研究の背景

- 無線センサネットワーク (WSN) の発展
- Internet of Things (IoT) への応用

WSN の仮想化による IoT の実現

- 仮想的な WSN の構築により仮想 IoT ネットワークを実現
 - リソースの柔軟な活用が可能
 - レイヤー、仮想レイヤを独立に開発が可能
 - ユーザの要求に応じて異なる仮想トポロジの構築が可能

WSN の仮想化[1]と問題点

- WSN をインフラ層とサービス層に分離
 - インフラプロバイダが個別の物理ネットワークを提供
 - サービスプロバイダがインフラ層の上に仮想 WSN を構築
- アプリケーション要求の多様化に伴いトポロジの生成・除去が可能
- 大規模なネットワーク環境において、省電力性と通信効率性を最適化するトポロジの計算量は膨大

研究のアプローチと目的

- 大脳皮質の頸間接続構造に着目
 - 大脳皮質仮面
 - ヒトの高度な知能活動を支える、進化過程上の脳の新しい領域
 - 頚面
 - 脳機能の役割に基づく大脳皮質の分割単位
- 大脳皮質の頸間接続構造の特徴
 - 100 例を超える神経細胞により構築される基大規模ネットワーク
 - 接続構造の維持に必要な代謝コストの抑制と、情報の伝達効率の向上とトレードオフのもと、最適な接続構造を実現

仮想 WSN ネットワークモデル

- WSN を二層構造に分割
 - Infra-Layer、VS-Layer
- VS-Layer のトポロジ構築に EDR を適用する手法を提案

WSN の仮想化[1]と問題点

- Exponential Distance Rule (EDR)[2]
 - 大脳皮質の頸間接続の解剖学的な接続構造モデル
 - 解剖学的：神経細胞同士の接続構造 (→ 機能的)
 - 頚間の神経接続の存在確率 \(p(d) \) が物理的距離の増加に対して指数関数的に減少
 \[p(d) = c \exp(-ad) \]

大脳皮質の頸間な接続構造モデル

大脳皮質の頸間接続モデル

WSN を二層構造に分割

仮想 WSN ネットワーク構築手法を提案

仮想 WSN ネットワーク構築手法を提案

WSN の仮想化[1]と問題点
仮想 WSN の構築 : Infra-Layer

1. N 個のノードを無作為に二次元面のエリアに配置
2. 通信半径 r に存在するノード間でリンクを生成
3. InfoMap 法を用いてモジュール群に分割
 - 分割の過程で、ランダムに発生するフローが最も通るノードを代表ノードとして決定
 - 代表ノードによってモジュールの座標を指定
4. モジュール間のリンクを削除し、M 個のモジュールを生成

Ground Truth: Infra-Layer のリンクを考慮

仮想 WSN の構築: VS-Layer

1. Inter-VL の上に VS-Layer のトポロジーを構築
2. EDR モデルに基づいてモジュール間で仮想リンク (Inter-VL) を生成
3. モジュールのペアを無作為に選択
4. EDR モデルを拡張した確率式 p(d) で幾多ノード間の Inter-VL を生成
 - p(d) = exp(-d/a)

生成されるトポロジー

1. 100[m] 正方形領域、N = 1000、r = 8[m]、m = 5、M = 53
2. リンクは重み付き、向き無し

互換性の評価

1. VNS-Layer の構築手法
 - EDR モデル
 - パラメータ a を変化
 - Random モデル
 - 無作為に Inter-VL を生成
 - BA モデル
 - 初期ノード数 S、ノード増加毎に 2 本のリンクを追加
 - Full-Link モデル
 - 全てのノード間で Inter-VL を生成
 - Min-Link モデル
 - 最小数域を生成したノード間を Inter-VL で最小距離のモジュール間に割り当て

評価環境

1. 300[m] 四方の領域
2. ノード数：N = 4000
3. ノード密度半径：r = 8[m]
4. Inter-VL の本数：L = m × M
 - パラメータ：m = 5
 - モジュール数：M = 3
5. 300×5[m] 四方の領域
6. N = 2000、M = 117

両者で互いに距離のノード数が等しくなるように設定

Full-Link モデルでは L = μC_2

評価指標

1. APL (Average Path Length)
 - ノード間の最短経路距離の平均値
 - 経路は Inter-Layer と Inter-VL により構成
2. AHM (Average Hop Count)
 - ノード間の最小ホップ数の平均値
 - 経路は Inter-Layer と Inter-VL により構成
3. WC (Wiring Cost)
 - インフラ-Layer を構築する Inter-VL の総線長
 - モジュラリティ
 - VS-Layer のコミュニティ構造の度合い
 - Q = Σ(e_d - e_q)

InfoMap 法で最後に最適化を求める
トポロジの構造上の性質

- EDR = 0.625 が特徴的な性質を提示
- 最適解に近い APL と WC を提示
- 高いモジュラリティを提示
 - コストの低下に対するトレードオフ
 - BA が Random モデルよりも AHC を低減

表：[N = 4000 におけるトポロジの構造上の性質評価]

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>ミニリンク</th>
<th>10%リンク</th>
<th>20%リンク</th>
<th>ランダム</th>
<th>BA</th>
<th>フルリンク</th>
</tr>
</thead>
<tbody>
<tr>
<td>APL [m]</td>
<td>2.04</td>
<td>1.89</td>
<td>1.90</td>
<td>2.47</td>
<td>2.07</td>
<td>2.96</td>
</tr>
<tr>
<td>AHC</td>
<td>2.12</td>
<td>1.92</td>
<td>1.87</td>
<td>2.44</td>
<td>2.02</td>
<td>2.62</td>
</tr>
<tr>
<td>WC [m×10^3]</td>
<td>0.113</td>
<td>0.542</td>
<td>1.50</td>
<td>2.76</td>
<td>3.42</td>
<td>3.40</td>
</tr>
<tr>
<td>モジュラリティ</td>
<td>0.365</td>
<td>0.890</td>
<td>0.426</td>
<td>0.285</td>
<td>0.285</td>
<td>0.255</td>
</tr>
</tbody>
</table>

異なる規模のトポロジの比較

- N = 4000 の結果を N = 2000 の結果で割った値を算出
- モジュール数についての規模の違いの影響を評価
- EDR = 0.625 が特徴的な性質を提示
 - APL とWC の増加量を最小
 - AHC の增加を抑制
- モジュールの高さが要因の一つであると推測

パラメータαの影響の評価

- N = 4000 の場合の APL、AHC、WC をパラメータαに対して詳細に評価
- 0.2 ≤ α ≤ 1.0 の範囲で
 - コスト (WC) の低下と効率 (AHC) の向上のトレードオフを確認
 - APL が適度な値を達成することを確認

フラッディングによる評価

- 同一の WC で構築されるトポロジの性能を比較評価
- フラッディング実施時の情報拡散速度を測定
 - 発生・到着したデータは各ノードの全接続ノードに転送
 - リンク上の伝搬遅延、ノード上の処理遅延を考慮
 - 伝搬遅延：100[m]の伝搬に対して A(μ)の遅延が生じると仮定
 - 处理遅延：サービス率 μ = 1/μ [E−1] の遅延が生じると仮定
- VNS-Layer の構築手法
 - 200[m]四方領域、N = 5000、μ = 2[m]、m = 25、M = 100
 - EDR モデル
 - パラメータαを 0.05 に固定
 - Random Weight モデル
 - 1. のWC を固定し、既存のリンクの重みのみをランダムに張り替え
 - Random Shape モデル
 - 1. の WC を固定し、リンクをランダムに生成し置換したモデル

情報拡散速度

- Random Shape の性能が最も低いことを確認
- EDR によって構築されるトポロジの形状が効率的に情報を拡散
- EDR が Random Weight よりも高い情報拡散速度を提示

結論と今後の課題

- 結論
 - 提案手法は α = 0.05 付近のパラメータを用いる場合に、コストと効率性のトレードオフの元で望ましい性能を示した
 - 大規模な環境に適用する場合に、提案手法が望ましい性能を発揮することを示した
 - モジュール数の増加、モジュール内ノード数の増加に適応
- 検討すべき今後の課題
 - ノードのトポロジの特性を考慮した VS-Layer の構築
 - 接続ノードの共有割合、次数相関、etc.
 - 複数の VS-Layer を同時に構築した場合の性能評価