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Abstract—The power consumption of networks has been in-
creasing as the service over the Internet becomes popular, and has
become a serious problem. Many methods to reduce the power
consumption by shutting down unnecessary network devices
following the environmental changes have been proposed. These
methods consider only simple objectives such as the number of
powered-on nodes and the maximum link utilization. However,
multiple complex objectives such as delay and reliability should
be also considered in the actual network. In this paper, we
propose a network power saving method that handles multiple
complex objectives, following the environmental changes. In this
method, we store the candidate network configurations, and
evolve them, following the environmental changes. Then, we
select the network configuration from the candidate network
configurations. We combine two approaches to evolve the network
configurations. The first approach is based on Pareto optimal,
and evolves the network configurations so as to be close to the
Pareto optimal solutions, considering multiple objectives. Another
approach is based on the diversity of the network configurations.
By storing the diverse network configurations, we can handle
the significant environmental changes. We evaluate our method
by simulation, and demonstrate that our method reduces the
power consumption without violating the constraints, following
the traffic changes. In addition, we also demonstrate that our
method can keep the connectivity in case of failures, and recover
the performance and the small power consumption soon after
the failure occurs.

Index Terms—Network power saving, Evolutionary approach,
Pareto optimal solutions, Pareto front, Multi-objective evolution-
ary algorithms

I. INTRODUCTION

Network traffic has been increasing as the service over
the Internet such as streaming and cloud service becomes
popular [1], and the power consumption of networks has also
been increasing [2], [3]. The power consumption has become
one of the important problems in networks.

The power consumption of networks can be saved by
shutting down unnecessary network devices, following the
changes in the traffic demands; when the traffic demands
is small, only a small number of nodes are required to be
powered on to accommodate the traffic. On the other hand,
when the traffic demands becomes large, more nodes should
be powered on to accommodate the traffic without congestion.

Many methods to reduce the power consumption have been
proposed [4]–[6]. The method proposed by Amaldi et al.
sets the OSPF link weights so that the energy consumption
is minimized by solving the Mixed Integer Linear Problem
(MILP) periodically [4]. Chiaraviglio et al. also formulated the

MILP that minimizes the number of powered-on nodes under
the constraints that the full connectivity should be kept and
maximum link utilization should be less than the predefined
threshold [5]. They also proposed a heuristic method to solve
the problem.

These methods consider only simple objectives such as
the number of powered-on nodes and the maximum link
utilization. However, the network should satisfy multiple more
complex objectives. One of the important objectives is the
reliability. The reliability may be degraded by powering-off
links. For example, the network, some of whose nodes are shut
down, can be disconnected in case of failures. In this case, the
network service becomes unavailable until the connectivity is
repaired by powering up links or nodes. But powering up the
nodes takes a time.

The performance is another important objectives, which
have large impacts on the application. There are several
objectives related to performance, such as delay and jitter and
so on. Some of these objectives are non-linear and complex,
compared with the maximum link utilization.

Though there are multiple objectives, we can use them
as the constraints when minimizing the power consumption;
for example, a network is configured so as to minimize
the power consumption under the constraints that the delay
should be less than a predefined threshold and the number of
distinct paths on the powered-on paths should be larger than
the predefined value. By using objectives as the constraints,
we can formulate an optimization problem, considering such
multiple complex objectives. However, it takes a long time
to solve the optimization problem, because the optimization
problem includes as many binary variables as the number of
links, and the objective functions are non-linear and complex.

In this paper, we propose a new method to control a network
to save the energy consumption, which can handle com-
plex multiple objective functions, following the environmental
changes. In our method, we store candidate network config-
urations and evolve them so as to follow the environmental
changes in the network. Then, we select the network configu-
ration that minimizes the energy consumption and satisfies the
requirements from the candidate network configurations. By
evolving the network configurations from the previous ones,
we can obtain the suitable network configuration fast.

When evolving the candidate network configurations, we
combine two approaches that can handle multiple objective
functions. The first approach is based on Pareto optimal. Pareto
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Fig. 1. The overview of our method

optimal solutions are the solutions that cannot be improved in
any of the objectives without degrading at least one of the other
objectives. A suitable solution considering multiple objectives
is a Pareto optimal solution. The Pareto optimal solutions can
be obtained by an evolutional algorithm called Multi-Objective
Evolutionary Algorithms (MO-EA) [7]–[12]. In this paper, we
calculate the Pareto optimal solutions by using this algorithm.

Another approach is based on the diversity of the network
configurations. By storing diverse network configurations, we
can find the suitable configuration in the set of the stored net-
work configurations even when the significant environmental
changes occur.

The rest of this paper is organized as follows. In Section 2,
we propose a method to save the energy consumption. We
evaluate our method in Section 3. The conclusion is drawn in
Section 4.

II. NETWORK POWER SAVING WITH EVOLUTIONARY
APPROACH

A. Overview of our method
In this section, we propose a method to control the network

to save the power consumption, considering multiple complex
objectives. To follow the environmental changes, we need
to calculate the suitable network configuration periodically.
However, it takes a long time to solve the optimization problem
including multiple complex objective functions.

In our method, we store the candidate network configura-
tions and evolve them following the environmental changes,
instead of solving the optimization problem periodically. Fig-
ure 1 shows the overview of our method. In this method,
we periodically collect traffic information. Then, we evolve
the candidate network configurations based on the collected
traffic information. Finally, we select one of the network
configurations that minimizes the energy consumption and
satisfies the requirements as shown in Figure 2. By continuing
these steps, our method follows the environmental changes.
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Fig. 2. Selection of the network configuration

B. Evolution of network configurations
In this section, we explain how we evolve the network

configurations. In this paper, we use two approaches. The first
one is based on the Pareto optimal. The problem we solve
is a multi-objective optimization problem. The Pareto optimal
solutions are the solutions of the multi-objective optimization
problem, which are solutions that cannot be improved in any
of the objectives without degrading at least one of the other
objectives as shown in Figure 3. That is, setting the network
based on one of the Pareto optimal solutions, we can control
the network, considering all of the objectives.

Another one is based on the diversity. By holding the diverse
network configurations, we can find the suitable solutions even
when the significant environmental changes occur.

In our method, we combine both of approaches. That
is, we store both of the network configurations evolved by
the approach based on the Pareto optimal and those by the
approach based on the diversity.

1) Evolution based on Pareto optimal:
a) Pareto optimal solutions and Pareto front: In multi-

objective optimization problems, it is impossible to obtain
a complete optimal solution to all of the given objective
functions, because the objective functions compete with each
other. Therefore, the Pareto solutions are obtained. x∗ is a
Pareto optimal solution when there is no x that satisfies
Eqs. (1) and (2).

fi(x) ≤ fi(x
∗) ∀i = 1, ..., p (1)

fi(x) < fi(x
∗) ∃i ∈ {1, ..., p} (2)

where fi(x) is ith objective function. In general, there are a
number of Pareto optimal solutions, and these solutions form
surface which is called Pareto front.

b) Calculation of Pareto optimal solutions based on
the evolutional algorithm: Pareto optimal solutions can be
obtained by an evolutional algorithm called MO-EA [13]. In
MO-EA, solutions are coded as a gene. MO-EA evolves the
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Fig. 3. Pareto optimal solutions

genes by using the mutation and crossover operators so that
the genes approach to the Pareto optimal solutions.

MO-EA performs the following steps.
1) Initialization : generate N individuals, and denote the

set of individuals as P .
2) Evaluation : rank the individuals based on the non-

dominated sort, and calculate the density in each rank.
3) Generation of offspring : generate N offspring by ma-

nipulating genes (selection, crossover, and mutation),
and denote them as Q

4) Replacement of the old solutions : update P to N
solutions selected from P ∪Q, and save the solutions in
rank 1 to Pareto archive.

5) Finish of determination : End when the end conditions
are satisfied. Then, the solutions in Pareto archive form
the Pareto front. Go back to Step.3 otherwise.

MO-EA ranks the individuals by using non-dominated
sort [13]. When a solution A is superior to another solution
B in all objective functions, the solution A dominates the
solution B. The non-dominated sort ranks the solutions based
on the number of dominating solutions. The non-dominated
sort procedures are summarized as follows.

1) Initialize n to 1.
2) For each solution, count the number of the solutions

dominating the solution, and the number of the solutions
dominated by the solution.

3) For each solution that is not included in the lists, if the
number of solutions dominating the solution is 0, add it
to the lists Fn.

4) For each solution, subtract 1 from the number of the
solutions dominating the solution if the solution is
dominated by the solutions in Fn.

5) End if the number of the solutions that are not included
in any lists is 0. Otherwise, increment n and go back to
Step 2.

After the above steps, the list of Fn includes the solutions of
the rank n.

Priorities between the individuals with the same rank are
determined by using crowding distance [13]. Crowding dis-
tance cx is a metric indicating the density of the individuals
near the individual x, and is defined by

cx =

⎧
⎪⎨

⎪⎩

∞ max or min on
any criteria of x

∑
m

fm(Inext
m (x))−fm(Iprev

m (x))
fmax
m −fmin

m
otherwise

where Iprevm (x) is the individual whose value of the mth
objective function is the largest among the individuals whose
values are smaller than the value of x, and Inextm (x) is the
individual whose value of the mth objective function is the
smallest among the individuals whose values are larger than
the value of x. fmax

m is the maximum value of the mth
objective function, and fmin

m is the minimum value of mth
objective function. By selecting the solution with a large
cx, we select the solutions that are different from the other
solutions.

c) Evolution based on Pareto Optimal in our method: In
this paper, we evolve the network configurations based on the
MO-EA. That is, we perform the following step several times
in each time slot.

1) Evaluation : rank the network configurations based on
the non-dominated sort, and calculate the density in each
rank.

2) Generation of offspring : generate offspring by manip-
ulating network configurations

3) Replacement of the old solutions : update the set of
network configuration, and save the solutions in rank 1
to Pareto archive.

Finally, we store the solutions in Pareto archive for the next
time slot.

In the above steps, our method generates new offspring by
selection, crossover and mutation as follow.

Selection and crossover: We select network configurations
based on a tournament strategy; we select k network config-
urations randomly, and select the best individual from them
by using rank and crowding distance. By performing the
above steps twice, we select two network configurations. The
network configuration includes the paths between nodes, and
the information on the powered-on links. Then, we perform
the crossover operation, which swaps randomly selected path
in the selected two network configurations to generate new
offspring.

Mutation: Mutation operation includes two mutation step;
the path mutation and the link mutation. In the path mutation
step, we select one path randomly, and select one node on
the selected path randomly. Then, we generate a new path
which includes randomly generated paths from the selected
node to the destination node. In the link mutation step, we
select a node randomly, and turn off the links connected to
the selected node. Then, the paths are recalculated so as not
to pass the selected node.



C. Evolution based on the diversity
Pareto front may become significantly different from the

previous one if the significant environmental changes occur. In
this case, the network configuration evolved from the solutions
in the Pareto archive cannot provide the required performance.
Therefore, we hold the network configurations evolved by the
different strategy.

In this strategy, we evolve the network configurations so
that the diverse network configurations are stored. This kind
of network configurations are generated after completing the
evolution based on the Pareto optimal. Then, we evaluate all
the candidate network configurations using the metric Ev(x),
which is defined by

Ev(x) = Distance(x)× Sim(x)

where Distance(x) is difference between x and a solution
in the Pareto front, and Sim(x) is the similarity between
x and the solutions in the set of the other stored network
configurations. By selecting the solution with small Ev(x), we
can store the diverse solutions that are close to Pareto front.

In this paper, Distance(x) is defined as the distance from
x to the closest solution in Pareto front, and is calculated by

Distance(x) = min
x′∈P

∑

m

(fm(x)− fm(x′))2

where P is the set of the solutions on the Pareto front.
To define Sim(x), we use the maximum link utilization on

each path as metrics. First, S(x, x′) is defined by

S(x, x′) =
1√∑

i,j(li,j(x)− li,j(x′))2

where li,j(x) is the maximum link utilization on the path from
i to j when configuring the network configuration x. S(x, x′)
becomes small when x and x′ uses the different paths.

Then, S(x) is defined by maximum value of S(x, x′). That
is,

S(x) = max
x′∈R

S(x, x′)

where R is the set of the solutions that are already stored.
Finally, Sim(x) is defined by normalizing S(x) so that 0 ≤
Sim(x) ≤ 1.

Sim(x) =
S(x)−minx′ S(x′)

maxx′ S(x′)−minx′ S(x′)

III. EVALUATION

A. Simulation Environment
1) Network topology: In our evaluation, we use a FatTree

topology, which is a typical network architecture in data
centers. We set the number of ports of each switch to 8 as
shown in Figure 4; each pod consists of 16 servers and 2 layers
of 4 switches. Each edge switch connects to 4 servers and 4
aggregation switches. Each aggregation switch connects to 4
edge switches and 4 core switches. Each core switch connects
to 8 pods. In our evaluation, we set the power consumption
of the links and switches based on the fact that the power
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Fig. 4. Network topology

TABLE I
SIMULATION ENVIRONMENT

Power consumption of node 0.7 [kw]
Power consumption of link 0.07 [kw]

Maximum transmission speed at each port 1 [Gbps]

consumption of nodes is 10 times as large as that of links [4].
Table I shows the power consumption and capacity of links
and nodes used in our evaluation.

2) Traffic: In our evaluation, we generate two kinds of
traffic.

Traffic Pattern A: This pattern includes daily traffic
changes. In this traffic pattern, traffic are generated between se-
lected server pairs and traffic between each node pair changes
as shown in Figure 5.

Traffic Pattern B: This pattern includes unexpected sudden
traffic changes. For this pattern, we select the pod pair ran-
domly, and add traffic between all server pairs in the selected
pod pairs at the time slot 461 as shown in Figure 6. By using
this pattern, we investigate whether our method follows such
sudden traffic changes.

3) Compared methods: In this paper, we compare the
following three methods.

Method with Diverse Solutions (w/ DS): This is our
proposed method that evolves the network configuration from
both of the Pareto archive and the archive storing the diverse
solutions.

Method without Diverse Solution (w/o DS): This is a
method that evolves the network configuration only from the
solutions in the Pareto archive.

Random (R): This is a method that generate the Pareto
optimal solutions by MO-EA method at each time slot, which
generate initial solutions randomly at every time slot.

The parameters used in this evaluation are shown in Table II.
R requires a longer calculation time than the method w/o DS,
because R needs to generate the initial solutions. Similarly,
the method w/ DS requires a longer calculation time than
the method w/o DS because the method w/ DS holds the
archives storing the diverse solutions. Considering this, we set
the number of evolution in each time slot as shown in Table
III. By these setting, all of three methods takes a similar time
to obtain the solution in each time slot.

4) Objective functions and SLA requirements:
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a) Objective functions: In this paper, we use the follow-
ing objective functions in each method.

Power Consumption: In this paper, the network power
consumption is defined as the sum of the power consumption
of the powered-on links and nodes, and is calculated by

Enet(x) =
∑

(i,j)∈L

ELinkpi,j(x) +
∑

k∈V

ENodepk(x) (3)

where L is the set of links, V is the set of nodes, ELink is the
power consumption at each link, ENode is power consumption
at each node, pi,j(x) is a variable which is 1 when gene x uses
link between i and j, 0 otherwise, and pk(x) is variable which
is 1 when x uses node k, 0 otherwise.

Reliability: In this paper, we set the metric of the reliability
based on the number of distinct paths on the powered-on
links, because we can keep connectivity in case of failures

TABLE II
PARAMETERS OF MO-EA

Parameter Value
Number of saved configurations 30

Crossover ratio 0.5
Mutation ratio 0.5

TABLE III
NUMBER OF GENERATIONS FOR EVALUATION

w/o DS R w/ DS
50 49 45

by preparing more distinct path. We define the reliability by

R(x) =
1

mini,j ri,j(x) + α
∑

i,j ri,j(x)

where ri,j is the number of distinct paths between i and
j, and α is a parameter. In this evaluation, we set α to
maxx

∑
i,j ri,j(x).

Performance: In this paper, we use delays between devices
as the metric of performance. That is, the objective function
of performance P (x) is defined by

P (x) = max
i,j

Di,j(x)

where Di,j(x) is a delay between i and j when the network
configuration x is set, and is calculated by

Di,j(x) =
∑

(s,d)∈qi,j(x)

d(s,d)(x)

where qi,j(x) is the set of links on the path from i to j, and
d(s,d)(x) is the delay between link s and link d. In this paper,
we assume that the delay is modeled by M/M/1 model. That
is, d(s,d)(x) is calculated by

d(s,d)(x) = Ts
ρs,d(x)

1− ρs,d(x)

where Ts is the average processing times of a packet in each
link, and ρs,d(x) is utilization of link s–d.

b) SLA requirements: In this evaluation, we set the
following requirements.

• Delay between any server pairs must be less than 250[µs].
• At least 2 distinct paths should be provided between any

server pairs.

B. Results
1) In the case without failures : Figure 7 shows the results

in the case of traffic pattern A without failures.
Figure 7(a) shows the power consumption at each time

slot. The vertical axis indicates power consumption and the
horizontal axis indicates time slot. This figure indicates that
the methods w/ DS and w/o DS follows the traffic variation;
they reduce the power consumption when traffic volume is
low, and turn up many devices to accommodate more traffic
with a sufficiently small delay when traffic volume becomes
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high. However, R cannot reduce the power consumption. This
is because the method that does not use the network configura-
tions in the previous time slot cannot obtain appropriate Pareto
front that saves power consumption in 49 generations at each
time slot. That is, this results demonstrate that evolution from
network configurations in the previous time slot is efficient to
follow the environmental changes.

Figure 7(b) shows delay and Figure 7(c) shows the number
of distinct paths. The vertical axis indicates the maximum
delay or 1/R(x). The horizontal axis indicates the time slot.
In both figures, we plot the constraints of SLA as a line. These
figures show that the method w/ DS satisfies all constraints at
all time slots. However, the method w/o DS cannot satisfy the
constraints at time slot 175, 318, and 461. This is because
the method w/o DS removes the solutions that satisfy the
constraints at time slot 175, 318, and 416, when the traffic
volume is very small. When traffic volume is very small, the
delay depends on the number of hops. As a result, the delay has
only a small impact on selecting the network configurations to
be stored in the Pareto archive, and the network configurations
with the smaller energy consumption are stored. Therefore,
the network configurations that accommodate more traffic are
removed from the Pareto archive. On the other hand, the
method w/ DS stores such network configurations that can
accommodate more traffic. As a result, the method w/ DS
satisfies the constraints.

We also evaluate the methods in the case of traffic pattern B.
Figure 8 shows the results. Figures 8(b) and 8(c) show that all

methods satisfy the requirements at all time slots. Figure.8(a)
shows that power consumption becomes higher at time 461
in both of the methods w/ and w/o DS. This is because
the sudden traffic changes causes the lack of the solutions
satisfying the SLA constraints. As a result, the solution found
in the evolved network configurations requires powering on a
number of devices. However, the methods w/ DS decreases the
power consumption immediately. This is because the methods
w/ DS evolves the network configurations so as to save the
energy consumption. On the other hand, the method w/o DS
cannot reduce the energy consumption, compared with the
method w/ DS. This is because the network configurations
stored in the Pareto archive becomes significant different from
the suitable network configurations. As a result, a large number
of generations are required to achieve the suitable Pareto front.
That is, the diversity in the stored solutions also helps the
immediate adaptation to the sudden traffic changes.

2) In the case with failures: In this evaluation, we generate
a failure at the randomly selected node at time slot 461. In
our method, the traffic passing the failed node is immediately
rerouted to the shortest paths on the network constructed of
powered-on nodes. Then, at the next time slot, we evolve the
network configurations, considering the failure of the nodes.

Figure 9 shows the results. In this figure, the vertical axis
indicates the power consumption, delay, and the reliability, and
the horizontal axis indicates the time slots after the failure
occurs. Figures 9(b) and 9(c) show that the methods w/ DS
and w/o DS cannot satisfy the SLA constraints, due to the
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reroute of the traffic without considering the SLA constraints.
However, all methods satisfy the SLA constraints 1 time slots
after the failure. This is because the network configurations
are evolved, considering the SLA constraints. As a result,
the set of candidate network configurations after the evolution
includes network configurations that satisfy the requirements.
But, the power consumption increased at the time slot 1.
This is because the number of network configurations in the
archive that satisfy the SLA requirements is small, though
the evolution of the network configurations generates the
network configuration satisfying the SLA constraints. Then,
the power consumption also decreases by evolving the network
configurations. Therefore, our method can also handle the
failures, and achieves suitable network configuration.

IV. CONCLUSION

In this paper, we proposed a network power saving method
that handles multiple complex objectives, following the envi-
ronmental changes. In this method, we hold candidate network
configurations and evolve them following the environmental
changes in the network. Then, we select the network con-
figuration that minimizes the energy consumption under the
constraints.

When evolving the candidate network configurations, we
combine two approaches. The first approach is based on Pareto
optimal. Another approach is based on the diversity of the
network configurations.

In this paper, we evaluated our method by simulation.
The results show that our method w/ DS reduces the power
consumption without violating the SLA constraints, following
the traffic changes. In addition, even when a failure occurs,
our method re-builds paths and gradually recovers the network
configurations so that the energy consumption is minimized
under the SLA constraints.

In this paper, we evaluate our methods in the FatTree
topology. Our future work includes to evaluate our method
in a more general network structure.
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