusion speed when θ ∈ (−0.3π, 0.8π),

which is the same as the results in the previous subsubsection. Whereas topologies with γ = −30

can minimize the speed only within the range of θ ∈ (−0.2π, 0.2π). This result reflects the fact

that the interconnecting links can fundamentally have endpoint nodes with high centrality around

the value of θ = 0. As the θ shifts farther away from θ = 0, the dependency on the correlation

becomes larger, and thus lower centrality nodes tend to be selected as endpoint nodes. In the

simulation in the previous subsubsection, we preferentially chose interconnecting links with high

centrality nodes as diffusion sources, and that made the range of θ that can minimize the diffusion

speed wider.
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(a) kmax
out = 1
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(b) kmax
out = 3

Figure 8: Required steps for complete diffusion with changes in connectivity within modules
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(a) kmax
out = 1
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Figure 9: Required steps for complete diffusion with changes in connectivity between modules
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Figure 10: Required steps for complete diffusion with changes in connectivity within modules
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Figure 11: Required steps for complete diffusion with changes in connectivity between modules
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5.4 Discussion

In the activation rule in IN NoN, outer-interfaces of each node are activated only when at least one

of its outer-neighbors has input. Throughout our evaluations, we confirm that this activation rule of

outer-interfaces enables to modify the speed of information diffusion, in contrast to Pure NoN. The

speed of information diffusion also depends on the topological connectivity within and between

network modules. When we prefer to maximize the speed of information diffusion, the desired

interconnected network topology can be generated by setting γ > 0 and θ ∈ (−0.2π, 0.2π),

regardless if the diffusion starts from heavily used links or from a randomly selected ones. At

this time, the term γ realizes a subnetwork with a set of extremely high centrality nodes, while

the term θ generates interconnecting links between those high centrality nodes as endpoints. The

speed of information diffusion could be maximized to reach almost the same as that of Pure NoN.

However, when we set γ < −30 and θ ∈ (1.0π, 1.5π), each subnetwork becomes homogeneously

stretched and interconnecting links connect nodes with low centrality and low correlation.

For the application to information networking services, the strong point of IN NoN is that it

can react to situations where malicious or unacceptable information cannot path through the inter-

connecting links. Even if the information breaks out over the interconnecting links, configuration

of connectivity within and between subnetworks can reduce the speed of the information diffu-

sion. On the other hand, even when some important and urgent information has to travel around

the interconnected networks quickly, starting the information diffusion from high centrality links

can accelerate the information diffusion as fast as Pure NoN, which does not consider the pre-

vention of malicious information and thus proposes the fastest information diffusion for the given

topological connectivity. Ideally, if it is possible to manually reconfigure the connectivity for each

situation, the best performance would be achieved by the IN NoN. However, It is conceivable that

in real-life situations both the connectivity within and between subnetworks cannot change at the

same time, depending on the specifics of the infrastructure or application services. Even in that

case, our results can suggest a better way to configure the connectivity given a fixed connectivity

within or between subnetworks.

In this thesis, we focused on the evaluation of information diffusion starting from intercon-

necting links between subnetworks. One of the reasons is that IN NoN accepts only diffusion

starting from the interconnecting links. Also these links play important roles and undergo heavy
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processing load, and thus they are suitable as sources of information diffusion. However, we did

not evaluate the performance when the diffusion starts from a different node within a subnetwork,

or when interconnected networks are composed of three or more subnetworks. As we mentioned

above, the current IN NoN model never transmits information from one subnetwork to another,

unless the other subnetwork has independent traffic by some other sources and nodes are par-

tially activated. Therefore, modification of IN NoN might be of interest for further simulation of

information diffusion.
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6 Conclusion and Future Work

In this thesis, we proposed an NoN model called IN NoN model inspired by the Brain NoN model,

which reproduces the activation rule from neurons of different modules that are connected via in-

terconnecting control links. We construct IN NoN model by reinterpreting the activation of the

activation of nodes in the Brain NoN as that of interfaces. In IN NoN, we also modeled the

propagation of information based on the Brain NoN. We then investigated the configuration of

connectivity within and between subnetworks, so as to change the speed of information diffusion.

Regarding the connectivity within modules, we configured the connectivity so that node influ-

ence over information diffusion can be accelerated or suppressed. For the connectivity between

modules, we considered the properties of endpoint nodes of interconnecting links: centrality of

endpoint nodes and correlation of the centrality.

As a basic characteristic, IN NoN model does not allow malicious or unaccepted information

to pass through interconnecting links, and prevents the entire interconnected networks from a pan-

demic. However, it is conceivable that such bad information occurs on interconnecting links, since

these interconnecting links play an important role on the information transmission and undergo

heavy information load. Otherwise, in case of emergency when we want to pass the information

quickly, we can also start the diffusion from the interconnecting links. Therefore, we simulated

information diffusion starting from these interconnecting links and measured required steps for

information to completely spread over interconnected networks, changing connectivity within and

between subnetworks.

The results showed that IN NoN model can quickly diffuse information when we design high

centrality nodes within each subnetwork and connect those nodes. At this time, the diffusion

speed was as fast as Pure NoN, which does not consider the prevention of information diffusion

between modules and thus proposes maximum diffusion speed with a given topology. We also

found that even if malicious information spreads out from interconnecting links, we can reduce

the diffusion speed to as slow as the slowest case of within the independent subnetwork, when we

configure stretched subnetworks and disassortatively select non-influential nodes as endpoints of

interconnecting links. That is, we could configure the connectivity so that interconnecting links

never accelerate information diffusion.

In the evaluation, we focused on the information diffusion starting from interconnecting links
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and did not investigate the diffusion starting from a node within a subnetwork, or interconnected

networks composed of three or more subnetworks. The current IN NoN model never transmits

information from a subnetwork to another, unless the other subnetwork activates its nodes due

to independent traffic flows. Even though preventing malicious diffusion is a strong point of IN

NoN model, it would occasionally be required to pass one information to other interconnected

subnetworks. Therefore, our future work would be to modify the behavior IN NoN model to

match such situations.
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