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Self-organization has potential for high scalability, adaptability, flexibility, and robustness, which are vital
features for realizing future networks. Convergence of self-organizing control, however, is slow in some
practical applications compared to control with conventional deterministic systems using global information.
It is therefore important to facilitate convergence of self-organizing controls. In controlled self-organization,
which introduces an external controller into self-organizing systems, the network is controlled to guide
systems to a desired state. Although existing controlled self-organization schemes could achieve this feature,
convergence speed for reaching an optimal or semioptimal solution is still a challenging task. We perform
potential-based self-organizing routing and propose an optimal feedback method using a reduced-order
model for faster convergence at low cost. Simulation results show that the proposed mechanism improves
the convergence speed of potential-field construction (i.e., route construction) by at most 22.6 times with low
computational and communication cost.
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1. INTRODUCTION

Self-organization, where components behave individually and autonomously, is a
natural phenomenon in natural distributed systems [Pintea 2014; Yang et al. 2013]. In
a self-organizing system, each component follows simple rules using locally available
information. Through direct or indirect interactions among components, a global
behavior or pattern emerges on a macroscopic level without a central control entity. In
a self-organizing system, up-to-date information regarding the entire system or many
other components is unnecessary, which considerably reduces computational cost
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and communication overhead for collecting global information. This localized control
leads to a capability of handling local failures and small environmental changes by
interaction of local components. Thus, self-organizing systems are expected to auto-
matically recover from failures and adapt to environmental changes, without involving
centralized control. These are the reasons a variety of self-organization-based models
have been applied to information networking, such as routing, synchronization, and
task assignment [Zhang et al. 2013; Zheng and Sicker 2013]. In future large-scale,
complex networks, we can expect features such as scalability, adaptability, and
robustness to be improved to an extent not possible by conventional network control
methods [Balasubramaniam et al. 2011].

Although self-organization control without global knowledge of the current network
state has various benefits, such control has critical disadvantages that complicate
practical use in industrial and business systems [Dressler 2008]. It may take a long
time for global patterns to emerge in large-scale systems, because they appear as a
consequence of interactions between autonomous components. This property also leads
to slow adaptation to large environmental changes, which is difficult to solve solely by
local interaction in self-organizing systems. In addition, self-organizing systems that
use only local information sometimes fall into local optima. On the other hand, in
conventional centralized systems, global information can reach an optimal solution,
although the required computational cost to do so often leads to unrealistic solutions.

Such disadvantages raised from real applications brought about the idea of con-
trolled (guided, managed) self-organization, where the self-organizing system is con-
trolled through some constraints [Branke et al. 2006; Schmeck et al. 2010; Prokopenko
2014]. For example, Arakawa et al. and Kominami et al. use the concept of controlled
self-organization, where an external observer/controller guides self-organizing optical
network [Arakawa et al. 2011] and sensor network [Kominami et al. 2013] systems
through a feedback mechanism that leads them to a desired state. The self-organizing
system can then be controlled through fully observed information. However, enhanc-
ing the convergence speed to reach an optimal or semioptimal solution remains as an
outstanding task.

We previously introduced an external controller with an optimal feedback mecha-
nism to self-organizing systems in Kuze et al. [2014]. The external controller collects
information regarding the network, such as node states and network topology, via a
partial set of nodes directly monitored by the controller, and estimates system dynam-
ics using a mathematical model that describes the network dynamics, then determines
optimal control inputs based on robust control theory [Zhou et al. 1995] for facilitat-
ing the convergence. Optimal feedback mechanisms for controlling dynamical systems
have been researched for many years in the field of control theory [Kirk 2012]. A con-
troller monitors a system and provides an optimal control feedback that minimizes the
cost function [Kirk 2012] based on a mathematical model of the system. Note that there
are various errors (e.g., modeling errors) and unexpected disturbances, and thus the
optimal control feedback is not necessarily optimal at any time in real systems. Simula-
tion results in Kuze et al. [2014] showed that the mechanism improves the convergence
speed of self-organization; however, in large-scale networks especially, it is generally
difficult for the controller to collect detailed network information and to estimate the
network dynamics [Mulvey et al. 1995], because doing so requires considerable costs
and, even worse, loses the advantage of scalability of self-organizing systems.

The contribution of this article is to converge self-organizing network systems with
lightweight cost while retaining a high performance (e.g., high convergence and adapt-
ability in our proposal) of robust control. To that end, we first regulate the area in
which the external controller collects node states to reduce the cost for collecting infor-
mation (Figure 1). If the controller collects all node states, the communication overhead
is extremely large and traffic congestion would occur. Therefore, we limit the area from
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Fig. 1. Advantages of optimal feedback with model reduction (N+ is the set of all nonzero natural numbers).

which the controller can collect information to nodes that can be reached within several
hops from the monitored nodes. The controller can estimate the states of all nodes from
only a part of them given the network topology, because the state of each node is deter-
mined in accordance with local interactions based on prescribed rules [Zhou et al. 1995].
In other words, the controller acquires network information with lower communication
overhead and then calculates optimal feedback inputs. In our scheme, a controller has
an internal model estimating the actual network system. The order (Ndim) of that model
is proportional to that of the actual network model, namely the number of nodes. Note
that we need O(Ndim

2) for controller state updates at each time instance, as well as
O(Ndim

3) computation for controller redesign when the network topology changes. The
computational cost is thus extremely large in large-scale networks when we use the
original model, whose order is proportional to the number of nodes. We therefore reduce
the order of the network model (consequently that of Ndim) to decrease the computa-
tional cost via a model reduction technique [Antoulas et al. 2006]. As shown in Figure 1,
model reduction refers to reducing the number of state variables in dynamical systems
while retaining suitable input/output characteristics. Note that there is a trade-off be-
tween the optimization of control input and the number of state variables (i.e., between
the convergence speed and the computational cost). Intuitively, a reduced-order model
leads to the loss of the original model while decreasing the computational cost. This
trade-off relation requires us to further examine the number h of state variables of the
reduced-order model.

The effectiveness of our proposal is evaluated through computer simulation studies
where we consider potential-based routing—a self-organizing routing mechanism for
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wireless sensor networks—with optimal feedback, and we evaluate the convergence
speed after environmental changes. Wireless sensor networks represent one suitable
application of our proposal. This is because our proposal requires the expensive compu-
tation of control input for an external powerful controller and not for each component
of a self-organizing system. Therefore, the performance of the whole system can be im-
proved even though each component in the systems does not need much computational
power and energy consumption. Optimality of our feedback mechanism is analyti-
cally guaranteed in synchronous systems but not in asynchronous systems. Then we
first assume a wireless sensor network where nodes behave asynchronously and the
controller can observe the network state via the monitored nodes experiencing com-
munication delay. To evaluate the robustness of our proposal against information loss
in the controller, we next simulate an environment where several nodes fail and the
controller cannot immediately detect node failures. Through these evaluations, we will
show that optimal feedback using a reduced-order model can enhance the convergence
speed of self-organizing systems at fairly low cost, even if the network is large. More-
over, optimal feedback does not have a negative impact on the robustness, which is
a notable property of self-organizing systems. Note that potential-based routing for
wireless sensor networks is just an example of application for our proposal.

The remainder of this article is organized as follows. First, we briefly explain
potential-based routing in Section 2. We propose and explain potential-based rout-
ing with optimal feedback in Section 3 and then explain a reduced-order model with
which the controller estimates the network dynamics in Section 4. We then show fast
adaptation to an environmental change of the proposed method through simulation
and give a discussion of our proposal in Section 5. Finally, in Section 6, we present our
conclusions and suggest areas for future work.

2. POTENTIAL-BASED ROUTING

Potential-based routing is a self-organizing routing mechanism that is active in the
fields of wireless sensor networks, mobile ad hoc networks, and information-centric
networks [Kominami et al. 2013; Basu et al. 2003; Jung et al. 2009; Wu et al. 2008;
Sheikhattar and Kalantari 2013; Eum et al. 2014; Lee et al. 2014]. Here we assume
that potential-based routing is used in wireless sensor networks. In potential-based
routing, each node has a scalar value called its potential, and data packets are for-
warded to a neighbor whose potential is smaller than that of the forwarder. In wireless
sensor networks, data packets are generally sent to a sink node, and the fewer the
hops from the sink node a node is, the lower the potential value assigned to the node.
The simple forwarding rule “forward data to a neighboring node with lower potential”
can therefore result in data packet collection toward sink nodes, as illustrated in Fig-
ure 2. Potential-based routing has high scalability because each node uses only local
information for calculating potentials and a local rule for forwarding data. Further-
more, it can achieve load balancing and consequently network lifetime improvement
by calculating potentials using information such as flow rates, queue lengths, or re-
maining energy [Wu et al. 2008]. In Sections 2.1 and 2.2, we describe a potential field
construction method and show how to select a next hop node using the gradient of the
field.

2.1. Potential Field Construction

Sheikhattar and Kalantari [2013] focused on the convergence of potential-based rout-
ing and achieved enhancement of the potential convergence speed. They proposed a
potential calculation method based not only on current potentials but also on last
potentials to accelerate potential convergence. Node n’s potential at time t, θn(t), is
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Fig. 2. Potential-based routing.

calculated by Equation (1):

θn(t + 1) = (α + 1)θn(t) − αθn(t − 1)

+ βσn

⎛
⎝ ∑

k∈Nb(n)

{θk(t) − θn(t)} + fn(t)

⎞
⎠ ,

(1)

where Nb(n) is the set of neighbors of node n and α is a parameter that determines the
weights of the current and the last potential values when calculating the next potential.
Larger α means that the weight of the last potential value is larger, and therefore the
system becomes less subject to current noise, although the convergence speed is slower.
Parameter β determines the influence amount of neighbor node potentials. σn is defined
as σ0/|Nb(n)| (σ0 is a parameter), and fn(t) corresponds to the flow rate of node nat time t.
If fn(t) is a positive value, it means the data generation rate of node n, whereas if fn(t)
is negative, it means the rate of data packets delivered to node n. For sink node n,
fn(t) corresponds to targeted flow rates that are given by the network manager. If the
flow conservation constraint is upheld—that is,

∑
n∈{1,..., N} fn(t) = 0—a potential field

is constructed so that actual rates of data packets delivered to nodes satisfy given
flow rates (i.e., all gradients, which are potential differences between next hop nodes,
correspond to the appropriate flow rates between next hop nodes).

The convergence speed based on Equation (1) is faster than simple Jacobi iterations
(e.g., our previous work [Kominami et al. 2013]) but still takes a long time to converge
due to its calculation being based only on local information (see Section 5 for an example
convergence). In both cases, potentials of nodes converge as a result of the iterative
behavior (i.e., potential updates of nodes), and therefore the convergence speed is faster
with a shorter interval of potential updates. Instead of relying on only local interactions
among nodes, we introduce into potential-based routing an external controller that
observes network states (potential values), estimates its future state, and regulates
potentials of a partial set of nodes for faster convergence.

2.2. Routing

If a node has a data packet, it forwards the data packet according to the potential
values of itself and its neighbors. In our potential-based routing, when a sensor node
generates or receives a data packet, it probabilistically selects a next node that is
assigned a lower potential value than itself, and the packet eventually arrives at a sink
node. Specifically, a next-hop node is selected proportionally with potential values—
that is, the probability pi→ j(t) that sensor node i selects a neighbor node j as the
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Fig. 3. Potential-based routing with a controller’s feedback, where an external controller collects potential
values from observable nodes and introduces control inputs to controllable nodes periodically.

next-hop node for a data packet at time t is given by

pi→ j(t) =
{

θi (t)−θ j (t)∑
k∈Nl (i){θi (t)−θk(t)} , if j ∈ Nl(i)

0, otherwise
,

where Nl(i) is the set of node i’s neighbor nodes that are assigned lower potential values
than node i. If node i has no neighbor node with lower potential (i.e., |Nl(i)| = 0), the
data packet is not sent to any node and is dropped, but such cases generally happen
only in transient cases, such as node failures or changes of potential values at the sink
node.

3. POTENTIAL-BASED ROUTING WITH OPTIMAL FEEDBACK

3.1. Overview

In this section, we describe a model of network dynamics and explain our optimal
control scheme. A controller monitors network information, in particular the potential
values of a partial set of nodes, which we call observable nodes. The controller then re-
turns suitable control inputs to a partial set of nodes, which we call controllable nodes,
for accelerating convergence of the potential distribution toward the target potential
distribution. In this article, target potentials are estimates of converged potential val-
ues derived from current information, specified in Section 3.2. We assume that the
controller and sink nodes are power supplied so that these sink nodes can have di-
rect reliable connections to the controller at all times. Therefore, in our proposal, the
controller monitors network information and provides control inputs via them, as il-
lustrated in Figure 3.

In our proposal, the area over which the controller monitors potential values is lim-
ited to several hops from sink nodes for reducing communication overhead. Of course,
the controller cannot directly get node potentials outside the area, but it can estimate
them by utilizing the potential dynamics model, which describes potential changes
based on local node interactions. When receiving control inputs from the controller,
sink nodes diffuse the information, changing potential amounts over the entire net-
work through local interactions of sensor nodes (Equation (2) in Section 3.2). This
estimation of the controller requires high computational cost, and the reduced-order
model can reduce this computational cost for estimating potential values of nonobserv-
able nodes, as will be explained in Section 4. Note that information of the network
topology is needed for designing a controller, as is flow rates of nodes for calculating
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target potential values. Such information is difficult to estimate but is reported to
the controller only when it changes, as we assume that changing intervals of the net-
work topology and flow rates are lower than the convergence time of potentials. This
assumption is feasible, because the potential convergence is generally achieved as a re-
sult of the iterative behavior (nodes’ potential updates and the controller’s feedback) in
potential-based routing with an optimal feedback, so frequencies of potential updates
and controls need to be much higher than those of changes in the network topology and
flow rates.

3.2. Network Dynamics

Let the dynamics of potentials be given by a deterministic discrete-time model. In our
proposal, we represent fn(t) = f̄n + dn(t), where f̄n is the stationary flow rate and dn is
nonstationary fluctuation (white Gaussian noise) at node n. Then, as in Sheikhattar
and Kalantari [2013], each potential is updated by

θn(t + 1) = (α + 1)θn(t) − αθn(t − 1)

+ βσn

⎛
⎝ ∑

k∈Nb(n)

{θk(t) − θn(t)} + f̄n + dn(t)

⎞
⎠ + ηn(t),

(2)

where ηn represents feedback input received from the controller. If node n does not
receive any feedback input directly from the controller, then ηn(t) = 0. In our pro-
posal, the controller collects and estimates the node potentials and then provides to
the network feedback inputs u(t) = [η1(t) η2(t) · · · ηNctrl (t)]

T (where Nctrl denotes the
number of nodes that receive feedback from the controller), as described later. Because
of feedback inputs, we consider that node potentials can converge faster than in the
non–control scheme (Equation (1)) where each node updates its potential based only
on local interactions with neighbors. In Sheikhattar and Kalantari [2013], σn is set
to σ0/|Nb(n)|, but this value may lead to oscillation of potentials in some situations
since Equation (9) (which will be shown later) has no solution. In this article, we there-
fore set σn to the constant value σ for all n (n ∈ {1, 2, . . . , N}). Now we define θ i(t) as
[θi(t) θi(t + 1)], and Equation (2) is rewritten by

θn(t + 1) = A1θn(t) + A0

⎛
⎝ ∑

k∈Nb(n)

{θk(t) − θn(t)} + M
(

f̄n + dn(t)
)⎞⎠ + Mηn(t), (3)

where

A1 =
[

0 1
−α α + 1

]
, A0 =

[
0 0
0 βσ

]
, M =

[
0
1

]
.

In our proposal, the controller estimates potentials of unobservable nodes and future
potentials and then determines control inputs with H∞ optimization (described later),
allowing us to describe the system dynamics in the form of the state space model. We
first formulate the potential dynamics of all nodes. For example, we consider the case
of a network of four nodes, as shown in Figure 4. From Equation (3), the potential
dynamics of node 1 is given by

θ1(t + 1) = A1θ1(t) + A0

⎛
⎝ ∑

k∈{2,3}
{θk(t) − θ1(t)} + M

(
f̄1 + d1(t)

)⎞⎠ . (4)
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Fig. 4. Example of a network with three sensor nodes and a sink node. f̄1, f̄2, f̄3, and f̄4 are stationary flow
rates for each node. η3 is the control input to node 3 from the controller (the other nodes are not directly
controlled by the controller, and η1, η2, and η4 is 0 at all times). d1, d2, d3 and d4 are nonstationary fluctuations
at each node, although they are not described in this figure.

Similarly to Equation (4), the potential dynamics of nodes 2, 3, and 4 are given,
respectively, by

θ2(t + 1) = A1θ2(t) + A0

⎛
⎝ ∑

k∈{1,3}
{θk(t) − θ2(t)} + M

(
f̄2 + d2(t)

)⎞⎠ , (5)

θ3(t + 1) = A1θ3(t) + A0

⎛
⎝ ∑

k∈{1,2,4}
{θk(t) − θ3(t)} + M

(
f̄3 + d3(t)

)⎞⎠ + Mη3(t), (6)

θ4(t + 1) = A1θ4(t) + A0

⎛
⎝∑

k∈{3}
{θk(t) − θ4(t)} + M

(
f̄4 + d4(t)

)⎞⎠ . (7)

From Equations (4) through (7), the potential dynamics of the network shown in
Figure 4 is given by⎡

⎢⎣
θ1(t + 1)
θ2(t + 1)
θ3(t + 1)
θ4(t + 1)

⎤
⎥⎦ =

⎛
⎜⎝I4×4 ⊗ A1 −

⎡
⎢⎣

2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1

⎤
⎥⎦ ⊗ A0

⎞
⎟⎠

⎡
⎢⎣

θ1(t)
θ2(t)
θ3(t)
θ4(t)

⎤
⎥⎦

+

⎛
⎜⎝βσ

⎛
⎜⎝

⎡
⎢⎣

f1
f2
f3
f4

⎤
⎥⎦ +

⎡
⎢⎣

d1
d2
d3
d4

⎤
⎥⎦

⎞
⎟⎠ +

⎡
⎢⎣

0
0
η3
0

⎤
⎥⎦

⎞
⎟⎠ ⊗ M, (8)

where IN×N is the identity matrix of N×N. The matrix

⎡
⎢⎣

2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1

⎤
⎥⎦ corresponds

to the graph Laplacian, which indicates the network topology. We refer to the graph
Laplacian as � in this article. The element lij of graph Laplacian � is given by

lij =
{ deg(i), if i = j

−1, if i �= j ∧ node i is adjacent to node j
0, otherwise

,

where deg(i) corresponds to the degree of node i. The operation ⊗ that is called the
Kronecker product is an operation on two matrices. Given an m × n matrix J and a
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p × q matrix K, the Kronecker product J ⊗ K is given by

J ⊗ K =
[ j11 K · · · j1nK

: :
jm1 K · · · jmnK

]
.

Then we define a vector �(t) that shows potential values for all nodes as

�(t) := [
θ1(t) θ2(t) · · · θ N(t)

]T
.

As in Equation (8), the potential dynamics of all nodes is described with �(t) as

�(t + 1) = A�(t) + (βσ (F + D(t)) + Eu(t)) ⊗ M,

where

A = IN×N ⊗ A1 − � ⊗ A0.

The flow rate vector F is defined as [ f̄1 · · · f̄N]T , and the fluctuation rate vector D(t) is
defined as [d1(t) · · · dN(t)]T . Note that the (N×Nctrl)-matrix E specifies the controllable
node—that is, the element eij ∈ {0, 1} of E is 1 if and only if node i receives the j-th
element of u(t) as control input ηi(t) (in the case with the network shown in Figure 4, E
is set to [0 0 1 0]T ). With the larger number of controllable nodes (i.e., with denser E),
the influence of the optimal control is larger, so the convergence speed is faster. On the
contrary, significant properties originating from self-organization such as scalability
and adaptability could be lost with too many controllable nodes.

Under these dynamics, the target potential distribution is given by a solution of

(I2N×2N − A)�̄ = βσ F ⊗ M. (9)

Next we define X(t) as the regulation error �̄ − �(t), which shows the differences
between the convergence values and the current values of potentials for each node.
The potential dynamics can be rewritten using X(t) in the form of the state space
representation by Equation (10), with which the controller can estimate potentials of
unobservable nodes and future potentials:

X(t + 1) = AX(t) + B1d(t) + B2u(t). (10)

Here the Nctrl-dim vector u (respectively, N-dim vector d) concatenates ηn(t) for con-
trollable nodes (respectively, dn). B1 and B2 characterize the effect of noises and control
inputs, respectively, given by

B1 = B′
1 ⊗

[
0

βσ

]
, B2 = E ⊗

[
0 0
0 1

]
.

B′
1 characterizes the variance/co-variance of the noise distribution injected at each

node. For simplicity, we choose B′
1 = IN×N in this work, which implies that each node

has independent noise with unit variance. Note that the dynamics (Equation (10))
depend on the graph Laplacian � but not on the flow rate f̄ .

3.3. Optimal Controller Design

Next we explain the controller dynamics. We consider the case in which the controller
can observe

Y (t) = (HT ⊗ I2×2)X(t)

= (HT ⊗ I2×2)(�̄ − �(t)), (11)

where Y (t) is a 2Nobs-dim vector, with Nobs being the number of observable nodes,
and an (N × Nobs) matrix H determines observable nodes in the same manner as E
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(if the controller can only observe node 3 in the network shown in Figure 4, H is
set to [0 0 1 0]T ). Note that the controller can estimate the potential values of all
nodes based on the information of only a partial set of nodes, and therefore not all
elements of H need to be set to 1. If more nodes are monitored by the controller, it can
estimate potential values of all nodes more precisely while the communication overhead
for collecting information of observable nodes becomes much larger. The future node
potentials can be estimated by Equation (10) using observable information expressed
with Equation (11). Considering the future potentials, the controller calculates a u(t),
which accelerates the convergence speed of potentials.

Then the control input is calculated according to

X̃(t + 1) = Ac X̃(t) + BcY (t), (12)

u(t) = Cc X̃(t) + DcY (t), (13)

where 2N-dim vector X̃ is an internal model for the controller and the controller esti-
mates potentials of all nodes with the model. Ac, Bc, Cc, and Dc are design parameters.

Concerning the performance criteria, let us define

φ(k) = X(k)T X(k) + ru(k)T u(k)

as the stage cost, where r specifies the trade-off between convergence speed and input
energy. With a larger r, control inputs become smaller and the stability of the system
is enhanced. In other words, potentials change more gently, whereas the convergence
speed of potentials becomes slower. Our design objective is then to minimize the worst-
case error

sup
d

∑∞
k=0 φ(k)∑∞

k=0 d(k)T d(k)
.

This min-max type problem is called H∞ optimization [Zhou et al. 1995]. Given A,
B1, B2, and H, it is known that the optimal Ac, Bc, Cc, Dc can be obtained based on
semidefinite programming (see also Section 5). In general, the degree of the optimal
controller (i.e., the size of X̃) is the same as that of the system to be controlled, which
is 2N in this case. Note that we need to solve this optimization problem only when the
connection topology changes. In other words, we only have to update X̃ in Equation (12)
and compute Equation (13) so long as the connection topology does not change.

In Kuze et al. [2014], we previously proposed potential-based routing with an optimal
control that is explained in this section, but we only evaluate the situation where the
controller observes all nodes (i.e., Nobs = N and H = IN×N). The upper bound of the
order of the communication cost for observation is O(NPavg), where Pavg corresponds
to the average path length of the network. Note that the average path length of the
network generally depends on the number N of nodes. For example, the average path
length of the Erdös-Rényi network (a random network) [Erdős and Rényi 1961] and the
Barabási-Albert model (a scale-free network) [Albert and Barabási 2002] is O(log N),
and that of the Watts-Strogatz network (a small-world network) [Watts and Strogatz
1998] is O(N) if N < N∗ and O(log N) if N > N∗.1 Therefore, in this article, we show
that the controller can estimate potentials of nonobservable nodes based on only a part
of nodes’ potentials with simulation evaluations in Section 5. Note that if the average
path length is quite small against the network size, as in the case with WWW, the
external controller can observe a large number of nodes with small communication

1 N∗ is a length that depends on the randomness p of a small-world network. See Albert and Barabási [2002]
for details.
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cost, which allows the external controller to estimate the potential dynamics more
correctly.

Moreover, as the number of nodes increases (i.e., the size of vector X(t) becomes large),
it becomes unfeasible to control the system using the model expressed in Equations (10)
and (11), owing to the considerable computational cost. The design parameters (Ac, Bc,
Cc, and Dc) are calculated with O(N3) because the computational cost is proportional to
the cube of the size of X [Gahinet and Apkarian 1994]. Control inputs (u(t)) are calcu-
lated with O(N2) because they are calculated by Equations (12) and (13). We therefore
approximate the model with a reduced-order model for reducing the computational
cost.

4. MODEL REDUCTION

In our proposal, the controller uses a reduced-order model for estimating network dy-
namics to reduce the computational cost. In this section, we explain the model reduction
of the network dynamics model described in Section 3.

In the reduced-order model, the dynamics of the system is expressed as an (h × 1)-
vector Xr(t) whose elements are linear transformations of the original model X(t), and
the reduced-order model is given by Equations (14) and (15):

Xr(t + 1) = Ar Xr(t) + Br1d(t) + Br2ur(t), (14)

Y r(t) = Cr Xr(t) + Drd(t). (15)

Here, Xr is an h-dim vector with h (< 2N) being the order of the approximate model,
and ur(t) corresponds to control inputs provided by the controller with the reduced-order
model. We need to choose matrices Ar, Br1, Br2, Cr, and Dr of compatible dimensions
such that Y r(t) ≈ Y (t) for all input ur(t), dr(t). Many researchers have studied a variety
of methods to approximate a model with a reduced-order model to control large, complex
systems [Antoulas et al. 2006]. In our proposal, we approximate the original model
based on a “balanced realization” that is highly compatible with the model expressed
in the state space representation [Zhou et al. 1995; Antoulas et al. 2006]. In model
reduction, a reduced-order model needs to have the same response characteristics as the
original model for the accurate estimation of potentials. Here, response characteristics
mean the effectiveness of inputs to the system.

The control input is then calculated in the same manner as ur(t) according to

X̃r(t + 1) = Acr X̃r(t) + BcrY r(t), (16)

ur(t) = Ccr X̃r(t) + DcrY r(t), (17)

where Acr, Bcr, Ccr, and Dcr are design parameters. Now we can use Y (t) for Yr(t) in
Equation (17) under the well-designed Cr, and Dr because of the relation of Y r(t) ≈
Y (t). We similarly obtain the H∞ optimal controller of order h for the reduced system.
These parameters determine how potential values observed by the controller affect
feedback inputs.

A reduced-order model can describe the system dynamics with a constant number h
of state variables, and the computational cost can be reduced using it. With a reduced-
order model, the design parameters (Acr, Bcr, Ccr, and Dcr) are calculated with O(h3),
and control inputs (ur(t)) are calculated with O(h2). In general, a model that has more
state variables lets the controller estimate more correctly, but the computational cost
is larger. In contrast, the computational cost is smaller, but the estimation error can
be larger in a model that has fewer state variables. Therefore, h needs to be prop-
erly determined in accordance with the requirements or system properties (see also
Section 5).
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In Section 5, we conduct a network simulation to reveal the packet-level dynamics
and show that Equations (2) through (17), assuming synchrony of nodes, can be adopted
to asynchronous network systems.

5. PERFORMANCE EVALUATION

In this section, we evaluate our proposal to show that the convergence speed is en-
hanced by introducing optimal feedback using the reduced-order model. We conduct
a computer simulation and evaluate the convergence speed comparing our proposal
(potential-based routing with optimal feedback (PBR-opt) and one using the model
reduction (PBR-opt-mr)) with the non–control scheme proposed in Sheikhattar and
Kalantari [2013]. First, in Section 5.2, we evaluate the potential convergence speed
after traffic changes to show that our proposed methods (PBR-opt and PBR-opt-mr)
enhance the convergence speed of potentials. Moreover, we show that PBR-opt-mr can
be adapted to large-scale networks in Section 5.3. Next, in Section 5.4 for demonstrat-
ing the robustness of our proposal, we consider a changing environment where several
nodes fail but the controller does not collect network topology information and thus
cannot detect these failures.

In conducting simulation experiments, for the network simulator we use an event-
driven packet-level simulator written in Visual C++ that calls MATLAB functions
dhinflmi2 to design the optimal controller and balred3 to obtain a reduced-order model
on a 64-bit operating system with Intel Xeon CPU with 2.7GHz and 64GB memory. The
simulator is of our own making, and in the MAC layer, each node sends information
about its own potential to its neighbors for their potential updates using intermittent
receiver-driven data transmission (IRDT) [Kominami et al. 2013], an asynchronous
receive-drive data transmission protocol, in the MAC layer. Note that this setting does
not mean that our proposal depends on specific MAC layer protocols such as IRDT. In
the physical layer, we use a simple disk model for wireless communication, where the
packet reception between two nodes is successful if two nodes are within the predefined
communication range. Additionally, we use a simple packet collision model where a
receiver node always drops a packet if other packets arrive during the reception of
the packet. In the simulator, the asynchrony of components (i.e., the controller and
all nodes) is implemented as follows. The controller and all nodes do not match their
timing to provide feedback and update their potentials. The asynchronous behavior of
all nodes is implemented on a single thread with an event queue in our simulator. Note
that we set the interval of the control feedback by the controller and the intervals of
potential updates in each node to be equal in accordance with Equations (10) and (14)
so that the controller can estimate potentials of nodes with small errors.

5.1. Simulation Settings

We evaluate changes of potentials in potential-based routing and the number of data
packets delivered to each sink node after traffic changes or node failures. Network
models used in evaluations consist of an external controller and sensor/sink nodes.
Only sink nodes are directly connected to the controller, so the controller monitors
network states via sink nodes and sends suitable control inputs to sink nodes. The

2dhinflmi is a function for designing the H∞ optimal controller [Gahinet and Apkarian 1994] of a discrete
system. Given parameter matrices A, B1, B2, C, D1, and D2 for the system dynamics X(t + 1) = AX(t) +
B1 D(t) + B2u(t) and the information Y (t) = CX(t) + D1 D(t) + D2u(t) that is observed by the controller,
dhinf lmi computes design parameters Ac, Bc, Cc, and Dc, which are referred to in Equations (12) and (13).
The matrix D(t) shows nonstability fluctuations, u(t) are control inputs.
3balred is a function for reducing the model order [Varga 1991]. Given design parameter matrices A, B1, B2,
C, and D1 for the original model and the degree h of a reduced-order model, balred computes a h-th order
approximation of the original model.
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controller provides feedback to each sink node at interval T f , whereas at interval Tp,
each node updates its next potential value. Typically, T f = Tp for matching with the
potential dynamics described by Equation (2). In real situations, it is difficult to monitor
up-to-date potential values of all nodes in the network because of the overhead for
collecting potential values, especially when the number of nodes increases. Therefore,
here we consider that the controller can directly monitor only nodes within p hops
from the sink nodes. In other words, nodes within p hops from the sink nodes send a
control message to the sink nodes at interval Ti to notify the controller of their potential
values. Otherwise, the controller does not monitor node potentials outside p hops from
sink nodes and only estimates them using the model (Equation (14)), which describes
potential dynamics through local interactions among nodes. The interval of control
message emission Ti is set to 50s, p is set to 2, and the i-th element hi of H is set to

hi =
{

1, if node i is within p hops from sink nodes
0, otherwise .

At the beginning of the simulation, potential values of all nodes, including sensor
nodes and sink nodes, are initialized to 0. During the first 1,000s, each node exchanges
its potential values with neighbor nodes and updates its potential value at interval Tp
according to Equation (2) so that the potential values are stabilized. For this, we do not
generate data packets during that time duration. At 1,000s, data packets begin to be
generated at sensor nodes according to the Poisson process with their flow rate.

We evaluate the convergence speed of potentials and data packets delivered to each
sink node after traffic changes. To measure the convergence speed of potentials, we
define the degree of the potential convergence εn(t) for each node, which is given by

εn(t) = |θ̄n − θn(t)|
|θ̄n|

,

where θ̄n corresponds to the target potential value of node n. We consider convergence
to be achieved when εn(t) for all nodes becomes sufficiently small. Convergence time is
defined as the minimum time taken by all sensor and sink nodes to satisfy the condition

εn(t) < c, (18)

where c (≥0) is a constant value. In an ideal situation where all nodes are completely
synchronized and there is no noise, all sensor and sink nodes satisfy Equation (18) in
the end even if c = 0, but in an actual situation, not all nodes can satisfy Equation (18).
The larger the value of c, the shorter the time needed for the achievement of the
potential convergence. Therefore, c needs to be set carefully according to the purpose of
the evaluation. In this article, we set c to 0.2 to evaluate the convergence speed strictly.

Energy efficiency is a significant challenging task in wireless sensor networks. With
respect to our proposal, the computational cost of each sensor node is fairly low because
each sensor node behaves based only on local information and simple rules. This is an
inherent characteristic of self-organizing systems. Moreover, our proposal can achieve
load balancing by setting flow matrix F so that each sink node receives data packets
equally, which we explain in Section 5.2. Finally, our proposal does not depend on
specific MAC layer protocols. Therefore, we can reduce energy for data transmission
between adjacent nodes by introducing energy-efficient MAC layer protocols, such as
IRDT, that we use in this evaluation.
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Table I. Parameter Settings

Parameter Value

α 0.4
β 0.2
σ 0.1
r 10

T f 50s
Tp 50s

Fig. 5. Network topology (N = 104).

Parameters are summarized in Table I. Optimal parameters (α, βσ ) for PBR-no-ctrl
are given in Sheikhattar and Kalantari [2013],4 but potentials of nodes diverge to
infinity and do not converge. Therefore, we use original settings shown in Table I even
for PBR-no-ctrl. All results presented in the following are averaged over 40 simulation
runs for each parameter setting.

5.2. Performance Evaluation of the Reduced-Order Controller

Here we evaluate the convergence speed considering constraints in wireless sensor
networks.

Figure 5 shows the network model with 104 nodes (including 4 sink nodes) used for
this evaluation. Sink nodes are illustrated with squares and sensor nodes with dots in
the figure. In this network model described in Figure 5, every sensor node is within
three hops from a sink node. The number of sensor nodes within two hops from a sink
node is 86—that is, the external controller observes potentials of 86 sensor nodes in
this network. In this evaluation, at 10,000s from the beginning of the simulation, data

4Optimal α and βσ are respectively given by 1−ξ
1+ξ

and α+1
2 for the fastest convergence rate of potentials,

where ξ =
√

1 − ν2
1 . ν1 is the spectrum radius of the matrix S = IN×N − G−1�, where G is the degree matrix

and � is the graph Laplacian of the network. The spectrum radius of the matrix S is defined as the max
value among absolute values of eigenvalues of S. See Sheikhattar and Kalantari [2013] for more details.
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packet generation rates of sensor nodes are changed to examine the convergence speed
of our method. Data packet generation rates are initially set to be 0.0005 packets/s for
sensor nodes in the left half of Figure 5 (illustrated with black dots) and 0.0015 packets/s
for sensor nodes in the right half (illustrated with gray dots). After traffic changes at
10,000s, data packet generation rates are increased to 0.0015 packets/s for the left-half
sensor nodes and decreased to 0.0005 packets/s for the right-half nodes. The average
data generation rate of a node of 0.001 packets/s corresponds to f̄n = 1; therefore,
before traffic changes, the flow rate vector F = [ f̄1 · · · f̄N]T is given by

f̄i =
⎧⎨
⎩

0.5, if i ∈ Nsenl

1.5, if i ∈ Nsenr

−|Nsen|
|Nsin| , if i ∈ Nsin

, (19)

where Nsen corresponds to the set of sensor nodes and Nsin corresponds to that of sink
nodes. Nsenl is the set of sensor nodes in the left half of Figure 5, and Nsenr is that of
sensor nodes in the right half. Note that we construct the potential fields such that all
sink nodes can receive data packets equally because load balancing is a challenging
task in wireless sensor networks. Thus, the flow rate at each sink node is ideally given
by |Nsen|/|Nsin| (=25). Similarly, after the traffic changes, the i-th element of F is given
by

f̄i =
⎧⎨
⎩

1.5, if i ∈ Nsenl

0.5, if i ∈ Nsenr

−|Nsen|
|Nsin| , if i ∈ Nsin

. (20)

In this evaluation, we conduct simulation in the case in which flows of data packets
massively change the network as mentioned earlier to show that our proposal can adapt
to massive environmental changes. A system that can adapt to massive environmental
changes is considered to be able to adapt to minor fluctuations. Moreover, we assume
that the data generation rate does not change until 10,000s from the beginning of
the simulation to compare our proposal and the non–control scheme under the same
conditions.

In the evaluation of PBR-opt-mr, degree h of the reduced-order model is set to 3 and
100. As explained in Section 4, with lower h, the computational cost is lower but the
estimation error is larger, which results in the slow convergence speed of potentials.
Therefore, we evaluate not only in the case with low h (=3) but also in the case with
high h (=100) for clarifying how the degree of the reduced-order model effects potential
convergence.

In the evaluation of PBR-opt, the design parameters (Ac, Bc, Cc, Dc) cannot be cal-
culated with the dhinflmi function when N = 104 (i.e., the size of the model is 208)
due to the considerable computational cost. This motivates us to reduce the compu-
tational burden upon controller parameter design and controller state updates. For
comparison, we utilize an optimal static controller designed by the dlqr function,5
where the controller is assumed able to monitor the latest conditions of all nodes with
no communication delay or control overhead (i.e., hi = 1 for all nodes). It is known
that static controllers can achieve satisfactory performance with such state feedback
settings [Zhou et al. 1995].

5The function dlqr is a linear-quadratic state-feedback regulator for a discrete-time state space system.
Given parameter matrices A, B, q, and r for the system dynamics X(t + 1) = X(t) + Bu(t), dlqr computes K,
S, and e. Then control inputs u(t) = −KX(t) using the optimal gain matrix K minimize the quadratic cost
function J(u) = ∑∞

n=1
(
q||X(n)|| + r||u(n)||) for the system. Note that the controller needs to observe all nodes

for calculating control inputs by u(t) = −KX(t), although the computational cost for calculating K with the
dlqr function is much lower than that for calculating Ac, Bc, Cc, and Dc with the dhinflmi function.
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Fig. 6. Potential convergence in case of traffic changes.

Table II. Potential Convergence Time

Scheme Convergence Time [s]
PBR-no-ctrl 70,417

PBR-opt 9,174
PBR-opt-mr (h = 3) 11,765

PBR-opt-mr (h = 100) 9,313

Figure 6 shows changes of potential values of the non–control scheme, PBR-opt,
and PBR-opt-mr with h = 3 and 100. More exactly, Figure 6 plots X(t) = �̄ − �(t)
against time t, and the potential convergence is achieved when each element of X(t)
is sufficiently close to 0—that is, Equation (18) is satisfied. In the figure, thick lines
correspond to potential changes of the two sink nodes, and thin lines correspond to those
of other sensor nodes. Sink node potentials change more than those of sensor nodes,
because sink nodes receive feedback inputs u directly from the controller. Feedback
inputs provided to each sink node are different, so the potential change of each sink
node varies. On the other hand, sensor nodes are indirectly affected by feedback inputs
via sink nodes through potential updates by Equation (2). As shown in the figure, if the
potential value of a sink node increases (respectively, decreases) due to feedback inputs
from the controller, potential values of sensor nodes near the sink node also increase
(respectively, decrease).

As shown in Figure 6, our proposal can enhance the convergence speed of potentials,
as compared to the case of no control scheme, and Table II shows the time needed from
traffic changes until the potential convergence is achieved when c = 0.2. Figure 6 shows
potential changes only within 10,000 to 30,000s, but it takes 70,417s for the potential
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convergence (i.e., satisfying Equation (18)) with PBR-no-ctrl as shown in Table II.
As a result, potential convergence is accelerated by about 5.99 times and 7.56 times
due to PBR-opt-mr with h = 3 and 100, respectively. Compared to PBR-opt, potential
convergence speed is 0.780 times and 0.985 times using PBR-opt-mr with h = 3 and
100, respectively. These results indicate that if h is properly chosen, the convergence
speed of our proposal can be approximately equal to that of PBR-opt (about 7.68 times
as fast as the original). The convergence speed of PBR-opt-mr with h = 3 is a little
bit slower than that of PBR-opt-mr with h = 100, because the smaller the h, the
larger the approximation error. Specifically, if h is smaller than 3, potentials diverge
and cannot converge to targeted potential values, although we do not show the result
in this article. However, from the point of view of computational cost, when h is 3,
PBR-opt-mr can enhance the convergence speed with much lower computational cost
than PBR-opt, as the cost of the design parameter calculation is reduced from O(N3)
to O(h3) and the cost of the control input calculation is reduced from O(N2) to O(h2)
by the model reduction. Note that the computational cost for designing the controller
of PBR-opt using dhinflmi is too large to compute in a practical amount of time, as
explained earlier. Therefore, PBR-opt cannot adapt to large-scale networks. It is worth
mentioning that the controller of PBR-opt-mr observes only node potentials within two
hops of sink nodes (i.e., p = 2). The controller estimates potentials of nonobservable
and future potentials using Equation (14) and then determines the optimal feedback
inputs. This indicates that the controller does not need to collect information of the
entire network to enhance the convergence speed of potentials. In general, it becomes
more difficult for the controller to estimate potentials correctly as the number of nodes
observed by the controller becomes smaller. We will investigate the trade-off between
the number of observable nodes and the accuracy of the potential estimation in future
work.

At about 14,000s in Figure 6(c), potentials of nodes rapidly fluctuate. This is because
the controller cannot receive control messages, which collect potential information and
inform the controller about them, due to packet drops, so the controller temporarily
provides irrelevant control inputs. However, such fluctuations are temporary, and po-
tentials immediately converge again. Therefore, these fluctuations have little effect on
the transmission of data packets as shown in Figure 7(c), which is mentioned later.
Moreover, in the case in which the controller collects potential information via sen-
sor nodes (i.e., not sink nodes), traffic congestion around sink nodes is reduced, and
therefore these fluctuations caused by packet drops will be reduced.

Estimation errors of potentials cannot be completely avoided in real networks. This
is because nodes are not synchronized unlike the potential dynamics described by
Equation (2) and the potential values the controller collects are not always correct
due to communication delays, dropped data, or interference. In this evaluation, traffic
congestion occurs around sink nodes because the controller collects the network
information via sink nodes, and 1.32% to 1.33% of the control messages for collecting
potential values are dropped when using PBR-opt-mr with h = 3 and 100, respectively,
leading to estimation errors of potentials. Moreover, the asynchrony of the controller
and nodes is also a cause of estimation errors because PBR-opt-mr (and also PBR-opt)
inherently assumes synchronous systems. Nevertheless, our proposal can achieve fast
convergence of potentials despite such errors, which clearly shows that our proposal
works well in an asynchronous environment where noise or disturbance exists.

Figure 7 shows the average number of data packets delivered to each sink node every
1,000s. In each case, the number of data packets delivered to each sink node becomes
disproportionate after the traffic changes at 10,000s. Then sink nodes gradually become
able to receive data packets equally, because potentials are updated to adapt to the
current packet rate. We can observe that the traffic convergence is also accelerated by
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Fig. 7. Data packets delivered to each sink node in case of traffic changes.

optimal feedback. This is because the potential convergence speed is enhanced by the
optimal feedback mechanism.

One problem we can find is that our proposal reduces the average number of data
packets delivered to each sink node immediately after traffic changes. This is because
some sink nodes temporarily have the largest potential values within their commu-
nication ranges according to the control inputs, so data packets cannot arrive at sink
nodes. Therefore, a partial set of data packets would drop when the controller makes
large changes to the potentials, which contributes to the faster convergence speed of
potentials. However, the data packet drops are immediately reduced and the traffic
finally converges faster than the non–control scheme because of the faster potential
convergence. Note that in an actual situation, data packets may be retransmitted in-
stantly. Here we evaluate only the case in which data packets are never retransmitted,
because the main purpose of this article is to reveal the upper limit of convergence
speed of self-organizing systems. Moreover, Figure 7(c) and (d) show worst-case sce-
narios for temporary packet drops, because the controller changes sink node potentials
(in other words, data packet destinations), so many data packets are dropped when a
sink node temporarily gets the highest potential within its communication range due
to control inputs. If the controller provides an optimal feedback to several sensor nodes
where only some data packets arrive, the number of data packet drops will be smaller.
With a lower r, sink nodes are more likely to be assigned higher potential values since
the controller can make large changes to the potentials, whereas the recovery speed of
data packets delivered to each sink node becomes faster. This indicates that there is a
trade-off between the convergence speed of potentials and potential fluctuations.
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Fig. 8. Network topology (N = 309). Sink nodes are illustrated with squares and sensor nodes with dots.
Only one sink node seems to be connected to the external controller, but all sink nodes actually are wired
with the external controller.

It is also worth mentioning that the traffic convergence when using PBR-opt-mr
with h = 3 is as fast as that with h = 100, as shown in Figure 7(c) and (d), although
potentials oscillate more frequently until the potential convergence is achieved with
h = 3 compared to the case of h = 100 (Figure 6(c) and (d)). This indicates that
temporary oscillations of potential values because of approximation errors have little
effect on data packet transmissions.

In this section, we have shown that an optimal control by the external controller
is effective in wireless sensor networks where the capacity and energy of each node
are limited. Moreover, PBR-opt-mr enhanced the convergence speed of potentials with
much lower computational cost than PBR-opt. That indicates that a reduced-order
model reflects the dominant characteristics of the original model. It is also worth men-
tioning that even when some amount of approximation error exists, fast convergence
of potentials can be achieved. In this evaluation, however, we have assumed that the
controller has up-to-date topology information. Therefore, in Section 5.4, we conduct
a simulation experiment where several nodes fail and the controller cannot detect the
failures (i.e., the controller provides feedback inputs that lead potentials to converge
to values that are not adequate to the network).

5.3. Scalability of the Reduced-Order Controller

Next we conduct a simulation on a network with 309 nodes including 9 sink nodes to
reveal the scalability of our proposal in large-scale networks. Specifically, we prove that
our proposal can facilitate convergence of a self-organizing system with lightweight cost
even if the network size is large. Figure 8 shows the network model that is used in this
evaluation. In this network model described in Figure 8, every sensor node is within
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Fig. 9. Potential convergence in the large-scale network.

Table III. Potential Convergence Time in the
Large-Scale Network

Scheme Convergence Time [s]
PBR-no-ctrl 363,675

PBR-opt 51,712
PBR-opt-mr (h = 20) 16,234
PBR-opt-mr (h = 100) 16,064

three hops from a sink node. The number of sensor nodes within two hops from a sink
node is 271—that is, the external controller observes potentials of 271 sensor nodes in
this network. In this evaluation, at 10,000s from the beginning of the simulation, data
packet generation rates of sensor nodes are changed to examine the convergence speed
of our method similarly to the scenario of the evaluation in Section 5.2. Data packet
generation rates are initially set to be 0.0005 packets/s for sensor nodes in the left
half of Figure 8 (illustrated with black dots) and 0.0015 packets/s for sensor nodes in
the right half (illustrated with gray dots). After traffic changes at 10,000s, data packet
generation rates are increased to 0.0015 packets/s for the left-half sensor nodes and
decreased to 0.0005 packets/s for the right-half nodes. The average data generation rate
of a node of 0.001 packets/s corresponds to f̄n = 1, so before traffic changes, the flow
rate vector F = [ f̄1 · · · f̄N]T is given by Equation (19), and after the traffic changes, F
is given by Equation (20).

Figure 9 shows changes of potential values of the non–control scheme, PBR-opt, and
PBR-opt-mr with h = 20 and 100, and Table III shows the time needed from traffic
changes until the potential convergence is achieved when c = 0.2. Figure 6 shows
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potential changes only within 10,000 to 30,000s, but it takes more than 20,000s for
the potential convergence with PBR-no-ctrl and PBR-opt as shown in Table III. As a
result, the potential convergence speed is accelerated by about 7.03 times, 22.4 times,
and 22.6 times due to PBR-opt and PBR-opt-mr with h = 20 and 100, respectively,
compared to the case with PBR-no-ctrl. Table III indicates that potentials converge
faster with the larger number of state variables. This characteristic is valid because
the controller is generally able to estimate potentials of nodes more correctly with the
larger number of state variables. Table III also shows that the convergence speed of
potentials with PBR-opt-mr is faster than that with PBR-opt. Feedback inputs provided
by the external controller with PBR-opt are optimal in an ideal situation where the
external controller and all nodes are synchronized and the external controller can
obtain potential information without any communication delays. However, in a real
situation, the optimality is not guaranteed because there are estimation errors due to
the asynchrony of the system, data packet drops, and communication delays. Therefore,
the convergence speed with PBR-opt is not always faster than that with PBR-opt-mr.
On the contrary, the convergence speed of potentials with PBR-opt seems not to be so
different from that with PBR-opt-mr in Figure 9. This indicates that PBR-opt works
as well as PBR-opt-mr in the real setting of wireless sensor networks.

Compared to the evaluation of the smaller-scale network in Section 5.2, degree h
of a reduced-order model needs to be larger. This is because a reduced-order model
needs a larger number of state variables to keep the dominant characteristics of the
original model with a larger number of nodes. When h is set to 3 as similar to the
evaluation in Section 5.2, the controller cannot estimate correctly potentials of nodes
and the potential convergence speed is quite slow, although we do not show the result in
Figure 9. In this article, we only show the result of evaluations using PBR-opt-mr with
h = 20 and 100, but our proposal can achieve the potential convergence even if h = 1—
that is, the lower bound of degree h for the network shown in Figure 8 is 1, which is
smaller than the lower bound of h for the network of 104 nodes shown in Figure 5 (=3).
The lower bound of h deeply depends on the network topology, so we will investigate the
scalability of the reduced-order model in the future. In PBR-opt-mr, the computational
cost for designing the controller is O(h3) and that for calculating control inputs is O(h2).
Therefore, the computational cost of PBR-opt-mr with h = 100 in Section 5.2 and that
in Section 5.2 is approximately the same, although the number of nodes is 104 and
309, respectively. Moreover, the number of controllable and observable nodes increases
compared to the evaluation of the smaller network. That is because the communication
overhead for collecting the information of nodes far from observable nodes is large, and
these nodes also take a long time to receive the effect of the optimal feedback that is
provided to sink nodes.

Figure 10 shows the number of data packets delivered to each sink node every
1,000s. As shown in this figure, the traffic convergence speed is accelerated because
the potential convergence speed is improved by an optimal feedback. As shown in
Figure 9(c) and (d), many sink nodes have potential values higher than their target
potential values according to control inputs provided by the controller. Therefore, the
decreased rate of data packet arrivals in sink nodes is higher than that in the evaluation
of 104 nodes. However, this is not always true because control inputs deeply depend
on the network topology and flow rates. From Figure 10, the average number of data
packets delivered to each sink node with PBR-opt-mr is a bit smaller than that with
PBR-no-ctrl and PBR-opt. This is because a partial set of data packets and control
messages drops near sink nodes, as a lot of data packets and control messages are
delivered to sink nodes. The number of data packet and control messages dropped will
be reduced if the controller collects potential information via several sensor nodes.
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Fig. 10. Data packets delivered to each sink node in the large-scale network.

In conclusion, our proposal can accelerate the convergence speed even in large-scale
networks with the lower computational cost. However, the lower-bound degree of a
reduced-order model deeply depends on the network topology.

5.4. Robustness Against Node Failures

We finally investigate the robustness of PBR-opt-mr. The network model of 104 nodes
is used in this evaluation. Here, several nodes fail at 10,000s from the start of the
simulation, and we examine changes of potentials and data packets delivered to each
sink node after node failures. At 10,000s from the beginning of the simulation, q nodes
fail. Failing nodes are randomly selected from nodes more than p hops from the sink
nodes, so the controller cannot detect them. Instead, each sensor node constantly detect
its current neighbors in a self-organizing manner. To avoid the influence of traffic
changes, data packet generation rates of all sensor nodes are fixed at 0.001 packets/s,
so the i-th element fi of F is given by

f̄i =
{

1, if i ∈ Nsen

−|Nsen|
|Nsin| , if i ∈ Nsin

.

The controller monitors only nodes within p (=2) hops from the sink nodes, as in
Section 5.2. In other words, nodes within two hops from the sink nodes send a control
message to the sink nodes at intervals of Ti (50s) and transfer their potentials to the
controller. The degree h of a reduced-order model is set to 3. Other simulation settings
are the same as in Section 5.2.
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Fig. 11. Potential convergence in case of node failures (PBR-opt-mr with h = 3).

Figure 11 shows the potential changes with q = 0, 3, and 10. With q = 0, no nodes
fail. The figure plots X(t) = �̄ − �(t) against time t. Note that �̄ of each case is the
same as �̄ in the case in which no node fails, because the controller cannot detect the
node failures. The reason the convergence speed is faster than Figure 6 in Section 5.2 is
that data generation rates of all sensor nodes are fixed in this evaluation. As the figure
shows, potentials converge immediately after the node failures, but potential values at
the time when they converge are different from �̄. This is because �̄ changes due to the
topology change, but the controller cannot detect the change. However, the potential
convergence is achieved soon after node failures, and these failures only slightly affect
the data packets delivered to each sink node, as explained in the following.

Figure 12 shows the number of data packets delivered to each sink node every 1,000s
and the average number of packets. As the figure shows, each sink node receives data
packets, equally even in the case in which node failures occur and the controller cannot
detect them. With q = 10, the number of data packets delivered to sink nodes varies,
but these differences are not very large. Compared to the case in which node failures do
not occur, the average number of data packets delivered to each node is smaller when
q = 3 or 10. This is because the number of data packets generated in the entire network
is decreased due to the node failures. The data arrival rate is shown in Table IV. The
data arrival rate corresponds to the ratio of data packets that arrive at any sink nodes
to all generated data packets. This result indicates that the data arrival rate in the
case in which node failures occur is approximately equal to that in the case in which
no node fails. In conclusion, optimal feedback by the external controller can enhance
convergence while maintaining the high robustness against inaccurate information
due to node failures, which is an essential characteristic of self-organizing systems.
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Fig. 12. Data packets delivered to each sink node in case of node failures (PBR-opt-mr with h = 3).

Table IV. Data Arrival Rate

q Data Arrival Rate [%]
0 99.12
3 99.03
10 99.18

6. CONCLUSION AND FUTURE WORK

In self-organizing systems, each component behaves according to only local informa-
tion, which leads to slow convergence. We propose and evaluate potential-based routing
with optimal feedback using a reduced-order model, where a controller monitors and
estimates system states and provides optimal feedback for the fastest convergence.
Simulation results have shown that optimal feedback using a reduced-order model can
facilitate the convergence of potentials while reducing costs for collecting system infor-
mation and estimating system dynamics. Moreover, our proposal has high scalability
and robustness against information loss from node failures.

On the contrary, our proposal continues to have some challenging tasks. First, the
optimal feedback mechanism assumes that the controller has the information of the
network topology and the flow rates, which reduces the practicality of our proposal. Sec-
ond, the potential convergence is achieved as a result of the iterative behavior—that
is, the controller’s optimal feedback and nodes’ potential updates—so that potential
cannot converge if environmental changes occur more frequently than the iterative be-
havior. Third, the controllability and the stability of networks depends on the network
topology. Finally, the optimal control improves the convergence speed of potentials but
also causes potential fluctuations, as shown by simulation results. These fluctuations
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lead to data packet drops because sink nodes temporarily have the highest potentials
among their neighbors. There is a trade-off between the improvement of the potential
convergence speed and potential fluctuations.

We are now studying a distributed version where several controllers independently
monitor, estimate, and control the system dynamics. For this purpose, it would be a
promising direction to design hierarchical controllers based on the clustered model re-
duction [Ishizaki et al. 2014]. With optimal control by a controller, considerable control
overhead is needed for collecting network states and estimating network dynamics in-
formation when the network is large. By introducing a distributed control mechanism,
control overhead can be expected to be reduced because it is not necessary to collect
network-wide information.
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