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Abstract

Due to the rapid growth in scale and complexity of information networks, a new network ar-

chitecture which has high scalability, adaptability, and robustness is needed. In large-scale and

complicated information networks, it takes too much cost to keep monitoring states of all devices

and controlling them. Therefore, it is essential for each device to autonomously consider, make

a decision, and act only based on uncertain (incomplete, ambiguous, and dynamic) information.

To tackle this problem, we apply the mechanism of collective decision making of swarms to net-

work control mechanisms. In swarms of such as birds, fish, and insects, individuals can make

a coordinated decision through local interactions of them although the perceptive ability of each

component is limited so that information which it has is uncertain.

We focus Effective Leadership model, which is a mathematical model of collective decision

making of swarms of such as birds, fish, and insects. In this model, a group consists of non-

informed individuals, which attempts to follow neighboring individuals, and informed individuals,

which are well-informed and therefore have the ability to make an appropriate decision. Through

local interactions of such individuals, the group accordingly make a coordinated decision. More-

over, it is known that as the group size is smaller, a fewer informed individuals are needed to guide

the group to make a coordinated decision, which implies high scalability.

In this study, we take potential-based routing with an external controller as an example of

self-organizing network control mechanisms, and apply Effective Leadership model to it. We con-

sider nodes controlled by the external controller as leader nodes that guide the other nodes like

informed individuals do non-informed individuals. Through simulation experiments, we investi-

gate the relationship among the network size, the ratio of leader nodes, and the adaptation speed

to environmental changes.
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1 Introduction

The Internet originated from ARPANET are rapidly expanding as the development of device and

communication technologies, and becomes an increasingly important infrastructure. However, the

Internet remains to be based on the conventional architecture although the Internet is continually

growing, and various types of communication services/applications based on it are developed

day by day. This reduces the durability and controllability of network systems. Especially, in

recent years, various “things” such as sensors, actuators, electric grid, smartphones, vehicles, and

electrical appliances communicate with each other with wired or wireless communications to be

a network (Internet of things; IoT [1–3]). It is said that billions of devices will be connected to

construct a network in the future [1]. As the scale and complexity of information networks grow,

it becomes more and more difficult to monitor and control the entire networks. This means that

the conventional network control mechanisms such as central control and distributed control based

on global information is not adoptable. Therefore, we need to develop a new network architecture

which has high scalability, adaptability and robustness.

For realizing a new network architecture, much attention is paid on self-organizing systems [4,

5]. In self-organizing systems, each component behaves autonomously with simple rules using

only local information. Then, a global behavior or pattern emerges in a macroscopic level as a

result of local interactions of components. By adopting the principle of self-organization, network

control systems can be robust and adaptable to unexpected environmental changes. However,

there are some problems that complicate the implementation of self-organizing network control

mechanisms in the industrial field. Our goal is to develop a self-organizing network architecture

for large-scale and complicated information networks.

In large-scale and complicated information networks, it takes too much cost to keep monitoring

states of all devices and controlling them. Therefore, it is essential for each device to autonomously

consider, make a decision, and act only based on uncertain (incomplete, ambiguous, and dynamic)

information. To tackle this problem, we apply the mechanism of collective decision making of

swarms to network control mechanisms. In swarms of such as birds, fish, and insects, individuals

can make a coordinated decision through local interactions of them although the perceptive ability

of each component is limited so that information which it has is uncertain.

In this study, we focus on Effective Leadership model [6], a mathematical model of the be-
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havior of collective decision making in swarms. An animal group that forage or travel make

decisions which direction to move through social interactions among the group. In the Effective

Leadership model, there are two types of individuals, informed individuals and non-informed in-

dividuals. Informed individuals are experienced and well-informed so that they have pertinent

information, such as knowledge about the location of a food source and of a migration route. They

have a role as leaders of the group to navigate other individuals to their own preferred directions.

Non-informed individuals have limited information and make a decision based on individuals sur-

rounding themselves. Informed individuals lead non-informed ones to preferred decisions through

local interactions of individuals, and as a result, individuals can make a coordinated decision. In

Effective Leadership model, as the group size (number of individuals) becomes larger, a smaller

proportion of informed individuals are needed to guide the group to a preferred direction, which

leads to scalability to the size of groups.

In this study, we apply Effective Leadership model to self-organizing network control mech-

anisms to conquer information uncertainty. We take potential-based routing proposed in [7] as

an example of self-organizing network control mechanisms, and proposed potential-based rout-

ing based on Effective Leadership model. In [7], the authors introduce an external controller

to potential-based routing for facilitating the adaptation speed to environmental changes. In the

method, the external controller monitors the state of the network and feedback control inputs to

partial nodes called controlled nodes. Through controlled nodes, the influence of control feedback

by the external controller expands all over the network. In other words, controlled nodes have a

role to guide the other nodes to adapt to environmental changes fast. In this study, we consider

control nodes as leader nodes which guide the other nodes to make a coordinated decision like

informed individuals [6], and apply Effective Leadership model to potential-based routing with

the external controller. Through simulation experiments, we investigate the relationship between

the network size, the ratio of leader nodes, and the adaptation speed to environmental changes.

The remainder of this paper is as follows. First, in Chapter 2, we introduce related work

on self-organization and collective decision making. Then, in Chapter 3, we apply Effective

Leadership model to network control mechanisms. We take potential-based routing, and pro-

pose potential-based routing based on Effective Leadership model. In Chapter 4, we evaluate the

proposed mechanism through simulation experiments and discuss the results. Finally, in Chapter 5

we describe conclusion and future work of this study.
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2 Related Work

2.1 Self-Organized Biological Mechanisms and Their Applications

Self-organizing systems seen in the natural world, etc., each component of the system creates

function in bottle-up manner based only on local interactions, and it is possible to realize high

flexibility, adaptability, scalability, fault tolerance etc. In particular, the system of living organisms

can acquire and develop functions suitable for the environment while encompassing the possibili-

ties of various evolution, and can skillfully deal with environmental changes, and also in terms of

the engineering application of the mechanism, many researches have been conducted in various

fields [4, 5, 7–12].

An organism does not simply decide its own behavior based on only information at a cer-

tain point of time, predicting the future state from the information observed from the past to the

present, it is known that organisms use prediction to determine their own behavior. In the litera-

ture [11], a group of birds fly in parallel flying as a theme, the authors introduce model predictive

control to self-organizing system and discuss usefulness of prediction. In the literature [12], the

authors introduce a model applying ant colony optimization algorithm, to optimize for multiple

objective functions such as network delay, energy consumption, packet loss rate on routing. Also,

in the document [13] the authors are investigating the outline of Firefly Algorithm inspired by

synchrotron radiation of fireflies and trend of research using Firefly Algorithm.

2.2 Collective Decision Making

In a group of a social organisms, despite autonomously acting on the basis of limited information

perceivable by each individual, the group as a whole is making a choice of behavior according to

the condition of the environment and the group. Collective decision making is a very important

issue for organisms with social nature who behave in a group. In order to act better as a means,

each individual needs to acquire accurate information, but in the real world, in many cases, the

information obtained by each individual is inaccurate and often enough information cannot be

obtained for decision making. In addition, the confliction of individuals’ objective due to differ-

ences in individual demand or preference, it becomes a cause of impeding the decision making as

a group.

In the literature [14], in the situation where such information inaccuracy, individual confliction
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exists, the authors are investigating research which is discussing how collective decision making

will be made. In situations where the information obtained is uncertain, by sharing information

among individuals, it becomes possible to select the correct behavior. Sharing such information

can be seen in creatures of various social nature, such as migration of honey bees and ants.

In the document [15] it is shown that the advantage of information sharing is improved by the

presence of confliction among individuals and the correctness of decision making improves. In this

paper, in particular, on the correctness of decision making in situations where collective decision

making is performed while individuals who select actions to avoid false positives compete with

individuals who select behavior to avoid false negatives Discussion, and verification.
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Figure 3.1: Potential-based routing

3 Application of Collective Decision Making to Potential-based Rout-

ing

In this chapter, we take potential-based routing with the external controller [7] as an example of

self-organizing network control mechanisms. Then, we apply Effective Leadership model [6], a

model of collective decision making in swarms, to it.

We explain potential-based routing and its improvement, potential-based routing with the ex-

ternal controller, in Subsection 3.1 and Effective Leadership model in Subsection 3.2. Then, in

Subsection 3.3, we propose potential-based routing which adopt the principle of Effective Leader-

ship model.

3.1 Potential-based Routing

Potential-based routing is a self-organizing routing mechanisms for wireless sensor networks [7–

10,16]. In potential-based routing, data packets are forwarded in accordance with a potential field,

a kind of gradient fields, which includes routing information and the potential-field emerges as a

result of local interactions of nodes.

In potential-based routing, each node is assigned a scalar value called “potential.” In general,

a potential field is constructed so that the fewer hops from the sink node a node is, the lower the
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potential value assigned to the node is. Therefore, with a simple forwarding rule, “sending data

packets to neighboring nodes with lower potential,” data packets arrive at sink nodes (Figure 3.1).

Because potentials of nodes are updated through local interactions among nodes, it is known that

potential-based routing can work with low communication and calculation cost even in large-scale

networks.

3.1.1 Potential Field Construction

Sheikhattar and Kalantari [16] focused on the convergence of potential-based routing and achieved

enhancement of the potential convergence speed. They proposed a potential calculation method

based not only on current potentials but also on last potentials to accelerate potential convergence.

In this method, node i’s potential at time t, θi(t) is calculated by Equation (1).

θi(t+ 1) = (α+ 1)θi(t)− αθi(t− 1) + βσi

 ∑
k∈Nb(i)

{θk(t)− θi(t)}+ fi(t)

 , (1)

where Nb(i) is a set of neighbors of node i. α is a parameter that determines the weight of current

and last potential values when calculating the next potential value. Larger α means that the weight

of the last potential value is larger and therefore the system becomes less subject to current noise,

though the convergence speed is slower. β is a parameter that determines of the influence amount

of neighbor node potentials. In [16], σi is defined as σ0/|Nb(i)| (σ0 is a parameter). In this

study, we set σi to constant value σ(0 < σ < 1) since potentials diverge in some situations with

σi = σ0/|Nb(i)|. fi(t) corresponds to the amount of in/out flow of node i at time t. For sensor

node i, flow fi(t) is a positive value, and it indicates the data generation rate of node i. For sink

node i, flow fi(t) is a negative value, and it implies the amount of data packets delivered to node i.

Global flow distribution is achieved by appropriately setting flow values at sink nodes. In details,

by setting the flow value of each sink node to the same value, a potential field with which the

number of data packets delivered to each sink node is approximately equal is constructed.

The convergence speed based on Equation (1) is faster than simple Jacobi iterations (such

as [9]), but still takes a long time to converge due to its calculation being based only on local

information.
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Figure 3.2: Potential-based routing with the external controller

3.1.2 Potential Field Construction with the External Controller

In [7, 7], the authors introduced an external controller, which monitor and control systems into

potential-based routing proposed in [16] for facilitating the convergence speed of the potential

field.

An external controller (1) collects information of potential values of partial nodes, (2) esti-

mates potential values of the other nodes based on the potential dynamics model, and (3) feed-

backs control inputs to partial nodes, which we call controlled nodes, to facilitate potential field

convergence (Figure 3.2). In controlled node i, potential value θi(t) at time t is calculated by

Equation (2).

θi(t+ 1) = (α+ 1)θi(t)− αθi(t− 1) + βσi

 ∑
k∈Nb(i)

{θk(t)− θi(t)}+ fi(t)

+ ηi(t), (2)

where µi(t) corresponds to the control input which the external controller feedback to node i.

Show [7, 8] for detailed explanation of how the external controller calculates control input µi(t).

In this study, we apply Effective Leadership model to potential-based routing with the external

controller proposed in [7, 8]. We will explain the details in Subsection 3.3.
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3.1.3 Data Packet Forwarding

When a node receives data packets, it determines the next hop node of data packets in a probabilis-

tic manner in accordance with potentials of itself and its neighbors’. Each node i probabilistically

determines the destination of the data packet based on the information on the potential of the node

adjacent to itself. Probability Pi→n(t) that node i selects neighboring node n ∈ Nn(i) as the next

hop node of a data packet at time t is calculated by Equation (3).

Pi→n(t) =


θi(t)−θn(t)∑

j∈Nlow(i){θi(t)−θj(t)} , if n ∈ Nlow(i)

0, otherwise
, (3)

where Nlow(i) is a set of neighboring nodes of node i with lower potential than node i. Nodes

with lower potentials are likely to receive a larger number of data packets.

3.2 Effective Leadership Model

Effective Leadership model [6] is a mathematical model of collective decision making in swarms

such as birds, fish, and insects. For many species, a few experienced or well-informed individuals

play an important role in decision making of the group. They have information about the locations

where the group should move, e.g., the locations of a food source, and make their movement de-

cisions based on the information. The other individuals, less experienced or informed individuals,

move to the same direction with neighboring individuals so that they accordingly follow a few ex-

perienced or well-informed individuals. Consequently, the group achieves to make a coordinated

decision.

In the Effective Leadership model, there are two types of individuals, informed individuals

and non-informed individuals. Informed individuals decide their directions according to social

interactions among the group and their own preferred directions. On the other hand, non-informed

individuals make movement decisions only with social interactions. Figure 3.3 shows the concept

of Effective Leadership model.

Individual i in the group has position vector ci(t) and direction vector vi(t) at time t. Indi-

viduals attempts to maintain a minimum distance α from other individuals for avoiding collisions.

When the distance between individual i and j is lower than α, individual i moves away from indi-

vidual j. In details, desired direction di(t) of individual i at time t is determined by Equation (4).
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Figure 3.3: Effective Leadership model

di(t+∆t) = −
∑

j∈Nb(i,α)

cj(t)− ci(t)

|cj(t)− ci(t)|
, (4)

where Nb(i, α) corresponds to a set of individuals whose distances to individual i are lower than

α.

If there are no other individuals within range α, a non-informed individual is attracted to

individuals within range ρ. ρ indicates the local interaction range of individuals. Non-informed

individual i determines desired direction di by Equation (5).

di(t+∆t) =
∑

j∈Nb(i,ρ)

cj(t)− ci(t)

|cj(t)− ci(t)|
+

∑
j∈Nb(i,ρ)

vj(t)

|vj(t)|
. (5)

The first term of Equation (5) corresponds to the average of position vectors of neighboring in-

dividuals. This implies that non-informed individuals attempt to attract to neighboring individuals

as shown in Figure 3.4. The second term of Equation (5) corresponds to the average of direction

vectors of neighboring individuals. This implies that non-informed individuals attempt to align its

direction with neighboring individuals’ as shown in Figure 3.5.

Leader individuals decide their desired directions based not only on social interactions but
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Figure 3.4: Attraction of positions

Figure 3.5: Alignment of directions
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also on their preferred directions. Leader individual i has a preference to move in direction gi and

decides desired direction di(t) as time t by Equation (6).

d′
i(t+∆t) =

d̂i(t+∆t) + ω0gi

|d̂i(t+∆t) + ω0gi|
, (6)

where d̂i(t) is the unit vector of di(t). In other words, d̂i(t + ∆t) = di(t+∆t)
|di(t+∆t)| . ω0 is a

parameter that determines the weight of preferred direction gi when leader nodes decide their

desired directions. In [17], ω0 is considered as “assertiveness” of individuals. If ω0 is 0, leader

nodes are not influenced by their preferred direction g. The higher the value of ω0 is, the larger

the influence amount of preferred direction g.

3.3 Potential-based Routing Based on Collective Decision Making

In this thesis, we applied Effective Leadership model for a process where each node in potential-

based routing coordinates to form a potential field (Table 1).

In the proposed mechanism, using the expressions (1), (7), the potentials are updated of the

non-leader node and the leader node. The non-leader node n updates its own potential θn(t) at

time t using only the state and information of itself and the neighboring nodes (Expression (1)).

Leader nodes n have target potentials g, potentials are updated based on the target potential

while coordinating with neighboring nodes (Formula (7)).

θn(t) = (1− ω)

{
βσn

( ∑
k∈Nb(n)

{θk(t− 1)− θn(t− 1)}+ fn(t− 1)

)

+ (α+ 1)θn(t− 1)− αθn(t− 2)

}
+ ωgn(t). (7)

Here, ω (0 < ω < 1) is a parameter corresponding to ω0 in Effective Leadership model, which

represents the strength of the tendency of leader individuals to lead the flock in the expression (6),

and it is the weight for the target potential gn(t).

The target potential gi(t) of the leader node is given by the following expression using the

control feedback µi(t) by the external controller [7].
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gi(t) = βσn

( ∑
k∈Nb(n)

{θk(t− 1)θn(t− 1) + fn(t− 1)}
)

+ (α+ 1)θn(t− 1)− αθn(t− 1) + µi(t). (8)

The control feedback by the external controller is calculated so that the potential field con-

verges to the convergence target Θ̄ = {θ1, · · · , θN} in a short time. Through local interaction, the

non-leader node follows the leader node that performs the potential update based on the control

feedback, as a whole network, a potential field can be constructed quickly. The convergence target

Θ̄, The number of data packets received by each sink node is set to be equal.

Table 1: The Correspondence of Effective Leadership model and potential-based routing

Effective Leadership model Potential-based routing

A group of various individuals A network composed of various nodes

with different preferences and abilities with different standards and performances

Leader individuals having Leader nodes

more information than others receiving control input

Non-leader individuals Non-leader nodes

Position information of itself and Information on the potential of itself

perceivable neighboring individuals c and neighboring nodes obtained by local interaction

Information on the direction of itself Potential values 1 time step before

and perceivable neighboring individuals v and 2 time steps before the node

Target direction vector g Target potential values

Accuracy of the direction of travel Convergence time of potential-field
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4 Simulation Experiments

In order to obtain design guidelines for applying Effective Leadership model to the network, which

mathematically modeled the mechanism of a process of decision making in a group, we performed

numerical simulations and network simulations. First, in the 4.1 section, through numerical sim-

ulation, relationship between the number of leader nodes in the network, arrangement, network

size, and the influence they have on network control will be investigated. In the 4.2 section, based

on the findings obtained in the 4.1 section, the performance of control when applying Effective

Leadership model to network is investigated through network simulation.

In the network simulation, we implemented in C ++, functions for Python networkx, scikit-

learn package for graph operation, we also call MATLAB’s dhinflmi function for external con-

troller design.

4.1 Number and Placement of Leader Nodes

In applying the Effective Leadership model to network control, the number and arrangement of

the leader nodes becomes an important problem. From the viewpoint of cost, it is desirable that

the number of leader nodes with higher performance be smaller, it is also necessary to clarify the

arrangement of the leader node for that purpose. In particular, in the literature [6], in the effective

leadership model, it is shown that as the size of the flock (the number of individuals) is larger,

appropriate action can be taken by the group as a whole by a small proportion of leader individuals.

If a similar tendency is found when corresponding Effective Leadership model to network control,

we can consider it to be useful for application to a large scale network. Therefore, in this section,

we investigated the relationship of the number and placement of leader nodes with the control

performance of external controller [7].

In [7, 8], based potential-based routing which is a self-organizing route control method, au-

thors achieved to improve convergence speed to the target potential by introducing an external

controller that observes network information and performs control feedback. They revealed that

the placement and the number of nodes (control nodes) giving control feedback, affects the con-

vergence speed (control performance of the controller). In this section, the control node is made

to correspond to the leader node, we investigate the relationship between and the number and the

placement of control nodes and control performance of the controller, and obtain knowledge about
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the number and arrangement of appropriate leader nodes.

The external controller is designed based on H∞ control [18] and it is calculated using MAT-

LAB’s dhinflmi function. In this function, it was set to achieve the control target according to

the network topology and the arrangement of the leader node outputs optimum H∞ performance

γopt and controller transfer function G, with control parameters as input. The transfer function to

be output satisfies the following two conditions.

• The system is stable and when instantaneous disturbance is given to a system in equilibrium,

the system returns to equilibrium again with the lapse of time.

• The closed loop norm of the controller ||G||∞ is smaller than γopt.

Here, the closed loop norm of the controller ||G||∞ represents the maximum value of the

controller gain (ratio of output to input), the smaller the value of γopt, the smaller the gain. That

is, the ability to suppress input disturbance and converge the system to equilibrium is high. In the

proposed method, the input to the controller is the deviation between the target potential and the

current potential, since the output from the controller corresponds to the deviation between the

target potential and the potential obtained as a result of the control, the smaller the value of γopt,

the higher the ability to converge the potential to the target value, robustness against noise and

errors increases. In other words, the higher the degree of contribution to the improvement of the

number of leader nodes and the control performance of placement, the smaller the value of γopt.

In this research, the value of γopt is used as an index to measure the control performance of the

controller.

For the lattice network, calculate the value of γopt for each leader node number and arrange-

ment, we investigated the relationship with the control performance of the controller. The size of

the grid network is 3 × 3, 4 × 4, 5 × 5, 6 × 6, we set the ratio of leader nodes to 0.025, 0.05,

0.1, 0.2, 1.0. In Figure 4.1, for each network size, leader node percentage, we calculate γopt for all

leader node patterns and calculate the network size, the Figure 4.1 represets the minimum value

of γopt for each percentage of leader nodes is shown.

From the result of Figure 4.1, it can be confirmed that the value of γopt decreases as the

proportion of the leader node increases. From this, it is shown that the control performance of

the controller increases as the ratio of the leader node increases. This is, by reducing the average
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Figure 4.1: Relationship between the ratio of leader nodes and Gopt(γopt)

number of hops to the leader node receiving the control input from the controller we can consider

that the reason is that the control input propagates faster to the entire potential field. This will

be verified later. On the other hand, for the reduction of γopt until the leader node percentage

changes from 0.025 to 0.2, the decrease in γopt until the leader node percentage changes from 0.2

to 1 is fairly small, in particular, this tendency becomes more prominent as the number of nodes

increases. Also, when the ratio of leader nodes is 0.1, 0.2, focusing attention on the case where the

network size is 4 × 4 ∼ 6 × 6, the value of γopt decreases as the network size increases, the higher

the number of nodes, the higher control performance can be obtained with a smaller proportion of

leader nodes. From this fact, the larger the size (number of individuals) of the group it is possible

for the group as a whole to take appropriate action by a small proportion of leader individuals as

shown in [6], and it can be applied also to network control, and high scalability to the scale of the

network is expected. If the number of nodes is small, this trend does not apply to the result when

the network size is 3 × 3, it is thought that the reason is that the influence due to the average hop

count is small because the total number of nodes is small.
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Figure 4.2: γopt minimized in lattice topology
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Figure 4.3: γopt maximized in lattice topology
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Figure 4.4: Correlation between the number of hops to the leader node and γopt

The Figure 4.2 and Figure 4.3 show that the value of γopt is the maximum in the above simula-

tion, or the placement of the leader node in the case where it becomes minimum. There are cases

where there are multiple settings of the leader node where γopt is the maximum or minimum, this

figure represents one of them. From the figure, in the case where γopt takes the maximum value,

that is, when the control performance is low, the leader node is arranged at the edge of the network,

in the case where γopt takes the minimum value, it is arranged so that the leader nodes are spread

evenly throughout. From this, about the value of γopt, that is, the performance of the controller,

we can consider that the number of hops up to the leader node has an influence. Also, in the Figure

4.4, when the layout of the leader node is changed, it shows the relationship between the number

of hops to the leader node and γopt. It can also be said from this figure that the control performance

of the controller is greatly affected by the number of hops up to the leader node.

On the other hand, when setting the leader node, considering the average hop count of all

nodes in the network, as the total number of nodes increases, it becomes less practical from the

viewpoint of computational complexity. In this research, in order to arrange leader nodes evenly
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across the field, the network is classified into clusters by the number of leader nodes using the

K-Means method, by setting the center based on the number of hops in each cluster to the leader

node, the trade-off between the computational complexity and the control performance is solved.

4.2 Simulation Evaluation in Wireless Sensor Network

In this section, based on the results in Section 4.1, we conduct simulation evaluation in the wireless

sensor network environment. The total number of nodes is set to 64, 144, 256 (Figure 4.7, 4.8,

4.9). In this evaluation, the communication range of the node is set to 50 m, and the nodes existing

within the communication range are connected to each other. The sink node is set to 4 for the total

number of nodes, 6 for the case of 144, and 8 for the case of 256 total nodes.

In this evaluation, the leader node is gradually changed from 1 to 7% as a ratio with respect to

the total number of nodes, based on the findings obtained in the Section 4.1, the arrangement of

the leader nodes classifies the field by the number of leader nodes by the K-Means method, one

of the centers of each cluster is defined as a leader node. The external controller [7] gives control

feedback to the leader node at 50 second intervals. For the sake of simplicity, it is assumed in

this evaluation that the external controller can acquire the potential information of all the nodes

without delay.

In this evaluation, the potential is updated immediately after the start of the simulation, and

the control by the external controller is started. Then, at 1,000 seconds after the start of the

simulation, each sensor node starts transmitting data packets. The generation rate of the data

packet in the sensor node located in the upper half of the grid network is 0.015 packet / sec, and

the generation rate of the data packet in the sensor node located in the lower half is 0.0050 packet

/ sec. At this time, the external controller performs control so that the number of data packets

received by each sink node becomes equal. After 10,000 seconds from the start of the simulation,

the generation rate of data packets in each sensor node is changed. In this evaluation, after the

data packet generation rate changes, the time until the potential field reconverges is evaluated so

that the number of data packets received by each sink node becomes equal. After changing the

data packet generation rate, the generation rate of the data packet in the sensor node located in the

upper half of the lattice network is 0.0050 peak / sec, the generation rate of the data packet in the

sensor node located in the lower half is 0.015 packet / sec. The simulation settings are shown in

Table 4.

24



Figure 4.5: Relationship between ratio of leader nodes and convergence time
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Figure 4.6: Comparison between proposed method and non-controlled method
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Figure 4.7: Example of topology of 64 nodes
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Figure 4.8: Example of topology of 144 nodes
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Figure 4.9: Example of topology of 256 nodes
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Figure 4.5 shows a graph plotting the relationship between network size, leader node ratio, and

potential field reconvergence time. From Figure 4.5, it was shown that as the ratio of the leader

node is larger the time to reconvergence becomes shorter, that is, the convergence performance

improves as a whole. When the number of nodes is 64 and the ratio of the leader node is 0.047,

and when the ratio of the leader node is 256 and the ratio of the leader node is 0.063, this trend is

not applicable and the reconvergence time is prolonged, but this is caused by the occurrence of the

oscillation due to the delay occurring when the control feedback propagates. However, although

the reconvergence time itself is long, the generated oscillation is extremely fine without affecting

the path control. From the above, there is a trade-off relationship between the ratio of the leader

node and the convergence speed, and it is necessary to properly set the ratio of the leader node

according to the control request.
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Table 2: Number of nodes and leaders

The number of nodes The number of leader nodes The percentage of leaders to all nodes

64 nodes 1 leader nodes 1.563%

2 leader nodes 3.125%

3 leader nodes 4.688%

4 leader nodes 6.250%

5 leader nodes 7.813%

6 leader nodes 9.375%

7 leader nodes 10.938%

144 nodes 1 leader nodes 0.694%

2 leader nodes 1.389%

4 leader nodes 3.472%

7 leader nodes 4.861%

9 leader nodes 6.250%

11 leader nodes 7.639%

13 leader nodes 9.028%

16 leader nodes 11.111%

256 nodes 1 leader nodes 0.391%

2 leader nodes 0.781%

3 leader nodes 1.172%

4 leader nodes 1.563%

8 leader nodes 3.125%

12 leader nodes 4.688%

16 leader nodes 6.250%

20 leader nodes 7.813%

24 leader nodes 9.375%

28 leader nodes 10.938%
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Table 3: Field settings

The number of nodes The number of sink nodes The square measure of the field

64 nodes 4 sink nodes 350× 350m2

144 nodes 6 sink nodes 550× 550m2

256 nodes 8 sink nodes 750× 750m2

Table 4: Network environment in the simulation experiment

Data Value

The size of each data packet 128 bytes

The size of each control packet 30 bytes

The size of each ID packet 28 byte

The size of each Ack packet 22 bytes

The number of buffer of each sensor (non-sink) node 1

The transmission interval of ID packet 1 sec　

The potential update interval 50 sec

The control interval 50 sec
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5 Conclusion and Future Work

In this paper, we applied Effective Leadership model to self-organizing network control mecha-

nisms and proposed potential-based routing based on Effective Leadership model for conquering

information uncertainty. Through simulation experiments, we investigated the relationship among

the network size (the number of nodes), the ratio of leader nodes, and the acceleration of the adap-

tation speed to environmental changes. Simulation results showed that as the number of nodes

increases, a lower ratio of leader nodes is needed to facilitate the adaptation speed. Moreover, we

showed that the acceleration amount of the adaptation speed deeply depends on the average hop

length to the nearest leader node.

For future work, we will investigate the relationship among the network size (the number of

nodes), the ratio of leader nodes, and the acceleration of the adaptation speed in cases with more

complicated network topologies such as random networks and small world networks. Then, we

develop a network control mechanisms conquering information uncertainty and prove its advan-

tages.
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