Master’s Thesis

Title

Mobility-Controlled Flying Routers

for Information Centric Networking

Supervisor

Professor Masayuki Murata

Author

Taku Kitagawa

February 6th, 2017

Department of Information Networking
Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Mobility-Controlled Flying Routers

for Information Centric Networking

Taku Kitagawa

Abstract

Information Centric Networking (ICN) is expected as a novel network architecture in the fu-
ture. Unlike existing location-oriented architectures represented by IP networks, ICN has a major
feature that routing is controlled by a content name rather than a node address. Although ICN
has various advantages from its design concept, we especially focus on the fact that ICN can real-
ize various control mechanisms utilizing the high flexibility of name. In the existing works, data
control and configuration at nodes are mainly considered, but the scope of this work extends to
the physical control of equipment in the current situation where Internet of Things (IoT) gathers
much attention from many researchers. In order to explore the feasibility of flexible control over
ICN, we consider a physical movement control over ICN relay nodes installed on a drone. We
name it Flying Router (FR)”. Then, we propose and design Router-Movable Information Centric
Networking (RMICN) as a method to realize communication between disjoint networks, which
are difficult to communicate with each other because of their distance, using FRs. In addition, we
aim to show advantages of controlling router’s movement with ICN. In this paper, we compare
RMICN and the same approach based on Delay Tolerant Networking (DTN), which is commonly
used as a communication method between disjoint networks, to evaluate the proposed RMICN.
As aresult, we could show design benefits of controlling router’s movement with ICN and shorten

content retrieval time in simulation.

Keywords

ICN (Information Centric Networking)
NDN (Named Data Networking)

in-network processing
disjoint networks
movable router

path planning

Contents

1 Introduction

2 Related Work

2.1 Information Centric Networking / Named Data Networking
2.2 Realizing Controllability with ICN
22.1 Controlof EndDevices
222 Controlof Relay Nodes
2.3 Delay Tolerant Networking (DTN)

Router-Movable Information Centric Networking (RMICN)

3.1 UseCases oo it e e e e
3.1.1 Sensor Networks
3.1.2 Disaster Networks

32 DesignGoals

3.3 Target Environmental Model and Constructing Networks with Movable Routers .

3.4 Supporting Functions by Seamless Extension of ICN
341 Security e
34.2 Push-Type Communication

3.5 Leveraging Content-Based Essence
35.1 ControlwithName
3.5.2 Content-Based Parameter

353 ContentCache e

Architectural Design

4.1 Enhancement Componentso
4.1.1 Custom Data Structures L
4.1.2 Custom Managers
4.1.3 Custom Strategieso

4.2 Processing SEqUENCE v v it e e e e e e e e

4.2.1 Discovering Intra-region networks (Discovery Phase)

10
10
12
12
14
15

17
17
17
17
18
20
22
23
24
25
25
26
26

4.2.2 Delivering Messages (Crawling Phase)
4.3 Applicative Extended Control with Names and Strategies
43.1 ContentControl

43.2 DroneControl e

Algorithms of Path Planning

5.1 Calculating Inter-region network Lo
5.1.1 Vehicle Routing Problem (VRP),
5.1.2 Improved Ant Colony Optimization TACO)

5.2 Calculating Alternative Path L L.

Evaluation of RMICN
6.1 Evaluation Methods

6.2 EvaluationResults

7 Conclusions and Future Work

Acknowledgements

References

62
62
62
63
63

65
65
67

71

72

73

List of Figures

O 0 39 O U A WD =

e e e e e Y Sy S
N O v AW NN = O

18
19
20

21

22

23

24

Protocol stacks of IP networking and NDN (cited from the paper [1]) 11
Message Ferry (One of DTN Methods) 15
Sensor networks (smart agriculture) 18
Disasternetworks oL 18
Targetscenariol e 21
An Inter-region network oL oL 21
Scale of RMICN e 23
A class diagram of nodes constituting RMICN 28
A class diagram of Info Manager 33
A class diagram of Path Manager 37
A class diagram of Buffer Manager, 42
A class diagram of Connection Manager 43
A class diagram of Movement Manager 45
A sequence diagram starting from discover() of DRPath Manager. 50
Discover Intra-regionnetworks, 51
A sequence diagram starting from onL2Connected() of Connection Manager . . . 52

A sequence diagram starting from onFaceConnectet() of Connection Manager

when DR and FR are connected 54
A sequence diagram starting from onDRReady() of DRInfo Manager 55
A sequence diagram starting from deliver() in DRPath Manager 57

A sequence diagram starting from onFaceConnected() of Connection Manager

when FR and GW areconnected 58
A sequence diagram relating to message exchange 59
An example of VRP (cited from the paper [22]) 63

Location of wireless nodes used in the evaluation and the calculated Inter-region
network: CASE1 65
Location of wireless nodes used in the evaluation and the calculated Inter-region

network: CASE2 e 65

25

26

27

28

29
30

Location of wireless nodes used in the evaluation and the calculated Inter-region
network: CASE3 L
Location of wireless nodes used in the evaluation and the calculated Inter-region
network: CASE4
Location of wireless nodes used in the evaluation and the calculated Inter-region
network: CASES
The average of content retrieval time in the scenario of sensor networks
The average of content retrieval time in the scenario of disaster networks

The effect of content cache inRMICN

List of Tables

O 0 39 O U A WD =

O NN = e e e e
S LW NN A WD = O

An example of the signaling name in VoCCN
An example of the control name in Dashover CCN
An example of the name for controlling lighting in a smarthome
The namespace of Control Command in NFD Management Protocol
Custom data Structures L. e e e e e e
Custom Managers v v v v e e e e e e e e e e e e e e e
Custom Strategies v v i i e e e e e e e e e e e
An example of custom data structure: Face Table of Nodel in Figure 6
An example of custom data structure: Face Table of GW1 in Figure 6
An example of custom data structure: Face Table of FR1 in Figure 6
An example of custom data structure: Face Table of DR in Figure 6
An example of custom data structure: Path Table of DR in Figure 6.
An example of custom data structure: Path Table of FR1 in Figure 6
An example of custom data structure: Node Table of FR and DR in Figure 6 . . .
Parameters used for the evaluation
The average of content retrieval time in the scenario of sensor networks

The average of content retrieval time in the scenario of disaster networks

1 Introduction

Many years have passed since Internet became widespread, and IP is persistently used as a com-
munication protocol even today. The original purpose using IP was to communicate between hosts
such as Telnet and e-mail, so location-oriented communication protocols were considered natural,
and therefore they became popular. Over time, however, Network usage patterns are changing
from location-oriented style to content-oriented style to focus on contents. This is because at-
tractive services using Internet appeared one after another due to the explosive spread of Internet.
On services such as web and video distribution, the users are not interested in with which nodes
they are communicating and they are only interested in contents delivered by services (web pages,
movies, music, etc.). For this reason, it is considered problematic that the current network usage
and the current network architecture are out of alignment in recent years.

Various problems have arisen due to the divergence of the network usage and architecture.
One of the most widespread examples is the increase in processing load on servers and relay
nodes. In recent years, the amount of traffic in the network is increasing explosively due to the
popularity of smartphones and the capacity enlargement of contents, but ordinary IP protocols have
limited mechanism for handling these problems. There is a Content Delivery Network (CDN) as
a technology for constructing an optimal network for content delivery, but it is unable to deal with
traffic of the entire network because it is implemented at the application layer and it takes high
cost that a service provider individually deploys it as necessary.

Information Centric Networking (ICN) gathers attention as a novel network infrastructure that
efficiently handles enormous contents. ICN is designed as a content-oriented network architec-
ture and it has many advantages over IP because it eliminates the dissociation of the current
network usage and the current network architectures. In particular, a control mechanism based on
the name of an interesting unit has gained much attention in recent years. Thus, ICN is expected
as a communication infrastructure of IoT which needs various device cooperation and configu-
ration because it can handle in-network processing with name. Moreover, not only general data
control and signaling in in-network processing but also physical control of devices are taken into
consideration in recent years, and then research works related to control with ICN become more
exciting.

Physical control of end devices has been considered in previous works, however, physical

control of relay nodes is not much considered. In order to explore the feasibility of flexible control
over ICN, we consider "movement” as physical control of relay nodes and we think about Flying
Router (FR), which is an ICN router installed on a drone, and its physical movement by ICN
control in this research. Then, we propose and design RMICN (Router-Movable Information
Centric Networking) as a method to realize communication between disjoint networks, which are
difficult to communicate with each other because of their distance, via movement of FRs. In

addition, we set our goal to show advantages of controlling router’s movement with ICN.

2 Related Work

2.1 Information Centric Networking / Named Data Networking

Unlike existing location-oriented architectures such as IP networks, there is a major feature that
routing is controlled by content name rather than node address in ICN. Named Data Networking
(NDN) and Content Centric Networking (CCN) [1, 2] are well-known as active research works
as ICN projects, and we also focus on NDN as ICN (There is little difference in design concepts
between NDN and CCN, because their original projects are the same). The characteristics of NDN

are showed as follows:

e Request / response type communication is realized based on the name of contents
e Relay nodes in the network layer can cache contents.

o Content itself is encrypted and relay nodes authenticate content.

NDN adopts a hierarchical name structure similar to URI as content name. Then, communica-
tion is realized by exchanging a request message with name and a content with the corresponding
name. The content request message is referred to as Interest, and content message is referred to
as Data. NDN has a mechanism for handling contents efficiently, and the best example is caching
contents at relay nodes. Content cannot be identified in the network layer in IP, but it is possible
with NDN. Therefore it is possible to reduce load by caching contents in relay nodes and return-
ing them according to other requests. In terms of security, unlike the connection oriented security
mechanisms in IP networks such as SSL and IPSec, content itself rather than terminal-to-terminal
connection is authenticated and encrypted in ICN. Therefore it can be said that ICN normally has
the function to carry contents safely in any communication environment and protocol.

Figure 1 is protocol stacks of IP networking and NDN (cited from the paper [1]). In both
cases, the network layer needs to match upper and lower layers, and so realizing a thin-waist
stack, e.g., simplified network layer, is cited as the reason for the success of any communication
protocols. Following this fact, NDN also constitutes a thin-waist stack like IP networking, and
it makes requests through Face which is in the second layer lower than IP (Also interface of IP
communication can be used as Face). Besides, a strategy layer is newly added to NDN as a

point which is different from the protocol stack of IP networking. The strategy layer in NDN

10

decides how to transfer Interest and Data. In IP networks, messages are transferred according to
routing tables constructed by routing protocols, but in NDN, in addition to this routing processing,
the strategy layer defines when and where to forward the message and what kind of processing

intervenes during forwarding messages.

N | A A A A A A A AN NPT)
.)
@mail WWW phone... \ : ; (browser chat ... \
\SMTP HTTP RTP... / \ File Stream ... /
TCP UDP ... ' Individual apps | Security
IP < Every node \i::::;<
ethernet PPP ... ' Individual links Strategy
CSMA async sonet ... IP UDP P2P BCast ...

copper fiber radio ... ‘ ‘ copper fiber radio ...

G))

Figure 1: Protocol stacks of IP networking and NDN (cited from the paper [1])

The forwarder of NDN has the following main five tables in order to realize communication

using Interest and Data.

FIB (Forwarding Information Base)
FIB is a table that determines Face which is the forwarding destination of Interest received
from downstream. A node receiving an Interest transfers it to upstream with reference to

FIB.

PIT (Pending Interest Table)
PIT is a table that stores information of Faces where Interest is received and sent. A node

receiving a Data returns it to the requester by referring to PIT.

CS (Content Store)
CS is a table that stores caches of Data. A node receiving Interest returns the Data to the

requester when the corresponding entry is in CS.

RIB (Routing Information Base)
RIB is a table that stores routes. RIB is updated manually or by routing protocols. Entries

of FIB are generated from entries of RIB.

11

Strategy Choice Table
Strategy Choice Table is a table that stores strategies corresponding to each content. A node

receiving an Interest or a Data applies a strategy to content by referring to Strategy Choice

Table.

The names of contents are used for storing and referring to these tables. PIT and CS use
complete content names, FIB and RIB, and Strategy Choice Table use the prefix of content names.
On the other hand, at the end nodes, in order to realize exchange of Interest and Data, the prefix of
the content name and the listener (application) are registered in advance to the face managed by the
end nodes. Then, when a message matching the prefix of the registered name arrives, the callback
function defined in the listener is called for each type (Interest or Data), so that the application can

receive the forwarded message.

2.2 Realizing Controllability with ICN

In recent years, there has been research works to utilize names in ICN not only for forwarding
but also for in-network processing. We consider the controlled object as two types, end devices
and relay nodes. In ICN, forwarding and in-network processing can be performed seamlessly by
sending control messages to the control object and the control content with flexible name, and it is
possible to bring benefits that are not found in location-oriented communication architectures. For
example, considering the case of specifying and controlling a certain device, in a location-oriented
communication protocol such as IP, a conversion table which maps from the device name to the
device address is required in the application layer. This is a disadvantage because the development
of application becomes complicated in spite of the demand for just controlling devices. In the
following, we introduce existing researches in ICN regarding controlling objects, and we also

show the application scenarios of our proposal.

2.2.1 Control of End Devices

As existing works for controlling end devices, there are VoOCCN (Voice over CCN) [3], Dash over
CCN [4], etc. VoCCN delivers voice calls similar to VoIP over CCN, and its characteristic is that
signaling is carried out when establishing a voice call using name. Normally, VoIP carries out

communication of signaling data and voice data through separate paths, but VOCCN can make

12

these distinctions by name, and it can limit the number of used paths to one. An example of the
signaling name is shown in Table 1. This is an example in which an INVITE message in SIP

protocol is encrypted and transmitted to Bob (the other person on the phone).

Table 1: An example of the signaling name in VoCCN

Name

/{domain)/sip/bob/invite/E _pkB (sk) /E_sk (SIP_

INVITE message)

On the other hand, Dash over CCN studies streaming delivery of video and audio using CCN.
In the features of the approach, setting the quality of contents in the name field of Interest makes it
possible to change the settings such as the resolution and the bit rate of the contents of video and
audio on every chunk. An example of the name is shown in Table 2. It can be seen that the name is
configured in units of segments and the setting of video quality such as resolution is also included.
In IP communication, when changing the setting like this, it is necessary to separately transmit an
IP packet with a message indicating the setting. It may occur configuration lag. In ICN, however,
it is possible to designate content request and its quality at the same time in chunk units, so it can

seamlessly retrieve a stream corresponding to the name.

Table 2: An example of the control name in Dash over CCN

Name

/DashOverCCN/hfp/www-itec.uni-klu.ac.at/
ip/datasets/Mmsysl2/BigBuckBunny/bunny_2s/
bunny_2s_150kbit/bunny_2sl.méds/

In addition, applicable control in IoT environments has also been studied because loT gathers
attention from many researchers in recent years [5, 6]. Because loT has many devices connected
to the network, it can be said that a content-oriented communication protocol like NDN is more
suitable than a location-oriented communication protocol such as IP. The paper [5] considers the
application of NDN to the IoT environment, and as a part of it, physical control of the end device
in IoT is described. As an example of physical control of the end device, control of lighting in a

smart home is cited. In this example, among the lighting fixtures in the living room, control of

13

turning on / off the table lamp is performed. Its name is shown in Table 3.

Table 3: An example of the name for controlling lighting in a smart home

Name

/LivingRoom/Lighting/TableLamp/ON

/LivingRoom/Lighting/TableLamp/OFF

In IoT environments, besides, ICN gathers attention not only in data control and signaling but
also in physical control such as temperature adjustment of air conditioners, change of angle of

surveillance cameras, operation of cleaning robots, and so on.

2.2.2 Control of Relay Nodes

As existing works for controlling end devices, there is NFD Management protocol [7] in NFD
(NDN Forwarding Daemon) [8] which is the forwarding daemon of NDN. The NFD can control
configurable components such as Face, RIB, Strategy Choice Table through its controller, and the
NFD Management protocol is used as a protocol supporting communication with various man-
agers using Interest / Data for controlling them. Control Command [9] is defined as a control
format, and NFD is controlled by configuring the name of the signed control Interest like Table
4. Control Command designates that it is Interest for NFD control in {prefix}, and designates
a manager which is control target in {management-module}, and designates control name,
control parameters and options after that. This makes it possible to control Face, FIB, Strategy

Choice Table which are components of NDN by name.

Table 4: The namespace of Control Command in NFD Management Protocol

Name

/{prefix}/{management-module}/{command-
verb}/{control-parameters}/{command-

interest-components}

However, there is control of relay nodes as configuration of routers above, but physical control
of relay nodes with ICN is not much considered. This is because relay nodes just forward messages

and does not have the application layer..Therefore, in this research, we focus on physical control

14

of relay nodes with ICN in order to verify the feasibility of flexible control over ICN, and we aim
to control a movable router as concrete physical control. Since ICN is location-free unlike IP, it
is thought that ICN has a high affinity to movable routers. Because, movement of routers reduces
the effect of routing using a location identifier such as an IP address, while routing using a content

name does not depend on location, and so it is not easily affected by movement of a router.

2.3 Delay Tolerant Networking (DTN)

By controlling routers’ movement targeted in our research, it becomes possible to provide connec-
tivity between disjoint networks that are not connected to each other. This is realized by a router,
receiving a message from one network and buffering the message. The physical router moves to
the position where the router can connect with the other network, and then transfers the message
to the other network. Delay Tolerant Networking (DTN) is different from our networking with the
mobility controllable router proposed in this research, but it is cited as one of existing technologies
to provide communication between such disjoint networks. There are various types of DTN, but
especially among them, Message Ferry [10] and Data Mule [11] are proposed as networking to
move relay nodes similar to our research. Message Ferry is a networking system that sends and
receives messages between nodes that can not communicate directly because their positions are
far apart like the Figure 2. Message Ferry uses relay nodes (ferries) moving on a predetermined
route for transporting messages. A relay node receives messages if it can communicate with a
node in a cluster and the relay node sends the messages if it holds the message destined for the
connected node. On the other hand, Data Mule is a networking system similar to Message Ferry,
but the different points are that it is aimed at collecting data accumulated in a fixed sensor and that

available routes may change dynamically.

O Cluster
@ Node

&
1
1 | .
_ Predetermined
Receive message @ — p crawling path

of relay node

-~ 4____

Figure 2: Message Ferry (One of DTN Methods)

15

As described above, there are several methods for providing connectivity between disjoint
networks by moving relay nodes in DTN. As a related research topic, there is an active discus-
sion regarding path planning of movable router: how the movement routes of relay nodes are
determined [12—-15]. In Message Ferry and Data Mule, however, relay nodes do not determine
the traveling route depending on the characteristics of messages and contents, but they carry out
location-oriented path planning considering only the position of each node. On the other hand, the
networking with movable routers proposed in this paper is essentially different from DTN because
routers carry out message-driven mobility control, and furthermore, it can bring content-oriented
benefits to communication between decoupled networks by content-oriented mobility control with

ICN.

16

3 Router-Movable Information Centric Networking (RMICN)

The purpose of our research is to propose a networking system (RMICN: Router-Movable Infor-
mation Centric Networking) that carries out controlling movement of routers based on content,
and clarifies the benefits of disjoint-networks communication by performing movement control of
routers with ICN. This chapter shows use cases to what kind of scenario RMICN can be applied,
the design goals of RMICN, and the target environment and the method of constructing a network

by movable routers.

3.1 Use Cases

In this section, we describe use cases to what kind of scenario RMICN can be applied. RMICN
can be basically applied in the case where there are disjoint networks which cannot be connected
to each other because their distance is far away. In particular, we will introduce sensor networks
and disaster networks as cases suitable for drones which are used for the body of movable router

in this paper.

3.1.1 Sensor Networks

There are various uses in sensor networks and they are considered as a major factor of IoT. Es-
pecially among them, smart agriculture applying sensor networks to agriculture is expected as a
use case. Smart agriculture aims at reducing cost and increasing quality of agriculture utilizing
robot technology and ICT, and sensor networks in Figure 3 are used for the purpose of collect-
ing information on agricultural products (e.g., temperature, humidity and soil moisture content).
However, it is easy to assume that agriculture is deployed in a broad area and a depopulated area
with poor communication infrastructures, so it is not easy to make connectivity among sensor
nodes. Therefore, introducing movement-controllable routers to provide connectivity among sen-
sor nodes (between disjoint networks) is considered to be useful to this service scenarios which

have attracted much attention recently.

3.1.2 Disaster Networks

When the function of a communication infrastructure is stopped or destroyed due to a disaster,

networks that were originally connected may be disjoint. Therefore, as a use case of movement-

17

Sensor (temperature, humidity, soil moisture, etc.)

.\‘I \‘I \.’ \" E’ \.’ \" \" .\.I \‘I \" \.’ .\‘I \‘I \.’ \‘/
= "E = =
é///%///?///rjjj

Figure 3: Sensor networks (smart agriculture)

controllable routers, communication between disjoint networks occurring at the time of a disaster
is focused on. In the case of a disaster, people may evacuate to a big building, obtain information
on disasters, and exchange safety information. movement-controllable routers can provide con-

nectivity between divided points such as evacuation places, municipalities and victims in Figure

4.

Shelter

L

Shelter

9@9

Sufferer

Figure 4: Disaster networks

3.2 Design Goals

In this paper, we aim to design RMICN which is a network with movable routers as a seamless
expansion of ICN. As a result, RMICN can realize all features that ICN provides, and it can

also handle disjoint-networks communication. In addition, since RMICN incorporates ICN for

18

Municipality

Disaster information

movement control of routers, it is possible to incorporate the content-based features for controlling
movement path and communication. In this paper, we focus on the following main three features

and leverage them as the design policy of RMICN.

Control with Name

RMICN can incorporate flexible control using ICN name into its networking. Movement control
of routers is one of them. Besides, RMICN is possible to realize various controls other than move-
ment control using naming schemes that ICN provides. For example, by including the meaning of
the highly urgent content to its name, routers can recognize the content highly urgent, and the pri-
ority and the movement speed can be improved when delivering it. In addition, if someone wants
to retrieve sensor information at a certain arbitrary location, it is possible to seamlessly expand the
function to routers without losing its router functions by defining the name and adding software
(the function to move to the location and create content of sensing result) and hardware (sensor) to
the router. In this paper, we focus on the point that ICN can seamlessly incorporate these practical

controls with name into its networking, and we design a foundation to realize these controls.

Content-Based Parameter

Since a primitive of ICN communication is content, path planning of movable routers using
content-based parameters such as content arrival rate and retrieval time can be performed. It is
impossible for location-oriented communication architectures to judge whether a message han-
dled in the network layer represents a request of a content, a content itself or what kind of contents
is represented. On the other hand, it is possible for ICN to do so because ICN uses names of con-
tents as route identifiers and it can identify contents in the network layer. Since a communication
unit that is important for users is content, it is considered significant to construct a network that,
for example, informs users in disjoint networks of content retrieval time and delivers the content
within that time. Therefore, we exploit this aspect that RMICN can perform path planning utiliz-
ing content-based parameters, set content retrieval time for each content, and design RMICN to

deliver content within that time in this paper.

Content Cache

It is possible to cache contents in routers in ICN. We mentioned that movable routers provide

19

connectivity between disjoint networks via their mobility, besides, it is possible to reduce needs
to move to content providers to obtain contents. It is assumed that a mobile body responsible for
router movement normally operates with a mobile battery, and so reducing the movement distance
by caches is useful in terms of reducing power consumption. In addition, reducing the movement
distance also shortens content retrieval time, and so contents cache is also useful in terms of user
experience. In this paper, we focus on this aspect that ICN can cache contents in routers, and we

design RMICN to shorten the average time of content retrieval.

These features are the advantageous because RMICN emphasizes on the essence of ICN. As a
common point of the advantages of ICN, all the above three features are completed in the network
layer. In order to realize these features in a location-based protocol stack such as an IP network,
not only network layer but also the application layer need to be implemented, so that indepen-
dence of each layer, which is the principle of a protocol stack, is unable to be kept. On the other
hand, movable routers in RMICN can independently provide these features as functions of them-
selves, and it is possible to provide a highly applicable network which does not depend on any

applications.

3.3 Target Environmental Model and Constructing Networks with Movable Routers

RMICN uses NDN as an architecture of ICN and a drone as a mobile body of a router for perform-
ing movement control of routers with ICN. Then, a NDN router installed on a drone is configured
as a movable router, which is called a Flying Router (FR). RMICN defines a method to provide
connectivity using multiple FRs in an environment including disjoint networks, and we show an
example of the target scenario in Figure 5.

As shown in Figure 5, RMICN recognizes the target area as a hexagon, and supposes a situa-
tion in which networks (disjoint networks) that do not have mutual connectivity exist dispersedly
in the area. Each disjoint network is composed of one or more wireless nodes, and one of them
always becomes a gateway (GW) and takes charge of communication with FRs. Depot in the
figure means a departure point when FRs move, and all FRs in Depot exchange information with
each other by relaying a Depot Router (DR) which is a representative node of FRs. The position
of Depot can be dynamically and statically set, and if it is set dynamically, the average position of

all the disjoint networks is set as the position of Depot.

20

Communication range

Intra-region network
@ Inter-region network

Figure 5: Target scenario Figure 6: An Inter-region network

In this paper, a disjoint network as mentioned above is specially called an Intra-region net-
work, and a network between intra-region networks constructed by movement of FRs is called an
Inter-region network. Figure 6 shows a Inter-region network that is configured when the example
of Figure 5 is targeted. RMICN constructs an Inter-region network in the following five steps

basically.

(1) In order to discover Intra-region networks existing in the target area, a DR allocates and
circulates the subareas for each FR. The phase of discovering Intra-region networks is called

Discovery Phase.

(2) The DR generates as many paths whose departure point is Depot as the number of FRs
except for the DR. A network formed by circulating each path by the FR is called an Inter-

region subnetwork.

(3) A DR sets the Inter-region subnetworks that are in charge of crawling for each FR one by
one, and circulates the path for each FR. The phase of communicating between Intra-region

networks by FRs is called Crawling Phase.

(4) The FR sends and receives messages to the nodes (the DR or GWs) that has become con-

nectable by its moving.

(5) The FR returns to Depot by each crawling of its own Inter-region subnetwork, connects to

21

the DR, and exchanges the collected route information and messages.

This is the method of realizing communication among Intra-region networks via an Inter-
region network. As methods for finding the Inter-region subnetwork in which each FR is in charge
of the crawling, there are two approaches depending on whether FRs decide their own crawling
path autonomously or whether the representative node decides crawling paths of all the FRs cen-
trally. As described above, the latter is adopted in terms of facilitating cooperation among FRs and
the crawling paths of all FRs are determined by a DR in RMICN. A DR is a special Flying Router
that constructs an Inter-region network by gathering information of the target area with FRs, and it
instructs each FR to circulate each Inter-region subnetwork. Then, the FR which has received the
crawling instruction from a DR carries out crawling as instructed and exchanges route informa-
tion and messages when it becomes possible to connect with the GW constituting an Inter-region
network. Finally, the FR after the crawling is connected to the DR at Depot and exchanges the
route information and the messages of the whole area. The path planning in RMICN does not take
into account the communication range of wireless nodes as considered in [12]. The aim of our
research is to show the advantages that ICN brings to movement control of routers rather than to
demonstrate the accuracy of the proposed path planning compared to location-based path planning
approaches.

In addition, RMICN can be scaled according to the size of the targeted disjoint-networks. Fig-
ure7 represents scale of RMICN. RMICN can be easily scaled, and as the method, a Flying Router
called Rendezvous Router is installed at every two apexes of hexagons of areas respectively, and
communication between the hexagons is performed only by Rendezvous Routers. The behavior
of Rendezvous Routers is equal to GWs, so that without moving, route information and messages
are exchanged when connecting with FRs. Instead of simply enlarging the target area of RMICN,
it is possible to prevent the calculation time of an Inter-region network from increasing exponen-
tially by configuring hexagons by joining together. In addition, there is an advantage that contents

retrieval time is relatively shortened, especially in the use of frequent regional communication.

3.4 Supporting Functions by Seamless Extension of ICN

As mentioned in Section 3.2 that RMICN is designed as a seamless extension of ICN, RMICN’s

extension to ICN is only mobility control function and connection driven communication function

22

& N _
_’%*‘C{)Rendezvous Routtzb’
‘ -

Figure 7: Scale of RMICN

of a router. Therefore, since RMICN does not affect the communication protocol of ICN at all,
it can be said that functions realizable by ICN can also be realized in RMICN. In this paper, we

explain in particular that RMICN supports high security and push-type communication.

3.4.1 Security

In Section 2.1, we mentioned that ICN can provide high security regardless of communication
path and communication protocol unlike IP networking, because ICN makes contents themselves
secure. In a network such as RMICN where connections are frequently disconnected, it can be said
that it is not suitable to secure paths like the security extension on IP networking. This is because
when securing paths, it is necessary to authenticate at the time of connection and establish a session
at the start of communication, and so overheads involved in these processes frequently occur in
disjoint-networks communications that repeat connection and disconnection. On the other hand,
since RMICN signs and encrypts contents themselves, connections authentication and sessions

establishment are unnecessary, and it is possible to send and receive messages immediately.

23

In NDN, each node refers to the KeyLocator included in a message to obtain the name of the
key corresponding to the content and it retrieves Data with the actual key by sending the Interest
with the name to verify the signed content [16]. In this way, NDN also retrieves keys for security
use by exchanging Interest and Data, and so it can be said that security function of ICN operates

normally even on RMICN.

3.4.2 Push-Type Communication

Since ICN is based on pull-type communication as a general rule, push-type communication can
not be performed basically. However, depending on use cases, there are many cases where push-
type communication is required. For example, in sensor networks, it is considered that sensors pe-
riodically transmit sensing information, besides in disaster networks, person’s safety information
may be transmitted before requesting. So, there are some papers examining push-type communi-
cation using ICN such as a method of Pub/Sub [17], a method handling special PIT entry [18], and
a method of embedding content in name of Interest [19]. Any of them can be applied in RMICN.
In this thesis, we introduce the paper [17] which proposes Pub/Sub type communication using
NDN as a method to realize push-type communication for RMICN.

In COPSS (Content-Oriented Pub/Sub System) proposed in the paper [17], a central node
called Rendezvous Node (RN) for Pub/Sub type communication is established and furthermore
it adds a new data structure called Subscription Table (ST), which maps a content name to the
face destined to a subscriber. A subscriber sends Subscribe Message including the name of a
content in the direction of RN when the subscriber wants to subscribe the content, and the node
receiving the Subscribe Message records the name and the received face in ST. When a push-
type content is published in a publisher node, the node sends a Publish Message including the
content in the direction of RN. Then if the name is registered in ST, the node receiving the Publish
Message sends to the corresponding face. In COPSS, push-type communication based on Pub/Sub
is realized by the above procedure, and it is possible to operate COPSS in RMICN using DR as

RN and implementing ST as a new data structure.

24

3.5 Leveraging Content-Based Essence

In Section 3.2, incorporating the content-based features of ICN is mentioned as a design policy of
RMICN. In addition, we described that we focus on control with name, content-based parameter,
and content cache especially among them. In this section, we will describe how these content-

based features are utilized in RMICN.

3.5.1 Control with Name

We descibed that a DR establishes the movement paths of FRs and it makes each FR crawl along
the path for constructing an Inter-region network in RMICN. RMICN realizes the movement con-
trol of the FR, including the crawling command, to utilizing names and strategies in NDN. Re-
garding movement control of routers using name, we studied in our previous research report [20],
but the movement control was realized in the application layer instead of strategies. In addition,
the movement control was driven by receiving a normal message. In this thesis, unlike our pre-
vious paper which involves moving FRs by only the characteristics of normal messages (such as
destined location), we propose moving FRs by path planning and movement commands to per-
form communication considering cooperation of multiple FRs and handling of multiple messages.
Specifically, we propose that a DR makes an FR perform desired movement by sending an In-
terest whose details of the movement of the FR is represented by its name from the DR to the
FR. Then, the FR receiving the Interest performs movement control according to the name by its
strategy. NDN can control the equipment by its name, and NDN routers can seamlessly perform
forwarding and control of routers by separating forwarding messages and control messages in the
namespace.

In addition, as the other utilization of names and strategies, we also propose a control mecha-
nism to characterize contents which refer to the names of Interest and Data received in the process
of crawling of FRs. In this paper, we consider a process of retrieving contents autonomously in-
terrupting the crawling instructed from a DR if the requested contents are geographically close.
Message-based and content-based autonomous movement control utilizing names is a unique char-
acteristic of ICN routers and it is expected to lead to the realization of a flexible infrastructure to
enable communication between disjoint networks.. In addition, as an extensional control utilizing

this feature, we also propose an infrastructure that can easily provide extended functions for a

25

wide variety of applications in FRs. For example, considering the smart agriculture mentioned in
Section 3.1, the router itself serves as a movable actuator to provide functions such as an aerial
photographs of agricultural crops, spraying of agricultural chemicals, fertilizer, and herbicide as

contents. Then, users can use these functions only by sending an Interest to an FR.

3.5.2 Content-Based Parameter

As described in Section 3.2, RMICN uses content retrieval time as a content-based parameter and
performs path planning based on the standard of content retrieval time. In RMICN, it is possible

to regard the flow from the request to the retrieval of a content as the following three phases:

e Collecting Interest
e Collecting Data

e Delivering Data

In the above description, we show FRs which crawls in an Inter-region subnetwork calculated by
a DR constructs an Inter-region network by exchanging information and messages with the DR
at each crawling. Considering that all the FRs meet the other FRs at Depot for each crawling, it
can be seen that all contents are completely retrieved by all FRs performing crawling for the three
times. Considering from the user’s point of view, in the case where the content retrieval time is the
latest, that is, the Interest is transmitted immediately after the FR passes the Intra-region network
which the user belongs to, the crawling to retrieve the content may take four times longer in the
worst case. Therefore, if the interval of meeting at Depot is 7., the maximum retrieval time of
content can be set to 47;.. So, RMICN can notify users of the estimated content retrieval time. In
addition, RMICN performs autonomous movement control as described in Section 3.5.1 so as not
to exceed the content retrieval time. This can be realized because the communication primitive of

NDN is one-to-one exchange of Interest and Data.

3.5.3 Content Cache

Since RMICN is a seamless extension of ICN, it is possible to utilize content cache. According
to the described method above of constructing an Inter-region network, RMICN can provide the

following three cases in the cache effect (omission of phases) from the user’s viewpoint.

26

e The case that one phase (Collecting Data) can be omitted

— A user requests a content which was requested once or more from other than the Inter-

region subnetwork which the user belongs to (that is, there is a cache in the DR).

e The case that two phases (Collecting Data and Delivering Data) can be omitted

— A user requests a content which was requested once or more from the Inter-region
subnetwork which the user belongs to (that is, there is a cache in the FR constructing

the Inter-region subnetwork which the user belongs to).

e The case that all phases (Collecting Interest, Collecting Data, and Delivering Data) can be

omitted

— A user requests a content which was requested once or more from the Intra-region
network which the user belongs to (that is, there is a cache in the GW constructing

the Intra-region network which the user belongs to).

In the above cases, however, the cache size in FRs and GW is infinite, and the effect differs

depending on the cache size and the cache replacement algorithm.

27

4 Architectural Design

In this thesis, we design RMICN extending NDN. In this section, we first describe the components
to be added as an extension to NDN in Section 4.1, and then we describe the communication
method between disjoint networks using those components in Section 4.2. Furthermore, Section

4.3 describes further practical controls of FR using names and strategies.

4.1 Enhancement Components

The class diagram of nodes constituting RMICN is shown in Figure 8. As shown in Figure 8, FRs
and GWs which are constituent nodes of RMICN can be realized by adding unique data struc-
tures, managers, and strategies in addition to functions supported by NDN. The data structures
mean structures for storing data necessary for communication in RMICN, and the managers mean
objects for providing the function of actually realizing communication in RMICN using the data
structures. Then, by calling the functions of the managers in unique strategies, we realize co-
operation between NDN communication and processing such as movement control of routers in

RMICN.

Gateway (GW)

* Manager
* GWiInfo (extends Info)

Flying Router (FR)

RMICN Node
+ Data Structure
» Path Table + Data Structure
* Node Table + Face Table
» Manager "VIBuffer Store
. » Manager
: Eztlr?fo (extends Info) s NDN Node
* Movement + Buffer .
+ Strategy » Connection
» FRControl + Strategy
* Message
T * Neighbor
Depot Router (DR)
* Manager

» DRInfo (extends FRInfo)
+ DRPath (extends Path)

Figure 8: A class diagram of nodes constituting RMICN

There are four types of data structures, respectively called Face Table, Buffer Store, Path Table,

28

and Node Table. A role of each data structure is shown in Table 5.

Table 5: Custom data structures

Data Structure Role Implemented by
Face Table Store the node name and connection state of the node for | All nodes
each Face
Buffer Store Store messages waiting for each Face All nodes
Path Table Store Inter-region subnetworks that compose the Inter- | FR « DR

region network

Node Table Store the name, type, and location of all the nodes that con- | FR + DR

struct the Inter-region network

There are five types of managers, respectively called Info Manager, Buffer Manager, Connec-
tion Manager, Path Manager, and Movement Manager. A role of each manager is shown in Table

6.

Table 6: Custom managers

Manager Role Implemented by
Info Manager Manage information necessary for RMICN All nodes
Buffer Manager Manage buffers for each Face All nodes
Connection Manager Manage the connection state of Faces All nodes
Path Manager Manage paths of the Inter-region network FR - DR
Movement Manager Manage movement of nodes FR * DR

There are three types of strategies, respectively called Message Strategy, Neighbor Strategy,
and FRControl Strategy. A role of each strategy is shown in Table 7.

Nodes of RMICN operate by implementing these data structures, managers, and strategies,
but these are different depending on the type of the node. All nodes need Face Table and Buffer
Store as data structures, Info Manager, besides, Buffer Manager, and Connection Manager as man-
agers, besides, Message Strategy and Neighbor Strategy as strategies. For GW, there is no need
for additional, but for FR and DR, Path Table and Node Table as data structures, Path Manager

and Movement Manager as managers, FRControl Strategy as strategies are necessary in addition.

29

Table 7: Custom strategies

Strategy Role Implemented by

Message Strategy Perform forwarding normal messages All nodes

Neighbor Strategy | Perform exchanging information such as route information | All nodes

with connected nodes

FRControl Strategy | Perform movement control of FRs FR - DR

Since GW, FR, and DR require different functions when managing data structures and exchanging
information, GW has GWInfo Manager that inherits from Info Manager, and FR has FRInfo Man-
ager that inherits from Info Manager, and DR has DRInfo Manager which inherits from FRInfo
Manager. Likewise, since FR and DR require different functions when performing path control of

FRs, DR has DRPath Manager that inherits from Path Manager.

4.1.1 Custom Data Structures

In order to construct a network involving movement of routers, RMICN adds the following data

structures to the nodes which are not found in NDN. Their details are shown below:

Face Table

Face Table is a table for storing the Face ID, the name of the destination node, and the connection
state by each node, and it is managed by Info Manager. In RMICN, each node has a unique name,
and uniquely creates Face for each node (DR, FR, GW or Node) that may be connected. The nodes
that may be connected mean, for FR, DR and GW in its Inter-region subnetwork, for GW, FR and
the Nodes in its Intra-region network. It should be noted that the connection state is represented by
a logical type and it is used when referring to whether the face is connected when the node sends
a message. For example, in the Figure 6, it is possible that Face Tables of Nodel, GW1, FR, and
DR will look like Table 8 - Table 11.

Buffer Store
When forwarding a message, RMICN forwards the message if the destination Face is connected,
but it buffers the message if it is not connected. Buffer Store is a buffer space of messages created

for each face, and it is managed by Buffer Manager. Then, when a Face becomes a connected state

30

Table 9: An example of custom data structure:
Table 8: An example of custom data structure:
Face Table of GW1 in Figure 6

Face Table of Nodel in Figure 6
Face ID | Node Name | Connected
Face ID | Node Name | Connected
facel FR1 false
facel GW1 true
face2 Nodel true

Table 10: An example of custom data structure:
Table 11: An example of custom data structure:
Face Table of FR1 in Figure 6

Face Table of DR in Figure 6

Face ID | Node Name | Connected

Face ID | Node Name | Connected
facel DR false

facel FR1 false
face2 GWI1 false

face2 FR2 false
face3 GW2 false

face3 FR3 false
face4 GW3 false

by connection event, the node sends all messages to the face in Buffer Store.

Path Table

Path Table is lists representing an Inter-region network when a DR is a gateway or representing an
Inter-region subnetwork when an FR is a gateway. It is managed by FRInfo Manager. Path Table
is implemented in all FRs and a DR, but since GWs and Nodes do not require the configuration
information of an Inter-region network, they do not implement Path Table. The list representing
Inter-region subnetwork has meaning in order which means each FR crawls along GWs in that
order in the Inter-region subnetwork. As an example in Figure 6, Path Table of the DR is shown

in Table 12, and Path Table of FR1 is shown in Table 13.

Table 12: An example of custom data structure:

Path Table of DR in Figure 6 Table 13: An example of custom data structure:

FR Name | Path Path Table of FR1 in Figure 6

FR1 GW1-GW2—GW3 FR Name | Path

FR2 GW4—-GW5—GW6—-GW7 FR1 GWI1-GW2—-GW3
FR3 GW8—-GWI9—-GWI10—-GW11

31

Node Table

Node Table is a table for storing name, type, and location of all the nodes constituting the Inter-
region network, and it is managed by FRInfo Manager. For the same reason as Path Table, only
FRs and a DR implement Node Table. In addition, the location entry stores the position of Depot
for a DR, the place where it is located for GWs, and whether or not at Depot for FRs. For example,
Node Table of all FRs and a DR in Figure 6 is shown as Table 14.

Table 14: An example of custom data structure: Node Table of FR and DR in Figure 6

Node Name | Node Type | Location
FR1 FR Not Depot
FR2 FR Not Depot
FR3 FR Not Depot
DR DR Depot
GWI1 GW Locl
GW2 GW Loc2
GWI11 GW Locll

4.1.2 Custom Managers

In this paper, we add a module called a manager to the node as a mechanism that provides a
function to construct a network that actually involves router movement using the data structure

defined in Section 4.1.1. Details of each manager are shown below:

Info Manager

Info Manager is a manager whose main purposes are the management of data structures and the
exchange of information between nodes. It is implemented in a RMICN node. However, functions
on the management of data structures and the exchange of information between nodes depend on
the types of node (Node, GW, FR, or DR), so that GWInfo Manager inheriting from Info Manager
is implemented for GW, FRInfo Manager inheriting from Info Manager is implemented for FR,

and DRInfo Manager inheriting from FRInfo Manager is implemented for DR. Figure 9 shows the

32

class diagram of Info Manager implemented in each node.

DRInfo_M

Info_M

FaceTable

onlL2 Connected()
onFaceConnected()
registerFR()
updateRIB()
updateFaceTable()
retrieveRoutes()

L}
FRInfo_M

PathTable
NodeTable

++ A+ o+ |+

+ onL2Connected()
+ onFaceConnected()
+ registerFR()

+ updatelnfo()

+ onDRReady()

- isAlIFRsAtDepot()

onlL2Connected() GWinfo_M
onFaceConnected()
registerFR() + registerFR()
updatePathTable()
updateNodeTable()
updatelnfo()
retrievelnfo()
onDRReady()

I T T S S S [

Figure 9: A class diagram of Info Manager

Figure 9 shows the main fields and methods implemented in each Info Manager. However,

as mentioned above, since the functions of the managing the data structure and the exchanging

information are different depending on the types of node, different methods are implemented, and

methods are redefined to express the functions required by each Info Manager. Table 15 gives an

overview of the role of each method. In the case that the implementation of the method is empty,

it is represented by ’-’.

Table 15: Methods implemented in Info Manager

Method

Manager

Role

onL.2Connected() Info

33

onL2Connected()

FRInfo

This is an event litsener called to detect a new second layer
connection not recognized as a face. First, when the current
phase is Discovery Phase, calling stop() of Movement Man-
ager stops movement of the FR. Then, in order to communicate
with connected node, it creates a Face to the node. Besides,
it sends an Interest with the name ”/Neighbor/{FaceID}
/RegisterFR/{Name}” in order to register its own node (FR)
as a communication node to the connected node, from the created
Face. Here, ID of the Face from which the Interest is transmitted
is inserted into FacelD, and the name of its node is inserted into

name (The same applies hereafter).

onL2Connected()

DRInfo

onFaceConnected()

Info

This is an event listener called when a Face is connected.
In order to obtain route information from the connected
node, it sends an Interest named ”/Neighbor/{FaceID}

/RetrieveRoutes” from the connected Face.

onFaceConnected()

FRInfo

Regardless of the current phase (Discover or Crawling), it does
nothing if the type of the connected node is Node, FR, or DR.
When the type is GW, in the case of Discover Phase or the case of
Crawling Phase and its GW is included in its own Path Table (that
is, the GW belongs to its Inter-region subnetwork), it performs the

same processing as onFaceConnected() in Info Manager.

onFaceConnected()

DRInfo

If the type of the connected node is FR, it sends an Interest
named ”/Neighbor/{FaceID}/RetrieveInfo” from the
connected Face to obtain route information and entries of Node

Table of the connected node.

registerFR()

Info

This is a method called when a request of FR registration is re-
ceived. In this method, we refuse the registration (only GW and

DR will accept FR registration).

34

registerFR()

GWInfo

This is a method called when a request of FR registration is re-
ceived. By calling updatelnfo(), it registers the FR information in

Face Table.

registerFR()

FRInfo

This is a method called when a request of FR registration is re-
ceived or FR registration is completed. If it is called by a re-
quest of registration, the registration is refused and finished, but
if it is called at the completion of registration, by calling up-
dateFaceTable() and updateNodeTable(), information of the con-
nected node can be stored in Face Table and Node Table. Then,
when the current phase is Crawling Phase, it calls onFaceCon-
nected() of Connection Manager and sends an Interest named
”/Neighbor/{FaceID}/onFaceConnected” to the con-

nected node.

registerFR()

DRInfo

This is a method called when a request of FR registration is
received. It performs the same processing as registerFR() of

GWInfo Manager.

updateRIB()

Info

It updates RIB.

updateFaceTable()

Info

It updates Face Table.

retrieveRoutes()

Info

This is a method called when exchanging route information with
the connected node. It converts routing information owned by
itself into a character string to store it as a message. Specifically,
it converts the list of content names registered in RIB and the list
of content names provided by the applications registered in Face
into a character string in JSON format. However, it excludes the

route information whose next hop is the connected node.

updatePathTable()

FRInfo

It updates Path Table.

updateNodeTable()

FRInfo

It updates Node Table.

updatelnfo()

FRInfo

It updates RIB and Node Table by calling updateRIB() and up-
dateNodeTable().

35

updatelnfo()

DRInfo

It updates RIB and Node Table by calling updateRIB() and up-
dateNodeTable(). Then, it also calls isAIIFRsAtDepot() and if all

FRs are at Depot, it calls onDRReady() as the trigger.

retrievelnfo()

FRInfo

This is a method called when exchanging route information with
the connected node. It converts route information and entries of
Node Table into a character string. Route information is con-
verted by calling retrieveRoutes() and entries of Node Table are
converted into a character string in JSON format except for the
entries whose node type is FR or DR and whose name is not one

of the own nodes.

onDRReady()

FRInfo

This is a method called when a DR retrieves information from
all FRs and becomes available for the next crawling. In order to
retrieve information from the DR, it sends an Interest named "url

/Neighbor/FacelD/Retrievelnfo” to the DR.

onDRReady()

DRInfo

In order to advertise that the DR retrieves information from all
FRs and it is ready to move onto the next crawling, it sends an
Interest named ”/Neighbor/{FaceID}/onDRReady” to all
FRs. Then, in order to move to the next crawling, it calls onDR-

Ready() of Path Manager.

isAlIFRsAtDepot()

DRInfo

This is a method to check whether all FRs are at Depot. As pro-
cessing, it refers to Node Table, and if the locations of entries

corresponding to all FRs are Depot, TRUE is returned.

Path Manager

Path Manager is a manager having functions for configuring an Inter-region network. The func-

tions of Path Manager depend on the role of FR. In the case of DR, it configures an Inter-region

network from the location of an Intra-region network and the number of FRs. On the other hand,

in the case of FR, it performs processing about autonomous route change. Therefore, note that DR

36

has DRPath Manager that inherits from Path Manager as Path Manager. Besides, not only the con-
figuration of the Inter-region network but also the discovery processing of Intra-region networks
are performed by Path Manager. The class diagram of Path Manager implemented for FR and DR
is shown in Figure 10. For the field variables and the methods in the figure, only major ones are

indicated.

Path_M

- destinationList

+ discover()

+ crawl()

+ wait()

+ onArrived()

- moveTo()

+ moveToDepot()

- calculateVortex()

- searchAlternativePath()

JAN

DRPath_M

+ discover()

+ crawl()

+ onArrived()

+ onDRReady()

- deliver()

- calculateNetwork()
- calculateDepot()

Figure 10: A class diagram of Path Manager

Table 16 gives an overview of the role of each method.

37

Table 16: Methods implemented in Path Manager

Method

Manager

Role

discover()

Path

This is a method to discover Intra-region networks within a sub-
area given from the DR. In this method, first of all, the phase is
set to Discovery Phase, and the location information of its own
node (FR) stored in Node Table is set to ”"Not Depot”. Then, after
computing the route searching in a vortex shape in the subarea by
calculateVortex(), it moves its node along the calculated path by
calling moveTo() and onArrived(). When all the movements are
completed, movement to Depot is started by calling moveToDe-
pot() and the location information of its own node stored in Node

Table is set to "Depot”.

discover()

DRPath

This is a method to discover Intra-region networks from the
target area. In this method, first of all, the phase is set
to Discovery Phase, and the location information of all FRs
in Node Table is set to ”Not Depot”. Then, it sends an
Interest named ”/FRControl/{name}/Discover/{Locl}
/{Loc2}/...” toeach FR in order to search each FR for Intra-
region networks in each subarea into which the target area is di-
vided by the number of FRs. Here, the name is one of the des-
tined FRs, and the loc* is the vertex of the polygon constituting

the subarea.

38

crawl()

Path

This is a method to crawl along the Inter-region subnetwork (the
list of the Intra-region networks) given from the DR. In this
method, first of all, the phase is set to Crawling Phase and the
location information of its own node (FR) stored in Node Table
to "Not Depot”. Then, the given list of the Intra-region networks
is stored in Path Table, and it moves its node along the order of the
Intra-region networks in the list by calling moveTo() and onAr-
rived(). When all the movements are completed, movement to
Depot is started, and location information of its own node stored

in Node Table is set to ”Depot”.

crawl()

DRPath

This is a method to make each FR crawl along its Inter-region
subnetwork stored in Path Table. In this method, first of all,
the phase is set to Crawling Phase, and the location information
of all FRs in Node Table is set to "Not Depot”. Then, in or-
der to make each FR crawl along the Intra-Region Subnetwork,
It sends an Interest named ”/FRControl/{name}/Crawl/
{Gw1}/{Gw2}/...” to each FR. Here, the name is one of the
destined FRs, and the GW* is the name of the GW constituting

the Intra-region network.

wait()

Path

This is a method to wait for 7, seconds for route information and

message exchange at an Intra-region network and Depot.

39

onArrived()

Path

This is an event listener informing that its own node has arrived
at the destination given by moveTo() or moveToDepot() called
by Movement Manager. As processing, first of all, the arrived
destination is deleted from the destinationList storing the desti-
nation list. At this time, if the destination is Depot, the method
finishes. If not, it calls wait() for exchanging route information
and message, and then it calls searchAlternativePath() to perform
autonomous path change if it is Crawling Phase. Finally, if there
is a next destination in the destinationList, it moves its own node
to the next destination by calling moveTo(). If not, it sets its lo-
cation information in Node Table to ”Depot” by calling updateN-
odeTable() of Info Manager, and moves its own node to Depot by

calling moveToDepot().

onArrived()

DRPath

OnArrived() in DRPath Manager is called when the node changes
the location of Depot and completes moving to the new location

of Depot. As processing, however, it does nothing.

moveTo()

Path

This is a method to move to a given destination. As processing, it

calls moveTo() of Movement Manager.

moveToDepot()

Path

This is a method to move to Depot. As processing, it calls move-

ToDepot() of Movement Manager.

calculateVortex()

Path

This is a method to calculate the crawling path in a given subarea
for discovering Intra-region networks. It calculates the path on
which the FR moves in a vortex shape toward the center in the
subarea spacing the range of its own communication range and

moves to Depot from the center in the subarea.

searchAlternativePath()

Path

This is a method to select a better path by the algorithm described
in Section 5.2. If a better path is found, the path is stored at the

head of the destinationList.

40

onDRReady()

DRPath

This is an event listener called when all FRs have finished crawl-
ing for discovering Intra-region networks or message exchanges
and they are met at Depot. As processing, in the case of Discovery
Phase, the case means that the discovery of Intra-region networks
is over, so it updates the location of Depot by calling calculat-
eDepot() and then calls deliver(). On the other hand, in the case
of Crawling Phase, it calls crawl() and continues the crawl of the

FRs.

deliver()

DRPath

This is a method to perform delivery of messages by making all
FRs crawl along the paths by calling crawl() after the paths mean-
ing Inter-region network is calculated by calculateNetwork(). It
moves its own node to the newly set location of Depot by calling

moveToDepot () at the end of the method.

calculateNetwork()

DRPath

This is a method to calculate the path of the Inter-region network
by the algorithm described in Section 5.1 from the location of
the Intra-region networks and the number of the FRs obtained by
referring to Node Table. The calculated Inter-region network is

stored in Path Table.

calculateDepot()

DRPath

This is a method to calculate the location of Depot from the
location of the Intra-region networks obtained by referring to
Node Table. After calculation, the location of Depot is stored
in Node Table and an Interest named ”/Neighbor/{FaceID}
/onDepotUpdated” is sent to all FRs to inform of the new

location of Depot .

Buffer Manager

In RMICN, messages being transferred to disconnected nodes need to be temporarily buffered.

Buffer Manager is a manager that manages Buffer Store to buffer messages. The node determining

41

the destination of the message transfers it (Interest only) if the destination is connected. In this
case, Data is discarded without being transferred, because of the specification of NDN, that is,
Data is transferred automatically when the destination is connected. On the other hand, when
the destination is not yet connected, the message is stored in the buffer for each destination face
prepared in Buffer Store. When a Face connected event occurs, all messages (Interest and Data)
stored in the Face’s buffer in Buffer Store are transferred. The class diagram of Buffer Manager
is shown in Figure 11. For the field variables and methods in the figure, only major ones are

indicated.

Buffer_M
BufferStore

store()

send()
storeBufferStore()
sendBufferStore()
onFaceConnected()

++++ 4+ |+

Figure 11: A class diagram of Buffer Manager

Table 17 describes an overview of the role of each method.

Table 17: Methods implemented in Buffer Manager

Method Role

store() If the forwarding destination Face of the given message is con-
nected, it sends the message by calling send() only if the type
of the message is Interest. If the Face is not connected, it calls

storeBufferStore() to store the message in Buffer Store.

send() This is a method to send a message from the forwarding destina-
tion Face. When sending Interest, it records the Face in out-record
of PIT, and when sending Data, it consumes the corresponding

PIT entry .

storeBufferStore() It stores the message in Buffer Store.

42

sendBufferStore() It sends all messages with the given Face as the forwarding desti-
nation in Buffer Store by calling send().
onFaceConnected() | This is an event listener called when a Face is connected. It calls

sendBufferStore() to send all messages whose forwarding desti-

nation Face is the connected one in BufferStore.

Connection Manager

Connection Manager monitors the second layer connection, and it notifies other managers per-
forming processing according to a connection event by calling a callback function when the sec-

ond layer is connected. The class diagram of Connection Manager is shown in Figure 12. For the

field variables and methods in the figure, only major ones are indicated.

Connection_M

+ onL2 Connected(}

+ onFaceConnected()

+ onlL2Disconnected(}
+ onFaceDisconnected()

Figure 12: A class diagram of Connection Manager

Table 18 describes an overview of the role of each method.

Table 18: Methods implemented in Connection Manager

Method

Role

onL2Connected()

This is a method which is called when the second layer connec-
tion is detected. onFaceConnected() is called if a Face corre-
sponding to the identifier of connected second layer is in Face Ta-
ble, otherwise onL.2Connected() of the other manager registered
as the listeners is called when a new second layer connection is

detected.

43

onFaceConnected()

This is a method which is called when the connection of the sec-
ond layer registered in Face Table is detected. In this method, first
of all, it sets the connection state of the Face in Face Table to True
and then it calls onFaceConnected() from the other managers reg-
istered as listeners. In addition, since onFaceConnected() is used
as a trigger for information exchange in Info Manager, it can be
seen that there is no information exchange trigger between nodes
that never disconnect, e.g., GW and Node in an Intra-region net-
work. Therefore, onFaceConnected() is called even when the
connection state is True for a certain period of time so that in-

formation exchange can be performed between such nodes.

onL2Disconnected() This is a method which is called when the disconnection of the
second layer is detected. It calls onFaceDisconnected() if the Face
corresponding to the identifier of the connected second layer is in
Face Table.

onFaceDisconnected() | This is a method which is called when the disconnection of the

second layer registered in Face Table is detected. It sets the con-

nection state of the corresponding Face to False in Face Table.

Movement Manager

Movement Manager is a manager performing movement control of the movement body (i.e.,
drone) of the FR. As for the movement control, it implements only simple functions that move
linearly to the given destination and suspend and restart the current movement. Then, it calls the
callback function of Path Manager instructing when the movement is completed. The class dia-

gram of Movement Manager is shown in Figure 13. For the field variables and methods in the

figure, only major ones are indicated.

44

Movement_M

+ moveTo()

+ moveToDepot()
+ stop()

+ resume()

+ onArrived()

Figure 13: A class diagram of Movement Manager

Table 19 describes an overview of the role of each method.

Table 19: Methods implemented in Movement Manager

Method

Role

moveTo()

This is a method to move to the given location. This method first
registers the caller Path Manager as a listener, and if the destina-
tion is a node, it obtains the location of the destination by referring
to Node Table and it holds the location information as the current
movement destination. Then, it executes the control command of

drone to move to the location.

moveToDepot()

This is a method to move to Depot. It gives the name of DR to

the argument of moveTo().

stop()

It suspends the current movement.

resume()

It resumes the current movement.

onArrived()

This is a method which is called when its own node arrives at the
destination set by moveTo(). It calls onArrived() of Path Man-
ager that instructs the current movement to inform that the node

arrived at the destination.

45

4.1.3 Custom Strategies

In RMICN, exchanging information between nodes, exchanging messages, and controlling move-
ment of FRs are peformed by calling methods of managers described in Section 4.1.2 from strate-
gies. Strategy in NDN can be set for each content as shown in Figure 1. Strategy in NDN can define
strategies to decide when and where to transfer Interest and Data and what kind of processing to
intervene at the NDN node. It is specifically able to perform various controls at the relay node by
customizing the trigger method to be called when Interest or Data is received. In addition, NDN
can freely decide strategies to apply by namespace using Strategy Choice Table, and it is possible
to realize various control using the same route by changing only namespace. RMICN implements
Message Strategy, Neighbor Strategy, and FRControl Strategy to realize strategic communication

between disjoint networks. The details are shown below.

Message Strategy

Message Strategy is a strategy for transferring normal messages. The strategy targets messages
whose namespace is 7’/ (However, since Strategy Choice Table decides the strategy to select with
the longest match, if they match the namespace targeted by Neighbor Strategy and FRControl
Strategy to be described later, those strategies are applied instead of Message Strategy). In Mes-
sage Strategy, regardless of the types of Interest and Data, all received messages are processed
by Buffer Manager. Specifically, Message Strategy acquires the forwarding destination Face of
a message by referring to FIB, and it calls store() of Buffer Manager with the message and the

acquired Face as an argument.

Neighbor Strategy

Neighbor Strategy is a strategy for exchanging information and advertising information between
connected neighboring nodes. The strategy targets messages whose namespace is ”/Neighbor/”
and provides processes shown in Table 20 (indicating ’-’ if there is no processing corresponding
to the name). Managers of each node cooperate with managers of other nodes by sending and re-

ceiving Interest and Data with the name corresponding to each process via the Neighbor Strategy.

46

Table 20: Processes provided by Neighbor Strategy

Name Type Process

/Neighbor/{FaceID} Interest Processing of the request of FR registration is per-

/RegisterFR/{Name} formed. It calls registerFR() of Info Manager and re-
turns Data storing the result. Note that FacelD is the
ID of the Face from which the message is sent, and
Name is the name of the requesting FR (the same
applies below).

/Neighbor/{FaceID} Data Processing of the response of FR registration is per-

/RegisterFR/{Name} formed. When the registration request is permitted,
it calls registerFR() of Info Manager with the type,
name, and location information of the registration
destination node stored as Data. If the registration
request is rejected, it does nothing. Regardless of
the result of the registration request, in the case of
the Discovery Phase, it resumes the movement of
the FR that was interrupted by onl.2Connected() of
FRInfo Manager by calling resume() of Movement
Manager.

/Neighbor/{FaceID} Interest Processing of notification request of Face connec-

/onFaceConnected tion event is performed. It calls onFaceConnected()
of Connection Manager, and then returns empty
Data.

/Neighbor/{FacelD} Data -

/onFaceConnected

/Neighbor/{FaceID} Interest Processing of the request for retrieving route infor-

/RetrieveRoutes mation is performed. It calls retrieveRoutes() of Info

Manager, and then returns Data that stores the result

(route information).

47

/Neighbor/{FaceID} Data Processing of the response to the request for retriev-
/RetrieveRoutes ing route information is performed. It calls upda-
teRIB() of Info Manager.
/Neighbor/{FaceID} Interest Processing of the request for retrieving Route infor-
/RetrievelInfo mation and entries of Node Table. After casting Info
Manager to FRInfo Manager, it calls retrievelnfo(),
and then returns Data that stores the result (route in-
formation and entries of Node Table).
/Neighbor/{FaceID} Data Processing of the response to the request for retriev-
/Retrievelnfo ing Route information and entries of Node Table.
After casting Info Manager to FRInfo Manager, It
calls updateInfo() with those information stored in
Data as an argument.
/Neighbor/{FaceID} Interest Processing of the request to advertise that the DR
/onDRReady becomes available for the next crawling. After cast-
ing Info Manager to FRInfo Manager, it calls onDR-
Ready(), and then returns empty Data.
/Neighbor/{FacelID} Data -
/onDRReady
/Neighbor/{FacelID} Interest Processing of the request to advertise that the lo-
/onDepotUpdated/{Loc} cation of Depot has been updated. After casting
Info Manager to FRInfo Manager, it calls updateN-
odeTable() to update the location of DR stored in
Node Table. After that, it returns empty Data. Note
that the Loc refers to the updated location of Depot.
/Neighbor/{FacelD} Data -

/onDepotUpdated/{Loc}

48

FRControl Strategy

FRControl Strategy is a strategy that carries out control with FR movement. The strategy tar-

gets messages whose namespace is ”/FRControl/” and provides processes shown in Table 21

(indicating ’-’ if there is no processing corresponding to the name). It provides processing for

discovering Intra-region networks in the target area and for delivering messages by making FRs

crawling in the Inter-region network.

Table 21: Processes provided by FRControl Strategy

{ewi}/{cw2}/...

Name Type Process

/FRControl/{Name} Interest In order to discover Intra-region networks from the

/Discover/{Locl}/{Loc2} target area, it makes the FR specified by Name

/.. crawling in the subarea composed of a list of loca-
tion information given by parameters. After return-
ing empty Data, it calls discover() of Path Manager.
If the name of the FR is different from Name, it does
nothing.

/FRControl/{Name} Data -

/Discover/{Locl}/{Loc2}

/..

/FRControl/{Name}/Crawl/ | Interest In order to communicate via the Inter-region net-

{Gwi}/{cw2}/. .. work, it makes the FR specified by Name crawling
along a list of GWs given by parameters. After re-
turning empty Data, it calls crawl() of Path Manager.
If the name of the FR is different from Name, it does
nothing.

/FRControl/{Name}/Crawl/ | Data -

49

4.2 Processing Sequence

In this section, we show the procedure for communicating between disjoint networks by FRs using

our own components introduced in Section 4.1.

4.2.1 Discovering Intra-region networks (Discovery Phase)

In RMICN, when the location of Intra-region networks is not statically set, discovery of Intra-
region networks and setting of the location of Depot are performed. A target area is given as a
hexagon, and its center point is assumed to be the temporary Depot. Then DR calls discover() of
DRPath Manager to start discovery process of Intra-region networks. Figure 14 shows a sequence

diagram starting from discover() of DRPath Manager.

DRPath_M FRControl_S (DR) FRControl_S (FR) Path_M Movement_M (FR} FRInfo_M
| |
| |

I
I
Interest: /FRCorltrol/{Name}/Discovel/{Loc1}/{Loc2}/... |
f L I

I

I

I
I
I
I
Data:/FRContrgl/{Name}/Discover/{Locl}/{Loc2}/... |
discover() |
I_'_I\ calculateVortex(f
I
I
|
I
]
I

b4

gp [for each verte1<)

moveTo()

onArrived()

moveTol() I

il |

updateNodeTabIe()

moveToDepotQ, I /I|J

-

—

Figure 14: A sequence diagram starting from discover() of DRPath Manager

discover () of DRPath Manager divides the given hexagon by the number of FRs and allocate
each divided subarea (a polygon) to each FR by sending Interest to FRControl Strategy. Then,

the FR assigned to the polygon area moves following the path which is a vortex path toward the

50

center in the polygon area spacing the range of its own communication range shown in Figure 15
calculated by cacalculateVortex(). Through the movement, the FR tries to discover Intra-region

networks.

’ fm e
’ ’
’ [
’ v ’
e him ’
[I AN
7 oy, =
’ v \
’ ;. Tmm=== =
’ ’ \
S e Lo
/ ,
L. Depot Router
— ,
- A ---, |,
\ N
\ v
LS S NIV
\ \\ v, N
\ <=~ A
o NN
\ N AYZREEN
\ \
\ \ \
\ N o \
\ \

Communication range (radius)

Figure 15: Discover Intra-region networks

In order to discover Intra-region networks, Connection Manager monitors the second layer
connections. When detecting a second layer connection, Connection Manager calls its own onL.2Connected().

Figure 16 shows a sequence diagram starting from onL.2Connected() of Connection Manager.

51

Connection_M (FR) FRInfo_M Neighbor_S (FR) Neighbor_S (CW) GWinfo_M

onLZConnected()H

Connection_M (GW)

| [

I I

alt [Face Not Found] I : :

onl2Connected() . . | |

T Interest:/Ne|ghIJor/{FaceID}fReglstelIFR;'{Name} | |
_____ R T

Face Found registerFR()
I] | I updateFaceTable{)

nFaceConnected() I
I

I
I
I
|
Data: I]Jeighbor/{FacelD}/B;gisterFR/{Name] <
|
I

I
I
I _OK/NG |
L] I I
I T | I
| registerFR() | | |
: updateFaceTable() & updateNodeTat{le() : :
I I I I I
I I I I I
I I | I I
I aft|) [Crawling Phase] | | I
onFacFConnected() 11 T [[|
Interest:,/Ne|g|1bor;'{FaceID},’onFaceIConne cted I |
I_J\ . . | onhfFaceConnected()
Data:/nghbor,/IFaceID}/onFaceC{m1 ctetd t

| I . | 1
I I_I\ I I I
I I I I I
I T I I I

Figure 16: A sequence diagram starting from onL.2Connected() of Connection Manager

In Figure 16, description of onL2Connected() of Connection Manager in GW is omitted, but
in the actual design, Connection Manager in GW and Connection Manager in FR are the same
implementation. As shown in Table 15, however, since onL.2Connected() in GWInfo Manager is
implemented same as FRInfo Manager, and so when FR and GW are actually connected at the
second layer, they trace almost same sequence shown in Figure 16.

onL2Connected() of Connection Manager checks whether Face is already created with the
identifier of the second layer, and if it is created, it calls its own onFaceConnected(), if not, it calls
onL2Connected() of FRInfo Manager registered as a listener. In Discovery Phase, where FRs dis-
cover Intra-region network, Face should not be registered. So, onL2Connected() of FRInfo Man-
ager is called here. When onLL2Connected() of FRInfo Manager is called, FR calls registerFR()
implemented in the connected GWInfo Manager in order to register itself as a communication
node. Since nodes other than GW and DR refuse to register FRs by registerFR(), FRs are not

registered in nodes in an Intra-region network, and FRs do not register each other. When the FR

52

registration to the connected node is completed, the information of the connected node is regis-
tered in the table of itself (FR). registerFR() stores the name, the type, and the location information
of the connected node in Node Table, and stores the Face ID and the node name in Face Table.
Although it is not described in Figure 16, in Discovery Phase, the movement of the FR is stopped
by calling stop() of Movement Manager when onL2Connected() of FRInfo Manager is called, and
the movement of the FR is resumed by calling resume() of Movement Manager when receiving
Data named ”/Neighbor/{FaceID}/RegisterFR/{Name}”. This is why exchange of the
message named ”/Neighbor/{FaceID}/RegisterFR/{Name}” is performed normally at
the time of discovery of the Intra-region network.

discover() shown in Figure 14 moves the FR straight one by one side of the vortex path in order
to discover Intra-region networks. After finishing crawling along all sides, the FR sets its own
location information in Node Table to "Depot” and returns to Depot by calling moveToDepot() in
Movement Manager.

After crawling for the discovery of Intra-region networks, the FR that returned to Depot con-
nects with the DR. On this occasion, onL.2Connected() of Connection Manager is called as shown
in Figure 16. However, since the DR ordered the FR to discover Intra-region networks, the DR and
the FR have been connected before. Therefore, as the event handler, onFaceConnected() is called.
Figure 17 shows a sequence diagram starting from onFaceConnectet() of Connection Manager

when the DR and the FR are connected.

53

Connection_M (FR)

Connection_M (DR) || DRInfo_M |

Neighbor_S (DR) || Neighbor_S (FR) || FRInfo_M |
| | | |

|0nFaceConnected() Iﬁ | | | |0nFaceCon nected() Iﬁ

_v nFaceConnected(| I |

[

|

|

| onhFaceConnected ()
‘Interest /Ne|ghb?r/{Face|D /Retrieyelpfo h
| | retrievelnfo(y T
| I Info
| Data:/Neighbor {FacelD}/Retrievelnfol<~ —— — —
|
1

updatelnfo() J\

[
lisAlIFRsAtDedot]
onDRReady() |

___________| [=]

Figure 17: A sequence diagram starting from onFaceConnectet() of Connection Manager when

DR and FR are connected

onFaceConnected() of Connection Manager calls onFaceConnected() of Info Manager which
is one of the event listeners. If the type of the connected node is DR, onFaceConnected() in FRInfo
Manager does nothing because it refrains from retrieving information until the other information
gathers at the DR. Then, onFaceConnected() of DRInfo Manager calls retrievelnfo() of FRInfo
Manager by sending an Interest in order to retrieve route information and entries of Node Table.
Note that, in Discovery Phase, RIB has no entries, but Node Table has the entry of its own FR and
information on Intra-region networks found in the area. When the DR obtains the information from
all the FRs, since the location information of all the FRs is "Depot” in Node Table, onDRReady()
is called in DRInfo Manager. Figure 18 shows a sequence diagram starting from onDRReady() of

DRInfo Manager.

54

DRPath_M DRInfo_M (DR) || Neighbor_S (DR) Neighbor_S (FR) FRInfo_M

Interest:/Neighb}or/{FacelD}/onDR ea!dy

onDRReady() %

Data:/Neighbc‘}r/ FacelD}/onDRRead

|

|

|

|

onDRReady() | onDRReady() .|
wait() |) T Interest:/Neighblor/Retrievelnfo

T——I retrievelnfo() I

Info : i | i |

Ij —_————— Data./Nelghbgr(Retrlevelnfo |

| i

alk U piscovery Phase]| I_I

calculateDepot() |

. u L updatelnfo()
|
|
\
\

updateNodeTaple()

updateNodeTabl

- - —
—
f

|
Interest: /Nt\eT‘ghbor/{FacelD}/on[je potUpdated/{Loc
|

deliver()

:l Dat;'T: /Neighbor/{FacelD}/onE epotUpdated /{Lgc}

[Crawling Phase] |

crawl()

S

Figure 18: A sequence diagram starting from onDRReady() of DRInfo Manager

When onDRReady() of DRInfo Manager is called, onDRReady() of DRPath Manager of its
own node and FRInfo Manager of all FRs is called. At this time, onDRReady() of FRInfo Man-
ager only retrieves information from the DR, but onDRReady() of DRPath Manager performs
some processing to move into Crawling Phase, where FRs deliver message. First of all, onDR-
Ready() of DRPath Manager waits for a certain period of time by calling wait() in order for FRs
to reliably obtain information from the DR, then it calculates the new location of Depot by calling
calculateDepot(). The location of Depot (xp, yp) is an expression (1) when the number of entries

of GW in Node Table is N and the location information of GW; is (x;, ;).

55

(zp,yp) = % Z xz‘,% Z Yi ()

1<i<N 1<i<N
When the calculation of the location of Depot is completed, the obtained location information
of Depot is registered in Node Table, and FRs are also updated with the location information of
Depot by calling updateNodeTable() of FRInfo Manager by receiving the Interest. The above is
the discovery procedure of Intra-region networks in Discovery Phase, and the next section will

discuss the message exchange method starting from deliver() in DRPath Manager.

4.2.2 Delivering Messages (Crawling Phase)

After Intra-region networks are statically set up or dynamically discovered, RMICN shifts to
Crawling Phase, which carries out message delivery between disjoint networks. A DR given a
set of Intra-region networks (Node Table) calls deliver() in DRPath Manager. Figure 19 shows a

sequence diagram starting from deliver() in DRPath Manager.

56

DRPath_M || FRControl_S (DR) || FRControl_S (FR) || Path_M (FR) |

deliver() %

|

|
calculateNetwoﬂk()

|

|

|

|

Movement_M (FR) || FRInfo_M

crawl()

|

|

|

|

|

|

|

| | |
Interest:/FRCohtrol /f{Name}/Crawl/JGW1}/{CW2}/... |
|

!

Data{/FRControl/{Namk}/Crawl AGW1}/{CW2}/... crawl)
h updateP&{hTablE()
|
|
|
|

il

| lod
p| [for each GW]
|)

moveToDepot() |

T——l

moveTo()

onArrived()

wait() |

—

|
|
|
|
|
|
|
|
|
| searchAlternativePath()
|
|
|
|
|
|
|
|
|
|
1

moveTo() 1

1 |

; updateNodeTalJl:le()

moveToDepot(), |

Figure 19: A sequence diagram starting from deliver() in DRPath Manager

deliver() of DRPath Manager searches the path of the Inter-region network by calling calcu-
lateNetwork() firstly, and registers the list of GWs for each Inter-region subnetwork in Path Table
(For concrete calculation method of an Inter-region network is described in Section 5.1). After
that, it calls crawl() of DRPath Manager to call crawl() of Path Manager of each FR by sending an
Interest that makes each FR crawl along one Inter-region subnetwork. In crawl() of Path Manager,
after registering the Inter-region subnetworks specified in the Interest in Path Table, it moves the
FR through the GWs that constitute the Intra-Region Subnetwork in the order of the list.

When connecting with a GW while the FR is crawling, if there is no Face to communicate with

the GW (that is, the FR connects with the GW at first), onFaceConnected of Connection Manager

57

is called through the sequence of Figure 16. Figure 20 shows a sequence diagram starting from

onFaceConnected() of Connection Manager when the FR and the GW are connected.

Conncection_M (FR) FRInfo_M Neighbor_S (FR) Neighbor_S (GW) GWinfo_M Conncection_M (GW)

| | | |
|onFaceConnected() 5 | | |

LonFaceConnecte)
rest:/Neighbor/{FacelD}/RetrieveRoutes
| : | retrieve Routes, I |onFaceConnected() %
Routes
Data:/Neighbor /{FacdID}/RetrieveRoutes | € — — — — —
|

| gnFaceConnected()
updateRIB(} —~

|

|

|

|

| I
I Inte st:/Neighbor/{Fal:elD}/RetrieveRout
| | retrieveRoutes(|

[I I
|

|

[

|

1

o
v

_ Routes —Ha a:/Neighbor/{Facel!)}/RetrieveRoutes |

: T updateRIB() I
| | I D
| I

Figure 20: A sequence diagram starting from onFaceConnected() of Connection Manager when

FR and GW are connected

onFaceConnected() of Connection Manager calls onFaceConnected() of Info Manager. Then,
onFaceConnected() of Info Manager retrieves route information of the connected node by calling
retrieveRoutes(). Unlike exchange of information between DR and FR, exchange of information
between FR and GW is bilateral symmetry because it is only necessary to retrieve mutual infor-
mation asynchronously. As a result, the FR can retrieve the route information in the Inter-region
network composed by GWs, and the GW can also retrieve the route information of the Inter-region
network from the FR. Note that retrieveRoutes() implemented in Info Manager does not retrieve
all the route information registered in RIB, but retrieves only those entries whose next hop is not
the connected node. This is the same not only for exchanging route information between FR and
GW but also between DR and FR, and between GW and Node.

On the other hand, message exchange is very simple in RMICN. Normal messages are picked
up by Message Strategy, and only passed to Buffer Manager. A sequence diagram relating to

message exchange is shown in Figure 21.

58

| Buffer_M | | Connection_M

| |
alt J I [Face Connected & Message |Type is Interest]
I |

store()

[Face Not Connected]

storeBuffe rStore()l
|

w

)

>

Q.
—_——— — — —

onFaceConnected()

sendBufferStore()

Figure 21: A sequence diagram relating to message exchange

store() of Buffer Manager called by Message Strategy sends the message if the Face is con-
nected and furthermore the type of the message is Interest. If it is not connected, Buffer Manager
stores the message in Buffer Store. When onFaceConnected() of Buffer Manager is called by
Connection Manager, all messages that are destined to the Face in Buffer Store are sent.

The above is the method of information and message exchanging method in RMICN. As you
can see from Figure 19, Path Manager executes wait() and searchAlternativePath() every time the
FR visits an Intra-region network. wait() is called to wait for the time to exchange route informa-
tion and messages by connecting a Face, and it has a function to wait for T}, secs (Figure 18 in
DRPath Manager is the same function and it is used for the same reason). searchAlternativePath()
is a method that refers to Buffer Store and performs autonomously changing the crawling path
when a better path is found that reduces the average retrieval time of contents. The details are
explained in Section 5.2. Then, after finishing all the crawls, FRs return to Depot as shown in
Figure 19, and exchange messages by the sequence of Figure 21, besides, advertises the informa-
tion gathered from Inter-region subnetworks by the sequence of Figure 17. Then, when all FRs
advertise information to the DR, RMICN shifts to the next crawling by the sequence of Figure 18.
At this time, since the Inter-region network has already been constructed, crawls are performed by

calling only crawl() instead of deliver().

59

4.3 Applicative Extended Control with Names and Strategies

In RMICN, FRs are used as movable routers that support disjoint-networks communication, but
FR can also provide various application control based on strategies in the naming scheme although
it is a relay node. In this section, we introduce content control and drone control as applicative

extended control.

4.3.1 Content Control

Content control indirectly controls a FR by adding meta information to content. It can perform
various control according to the desires of the content unit, for example, it increases the moving
speed of the FR when carrying the content with high urgency. When there is a content to which
a user wishes to give a characteristic, the user adds a name representing the characteristic to the
original content name as a prefix, and the user sends it to the FR. Then, the strategy based on the

received message performs the following processing as a base.

(1) When receiving a message, the strategy obtains the destination by referring to FIB using
the name, excluding the prefix, representing the characteristic (However, there are cases
where the destination does not exist in FIB depending on the characteristics, such as the

characteristic to be distributed to all nodes).

(2) It performs control according to the characteristic (e.g., Increasing moving speed for content

with high urgency).

(3) When forwarding a message, it removes the prefix representing the characteristic from the
name. In addition, when the message is Interest, register the event listener on the Face in the
same way as NDN applications so that other strategy does not take the returned data. Then,
it sends the Interest directly from the Face and retrieves the Data returned by the registered

event listener.

(4) When the Data is retrieved by an event listener, the destination is obtained by referring to PIT
using the name, including the prefix, representing the characteristic. After that, the control

according to the characteristic is performed, and the Data is returned to the destination.

60

4.3.2

Drone Control

Drone control performs control utilizing the drone which is the movement body of the FR. As

control contents, for example, it is expected to retrieve aerial photographs and sensor information

(temperature, humidity, radiation, etc.) at arbitrary places and to spray herbicides and fertilizers in

smart agriculture. In this way, a drone is required to be on the arbitrary place after its movement.

When strategy of drone control receives an Interest that needs to control movement to an arbitrary

place, it performs the following processing.

ey

2

3)

“)

&)

The Interest is discarded if the requested location expressed by the name of the Interest is
outside the area of RMICN, but if it is within the area, the GW closest to the location is

obtained by referring to Node Table.

Next, it checks whether the GW is within its own Inter-region subnetwork referring to Path
Table. If it is included, it moves the FR to the requested position either before or after
visiting the GW at crawl and executes the drone control. If it is not included, the Interest is

sent to the DR when it arrives at Depot.

The DR obtains the GW which is the requested location nearest in the same procedure as the
FR and transfers the Interest to the FR which is handling the GW as a part of its Inter-region

subnetwork.

The FR receiving the Interest moves to the location either before or after visiting the GW

closest to the requested location and executes the drone control.

As a result of the drone control, when Data such as aerial photographs and sensor informa-
tion is generated, the Data is returned to the requesting Intra-region network by forwarding

processing of RMICN.

61

S Algorithms of Path Planning

In this section, we describe algorithms for calculating the crawling path of the Inter-region network
and algorithms for autonomously changing the paths of the FRs crawling along the Inter-region

subnetwork.

5.1 Calculating Inter-region network

In this section, we describe an algorithm for calculating the crawling path of the Inter-region
subnetwork. Inter-region network should be divided into Inter-region subnetwork considering
not only the number of FRs within each subnetwork but also total crawling distance of all FRs
necessary for configuring the Inter-Region Networks. Therefore, in this research, we focus on the
fact that this problem is very similar to Vehicle Routing Problem (VRP) [21], and we propose to

calculate the Inter-region network by solving the VRP.

5.1.1 Vehicle Routing Problem (VRP)

VRP supposes a set of customers geographically separated from each other and multiple vehicles at
base or Depot which deliver something to all customers. Then, VRP is a problem of obtaining the
path until they return to Depot again. This problem is the most commonly used when considering
packing pickup algorithms at shipping companies. For example, considering a VRP such as Figure
22, it is understood that this is the solution of VRP where four vehicles pick up packages crawling
from Depot cq along thirteen customers. VRP is very similar to the problem of seeking an Inter-
region network as you can see Figure 22. So, it is possible to model the problem in our research by
taking a customer as an Intra-region network and a vehicle as an FR. Therefore, it can be used as
a problem to calculate the Inter-region network as it is by ignoring the baggage amount owned by
the customer or the cargo restriction of the vehicle in the VRP. However, VRP is NP-hard and it is
known that it is difficult to obtain an optimal solution. In this paper, IACO (Improved Ant Colony

Optimization) [22] is used as a meta heuristic method for calculating the Inter-region network.

62

Figure 22: An example of VRP (cited from the paper [22])

5.1.2 Improved Ant Colony Optimization (IACO)

ACO is an algorithm to calculate the route by simulating the behavior of ants to search for bait, and
itis simple to RMICN by considering an ant as an FR, a location of bait as an Intra-region network
and an ant nest as Depot. IACO [22] introduces the concept of mutation in Generic Algorithm
to ACO, and compares their proposal to other meta heuristic methods to solve VRP. The time
to convergence is not fast but high accuracy. Therefore, in consideration of the importance of
building an Inter-region network with a better route, IACO is adopted as an algorithm to calculate
an Inter-region network in our research. In addition, although this is one of future works, if it is
possible to reflect not only the location of bait (the location of Intra-region network) but also the
amount and quality of bait (content) on the ant pheromone, it is thought that it becomes possible

to construct the topology of Inter-region network reflecting the information.

5.2 Calculating Alternative Path

As shown in Figure 19, an FR crawling in the Crawling Phase moves between GWs of its Inter-
region subnetwork, and autonomously changes the path every time when it arrives at the location
of a GW by calling searchAlternativePath(). searchAlternativePath() autonomously changes the
path by referring to Buffer Store within the guideline of the content retrieval time obtained from
the crawling path of the Inter-region network. As described in Section 3.5.2, the estimate of the

content retrieval time 7' from the view point of users in RMICN is 7' = 47T;., where T;. is the time

63

taken for all the FRs to meet together at Depot. Here, the number of the Inter-region subnetworks
(that is, the number of FRs) is IV, the number of GWs in the Inter-region subnetwork ¢ is M;, the
time taken for crawling along the Inter-region subnetwork 7 is C'T; and the time to wait in wait()

of Path Manager is T,. Then, T, is obtained by Eq.(2).

z = arg max(CT;)
1<i<N

T, =CT,+ M, -t 2)

Therefore, the real time DT; that can be spent by autonomous path change in a single crawl

along the Inter-region subnetwork ¢ is obtained by Eq.(3) .

DT; =T, — (CT; + M; - t) (3)

searchAlternativePath() retrieves a list of GWs, constituting its Inter-region subnetwork, that
have already been visited in the current crawl and where the number of buffered messages destined
is not zero. Then, within DT}, the GWs which can reciprocate from the currently connected GW
are searched from the list. At this time, Eq.(4) tells whether the selected GW can reciprocate from

the current location..

DT; > 2(MT + T,,) 4)

Here, M'T represents the time taken to move from the currently connected GW to the selected
GW. Furthermore, if there are multiple Intra-region networks satisfying Eq.(4), the GW where the
number of the buffered messages destined is the largest. Note that DT; decreases by 2(M T +Ty,)

when the FR changes the path, and the value will not be recovered until the current crawl is over.

64

6 Evaluation of RMICN

This chapter describes the evaluation of RMICN. In Section 3.2, we describe the design policy of
RMICN, and as a design advantage, we describe that RMICN can construct a network that utilizes
flexible control with name, content-based parameter, and content cache. In this chapter, therefore,
we aim to evaluate 1) the degree of autonomous path change at FRs and 2) how much content

retrieval time can be reduced due to the operation of in-network cache in RMICN.

6.1 Evaluation Methods

In this paper, we evaluate the content retrieval time in RMICN in simulation environment. As a
comparison target, we use DTN (Message Ferry) which is one of the methods to realize disjoint-
network communication, and for fairness we give the Inter-region network in RMICN as a crawl-
ing path in DTN. Then, we use the five patterns of layout information (whose scale is 500 [m]
square) assuming the real environment as the location of GWs constituting Intra-region networks,
and the number of crawling FRs is set to three. Figure 23 - Figure 27 shows the location of wireless

nodes used as the evaluation data and the calculated Inter-region network.

A - L100) cgr200
¥ cpgere \
“qfon o ¥ e e
Y150, &
Figure 23: Location of wireless nodes used Figure 24: Location of wireless nodes used
in the evaluation and the calculated Inter- in the evaluation and the calculated Inter-
region network: CASE1 region network: CASE2

65

e
qon wn oo) : i aoon
v P—
dpon N e quen
-~ “\ .
% agfhon
o o %
V.
. R 0%, ’ oo W2 groo
oo R oo
Figure 25: Location of wireless nodes used Figure 26: Location of wireless nodes used
in the evaluation and the calculated Inter- in the evaluation and the calculated Inter-
region network: CASE3 region network: CASE4
- ¥

et
Qoo

quoo oo
T ggfon $
oo -

qse0

iso0

Figure 27: Location of wireless nodes used in the evaluation and the calculated Inter-region net-

work: CASES

In the evaluation, the average retrieval time of contents used as an evaluation parameter is
defined as the average of the time taken for the node in the Intra-region network to receive Data
after transmitting Interest. As a traffic pattern, a pattern assuming the following two scenarios is
used to evaluate autonomous path change of FRs and content cache. In both cases, which content

is requested by which node is randomly determined.

Sensor Networks
This is a pattern assuming sensor networks as a scenario. In this scenario, it is a major
feature that the same content is not requested more than once. This is because content such
as sensor information in sensor networks is strong in real time property. Therefore, it is

expected to reduce content retrieval time only by autonomous path change of FRs.

66

Disaster Networks
This is a pattern assuming disaster networks as a scenario. In this scenario, it is a major
feature that the same content is requested multiple times. This is because there are contents
requested by many users such as disaster information. Therefore, it is expected to reduce

content retrieval time not only by autonomous path change of FRs but also by contents

cache.
Finally, Table 22 shows the parameters used in the evaluation.

Table 22: Parameters used for the evaluation

Parameter Value
Movement speed of all FRs 50 [km/h]
Number of packets requesting contents 1000
Probability for requesting the same content 0.1

FR’s standby time at Intra-region network: T;, | 1 [s]

6.2 Evaluation Results

In this section, the results of simulation carried out in Section 6.1 are indicated. The average of
the content retrieval time in the scenario of sensor networks is shown in Table 23 and Figure 28,

and the average of the content retrieval time in the scenario of disaster networks is shown in Table

24 and Figure 29.

Table 23: The average of content retrieval time in the scenario of sensor networks

Method CASE1 | CASE2 | CASE3 | CASE4 | CASES || AVG.

DTN [s] 179.6 120.6 164.5 199.6 164.3 -
RMICN [s] | 165.9 111.0 157.4 164.3 165.1 -

Rate [%] 92.3 92.1 95.7 82.3 100.5 92.6

67

Table 24: The average of content retrieval time in the scenario of disaster networks
Method CASEl | CASE2 | CASE3 | CASE4 | CASES || AVG.

DTN [s] 184.5 119.6 165.7 190.7 161.2 -
RMICN [s] | 157.3 101.6 150.1 151.2 147.9 -

Rate [%] 85.2 84.9 90.7 79.3 91.7 86.4

250 40000

35000

200
30000

150 25000

20000

100 15000

10000

Content Retrieval Time [s]

5000

CASE1 CASE2 CASE3 CASE4 CASES

EmDTN N RMICN ——Dispersion of path length
Figure 28: The average of content retrieval time in the scenario of sensor networks

250

150
: I I I I I
0

CASE1 CASE2 CASE3 CASE4 CASES

Content Retrieval Time [s]
3

EDTN HRMICN

Figure 29: The average of content retrieval time in the scenario of disaster networks

As shown by these results, in RMICN, it is understood that content retrieval time is reduced

68

more than DTN in many cases in both scenarios: sensor networks and disaster networks.

In the scenario of sensor networks, RMICN demonstrates smaller retrieval time in all five cases
compared to DTN. However, the difference is marginal in CASE 5, because the variance of the
path length of the Inter-region subnetwork is significantly smaller than one in other cases. Since
autonomous path change of FRs in RMICN is performed when there is a margin for meeting time
at Depot while crawling, if the meeting time is short, that is, the dispersion of the path length of
the Inter-region subnetworks, the effect becomes trivial. However, when the dispersion of the path
length of the Inter-region subnetwork is large, the effect becomes dominant, and so it is considered
to be useful, for example, when the number of Intra-region networks increases and the construction
accuracy of the Inter-region network is low.

In the scenario of disaster networks, the reduction of the content retrieval time was confirmed
in all cases. Figure 30 shows comparison of content retrieval time of RMICN in sensor networks
and disaster networks. This shows the effect of content cache only in RMICN except the utility
of autonomous path change, the effect reduces content retrieval time by an average of 7.4 [%]. In
this simulation, the probability for requesting the same content is set to 0.1, but in the case where

this value becomes large, the content retrieval time can be further shortened.

CASE1 CASE2 CASE3 CASE4 CASE5

Content Retrieval Time [s]
bk e e e
B (<2 00 o N S D =]
o o o o o o o o

N
o

0

B Sensor Networks M Disaster Networks

Figure 30: The effect of content cache in RMICN

Finally, we describe the calculation cost of path planning of FRs. The CPU of the computer
used in the simulation is Intel Core i7 (3 GHz). The average computation time taken to calculate

the Inter-region network is 1.73 [s]. On the other hand, the time taken to search autonomously

69

changed paths by FRs is on the order of 0.1 [ms] on average, which can be negligible compared

with the content retrieval time.

70

7 Conclusions and Future Work

In this research, we focused on flexible control utilizing the name scheme of ICN, and we proposed
and designed RMICN, which is ICN with movement-controllable routers, and demonstrated the
advantages of realizing movement control of routers using ICN. Since RMICN is realized by
seamless extension of NDN, it can inherit all feasible functions from NDN. In addition, we also
show that there are many advantages for disjoint-network communication by utilizing control with
name, content-based parameter, and content cache that are unique features of ICN. With unique
strategies defined in the naming scheme in NDN, it is possible to control the movement of the
router by Interest, and possible to manipulate routers flexibly according to the characteristics of
the contents. Furthermore, it is also possible to provide a flexible control foundation which is
applicable to various applications. In addition, utilizing the content-based parameter, we propose
path planning which delivers all contents within the guideline of the estimated content retrieval
time because the communication primitive of NDN is a content and the communication is made by
one-to-one exchange of Interest and Data. Besides, utilizing content cache, we actually simulated
RMICN on a computer and confirmed that the retrieval time of the content is shortened due to
the effect of the cache in the scenario where the same content is requested multiple times such as
disaster networks.

As future tasks, we plan to further utilize content-based parameter for the method of construct-
ing the Inter-region network and of autonomous path planning of routers. Specifically, we also aim
to realize more flexible content delivery by creating a distribution of contents and content requests

with FRs and changing the movement path of FRs according to the distribution.

71

Acknowledgements

This thesis would not be accomplished without the united efforts and supports of a great number
of people. First, I would like to express my the deepest appreciation to my supervisor, Professor
Masayuki Murata of Osaka University, for his valuable time, advices, and continuous supports.
Furthermore, I would like to show my tremendous gratitude to Professor Shingo Ata of Osaka
City University, for his significant guidance, precise advices and various cares. Moreover, I would
like to offer my significant thanks to Associate Professor EUM Suyong of Osaka University, for his
instructive advice and the very kind English guidance. I also would like to express my gratitude
to Associate Professor Shin’ichi Arakawa, Assistant Professor Yuchi Ohsita, Daichi Kominami
and Specially Appointed Assistant Professor Naomi Kuze for their accurate suggestions and ad-
vices. Furthermore, I would like to offer my special thanks to Mr. Ryo Nakano of Hitachi, Ltd.,
Yokohama Research Laboratory. He offers us the data used for evaluation of our proposal. I could
complete this thesis thanks to him. In addition, I am deeply grateful to Mr. Atsushi Ooka. He
always leads me friendly to the right direction and gives me very useful points. Mr. Tatsuya
Tanaka and Mr. GAO YUHAO also helps me and they are very good research fellows for me and
I appreciate for them. Finally, I owe my gratitude to all my friends, colleagues and secretaries of
the Advanced Network Architecture Research Laboratory of Osaka University. This research and
development work was supported by the MIC/SCOPE #165007007.

72

References

[1]

(2]

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Bray-
nard, “Networking named content,” in Proceedings of the 5th International Conference on

Emerging Networking Experiments and Technologies (CoNEXT), pp. 1-12, Dec. 2009.

L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. Thornton, D. K, et al., “Named data networking
(NDN) project,” Tech. Rep. NDN-0001, PARC, Oct. 2010.

V. Jacobson, D. K. Smetters, N. H. Briggs, M. Plass, P. Stewart, et al., “VoCCN: Voice-over
Content-Centric Networks,” in Proceedings of the 2009 Workshop on Re-architecting the
Internet, pp. 1-6, Dec. 2009.

Y. Liu, J. Geurts, J.-C. Point, JCP-Consult, F. S. Lederer, B. Rainer, ef al., “Dynamic adap-
tive streaming over CCN: a caching and overhead analysis,” in Proceedings of 2013 IEEE

International Conference on Communications, pp. 3629-3633, Jun. 2013.

W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, et al., “Named data networking of things,”
in Proceedings of 2016 IEEE First International Conference on Internet-of-Things Design
and Implementation (loTDI), pp. 117-128, Apr. 2016.

M. Amadeo, C. Campolo, A. lera, and A. Molinaro, “Named data networking for iot: An
architectural perspective,” in Proceedings of 2014 European Conference on Networks and

Communications (EuCNC), pp. 1-5, June 2014.

NFD Team, “NFD Management protocol.” https://redmine.named-data.net/

projects/nfd/wiki/Management. Accessed: 2016-11-01.

NFD Team, “NFD Developer’s Guide.” https://named-data.net/wp-content/
uploads/2016/10/ndn-0021-7-nfd-developer—-guide.pdf. Accessed:
2016-11-01.

NFD Team, “Control Command.” https://redmine.named-data.net/

projects/nfd/wiki/ControlCommand. Accessed: 2016-11-01.

73

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

W. Zhao and M. H. Ammar, “Message ferrying: proactive routing in highly-partitioned wire-
less ad hoc networks,” in Proceedings of The Ninth IEEE Workshop on Future Trends of
Distributed Computing Systems, pp. 308-314, May 2003.

R. C. Shah, S. Roy, S. Jain, et al., “Data mules: Modeling a three-tier architecture for sparse
sensor networks,” Ad Hoc Networks, vol. 1, pp. 215-233, Sep. 2003.

R. Sugihara and R. K. Gupta, “Path planning of data mules in sensor networks,” ACM Trans-

actions on Sensor Networks, vol. 8, pp. 1-27, Aug. 2011.

J.S. Liu, S. Y. Wy, and K. M. Chiu, “Path planning of a data mule in wireless sensor network
using an improved implementation of clustering-based genetic algorithm,” in Proceedings of
2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA),
pp- 30-37, Apr. 2013.

0. Tekdas, V. Isler, J. H. Lim, and V. Isler, “Using mobile robots to harvest data from sensor

fields,” IEEE Wireless Communications, vol. 16, pp. 22-28, Feb. 2009.

O. Tekdas, W. Yang, and V. Isler, “Robotic routers,” in Proceedings of 2008 IEEE Interna-

tional Conference on Robotics and Automation, pp. 1513-1518, May 2008.

J. Alex Halderman, “NDN: A Security Perspective.” https://named-data.net/wp—
content/uploads/2015/06/fiapi-2015-security-perspective.pdf.
Accessed: 2015-11-16.

J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. Ramakrishnan, “Copss: An efficient content
oriented publish/subscribe system,” in Proceedings of 2011 Architectures for Networking and

Communications Systems (ANCS), pp. 99-110, Oct. 2011.

K. Kim, S. Choi, S. Kim, et al., “A push-enabling scheme for live streaming system in
content-centric networking,” in Proceedings of the 2013 workshop on Student workshop,

pp. 49-52, Dec. 2013.

J. Francois, T. Cholez, and et al., “CCN Traffic Optimization for I0T,” in Proceedings of
2013 Fourth International Conference on the Network of the Future (NoF), pp. 1-5, Oct.
2013.

74

[20] T. Kitagawa, S. Ata, and M. Murata, “Retrieving information with autonomously-flying
routers in information-centric network,” in Proceedings of 2016 IEEE International Con-

ference on Communications (ICC), pp. 1-6, May 2016.

[21] G. Laporte, “The vehicle routing problem: An overview of exact and approximate algo-

rithms,” European Journal of Operational Research, vol. 59, pp. 345-358, Jun. 1992.

[22] B. Yu, Z.-Z. Yang, and B. Yao, “An improved ant colony optimization for vehicle routing

problem,” European Journal of Operational Research, vol. 196, pp. 171-176, Jul. 2009.

75

