
2017/2/14

1

Impact of Fluctuating Goals on Adaptability of
Evolvable VNF Placement Method

Mari Otokura1, Kenji Leibnitz2, Yuki Koizumi1, Daichi Kominami1,
Tetsuya Shimokawa2, Masayuki Murata1

1 Osaka University, Japan

2 NICT, Japan

1

Research Background

• Communication services are becoming more diverse and dynamic

• Internet of Things (IoT) is currently being realized

• Communication service providers will offer flexible and dynamic
network functions

• Network functions process packets in the “middle” of networks

• Examples: firewalls, intrusion detection systems (IDS), caches

• Network functions have been implemented in hardware

• Not flexible and not dynamic

2

Edge Network

Core
Network /

Internet

Cloud

IoT devices / users

Network Functions

• NFV implements network functions in software

• Virtual Network Functions (VNFs):

• Network functions virtualized by NFV

• Run on virtual machines (VMs)

• VNF placement problem

• Decision of VNF placement on physical machines (PMs) in physical
networks

Network Function Virtualization (NFV)

VM

Large delay Small delay

3

VNF1 VNF2→

Request of a user

VNF1

VM

VNF2

VM

VNF1

VM

VNF2

VNF1 VNF2
Request

of a user

Controller

(Step 3) Controller
places the components

on physical network

(Step 1)
Request arrives

PM7

VM3

VNF2

Comp1

VNF2

Comp2

: Core

PM1 PM2 PM3 PM4

PM6
PM5

PM10 PM9 PM8 PM7
VM 3

VNF2

Comp 1

VNF2

Comp 2

VM 1 VM 2

VNF1

Comp 1

VNF1

Comp 2

VNF1 VNF2

VNF1

Comp 1

VNF1

Comp 2

(Step 2) Controller
breaks down VNFs
into components

VNF2

Comp 1

VNF2

Comp 2

System Model

(Step 1) Request from user
for a VNF chain arrives

(Step 2) Controller splits
VNFs of chain into
components

• Components: small VNF
software modules [4]

(Step 3) Controller places
components on PMs and
assigns cores to them

(Step 4) Controller decides
routes of traffic for
chains through required
components

4

(Step 4) Controller
decides routes

Dynamic VNF Placement Problem

• Reconfiguration of VM/VNF placements on physical network when
requests for VNF chains arrive/depart

• Main requirement for placement computation: short calculation
time

• Solving optimization problem at every request change:

• Difficult to realize since even the static VNF placement problem is
NP-hard

5

VM

VNF1 VNF2

VM

VNF3

Request arrive and
reconfigure

placement

time

VNF2 VNF3

VM

VNF1 VNF2
VNF1 VNF2

Request of a user

Objective

• We previously proposed an evolutionary method for dynamic VNF
placement problems named Evolvable VNF Placement (EvoVNFP)
[12]

• Utilizing knowledge from biological evolution under varying
environments

• When organisms evolve in varying environments:

• Organisms become robust to environmental changes [13]

• Evolution of organisms speeds up [14]

• Objective

• Evaluating EvoVNFP in greater detail to clarify the influence of the
parameter settings on the performance

6

[13] N. Kashtan and U. Alon, “Spontaneous Evolution of Modularity and Network Motifs,” PNAS, vol. 102, no. 39, pp. 13773–13778, Sep. 2005.

[14] N. Kashtan, E. Noor, and U. Alon, “Varying Environments Can Speed Up Evolution,” PNAS, vol. 104, no. 34, pp. 13711–13716, Aug. 2007.

[12] M. Otokura, K. Leibnitz, Y. Koizumi, D. Kominami, T. Shimokawa, and M. Murata, “Application of Evolutionary Mechanism to Dynamic Virtual

Network Function Placement,” in Proceedings of ICNP Workshop on Control Operation and Application in SDN protocols (CoolSDN), Nov. 2016.

2017/2/14

2

Evolvable VNF Placement (EvoVNFP)

• Dynamic VNF placement method addressing dynamic
arrivals/departures of VNF chain requests

• Calculation of placements by a special type of Evolutionary Algorithm
(described in detail later)

• When simulations generate placements which meet predetermined
objectives, the controller implements these generated placements as
real ones

7

time

EvoVNFP

simulation

Real placement

R3 arrives R1 departs

R1
R2
R3

R1+2 R1+2+3 R2+3

...

...

...

...

Special EA (described in detail later)

• An optimization algorithm as extension of EA,
which imitates biological evolution in varying
environments

• MVG changes its objective regularly every fixed
number of generations

• Effects of regular changes:

• Individuals become robust to objective changes

• Evolution itself speeds up

• Because getting stuck in local solutions is prevented

no

Modularly Varying Goals (MVG) [13]

8

start

end?

mutation/
crossover

fitness calc

init

select
individuals for

next generation

end

yes

no

periodic objective
change

periodic
change?

yes

[13] N. Kashtan and U. Alon, “Spontaneous Evolution of Modularity and

Network Motifs,” PNAS, vol. 102, no. 39, pp. 13773–13 778, Sep. 2005.

[14] N. Kashtan, E. Noor, and U. Alon, “Varying Environments Can Speed Up Evolution,”

PNAS, vol. 104, no. 34, pp. 13711–13 716, Aug. 2007.

MVG

Individuals robust to
objective changes

MVG does not
get stuck in
local solutions

Conventional EA

Normal EA
may get stuck in
local solutions

Detailed Behavior of EvoVNFP

• Intentionally change objectives every fixed number of generations
(= period)

• Intentionally use EA without re-initialization of population when
objectives change

9

S4

time

Example of

EvoVNFP

simulation

S1 S2 S1 S3 S1 S2 S1 S1 S3 S1 S2 S1 S3 S1 S2 S1 S1 S3 S1 S3 S1 S4

…

...

Requests
in system 1

3 1
1
3

1
3

1

1S1

S2

S3

S4

R3 departs R4 arrives
period

Requests

in system

R1

R2

R3

1
2

1

1
2

1S1

S2

S3

Requests

in system

R1

R2

S1

S2

S3

S4

1
3 1

1
3

1
3

1

1

R1

R2

R4

Real placement R1+2+3 R1+2 R1+2+4

Objective

state transition

in EvoVNFP

R1+2+3R1+2+3 R1+2R1+2

generate! generate!update! update! generate!

• Example structure of an individual (see figure below):

• Individual represents placement in network

• Connection between VM layer and component layer: allocation of
component on VM

• Connection between PM layer and VM layer: allocation of VM on PM

• Mutation: randomly change one element of an individual

• Change connections or the number of cores saved in nodes

Individuals and Mutations

10

＝
VM1

8

VM2

6

PM1

16

PM2

16

PM3

16

PM4

16

Comp1

2 Comp2

6

Comp3

3 Comp4

3

PM1

16

PM2

16

PM3

16

PM4

16

VM1

8

VM2

6

Comp1

2

Comp2

6

Comp3

3

Comp4

3

PM layer

VM layer

Component
layer

VM3

4

VM4

4

number of cores

Fitness Function

• Evaluate how well placements adapt to objectives

• If individuals can be converted to placements:

• Small average delay of chains and small number of used cores  high
fitness

• Otherwise:

• Fitness is a negative value

• Small number of elements in individuals violating the constraints  high
fitness

11

𝐹 =

 𝑑

𝑑𝑚𝑎𝑥
+

𝑊(𝑖,𝑘 𝑚𝑖,𝑘)

𝑐𝑚𝑎𝑥

−1

− Z

𝑑𝑚𝑎𝑥: reference value of delay
𝑐𝑚𝑎𝑥: maximum number of cores
𝑍: number of elements which violate the constraints

if individuals can be converted to placements

otherwise

Simulation Settings

• Physical network: 5 routers, 10 PMs, each PM has 16 cores

• Requests: tuples consisting of ingress router, egress router, VNF
chain, and transmission rate

• Example: (𝑟1, 𝑟3, {𝑉𝑁𝐹1 → 𝑉𝑁𝐹2}, 200 Mbps)

• Reference methods for comparison:

• Conventional EA (Conv): normal EA that is rerun whenever there is an
arival/departure of requests

• Random Immigrant GA (RandImm) [15]

• RandImm initializes randomly selected individuals after mutation step

• Parameters:

• Population size: 1000, elite size: 100, mutation probability: 0.8

• Replacement rate (RandImm): 0.3

12[15] J. Grefenstette, “Genetic Algorithms for Changing Environments,” in Proceedings of PPSN 1992. Elsevier, Sep.

1992, pp. 137–144.

2017/2/14

3

Types of Evaluations and Metrics

• Evaluations under varying parameters

• Evaluation with varying system load (EvoVNFP, Conv, RandImm)

• Evaluation of different period lengths (EvoVNFP)

• Evaluation metric

• Failure probability

• Probability of finding no feasible solution until the next objective change

13

Request

departs

Request

arrives

Request

departs

Request

arrives

EvoVNFP
simulation

Placement

FailSuccess Success

Evaluation with Varying System Load

• Failure probability of EvoVNFP is lowest

• Failure probability increases when the average load increases

14

EvoVNFP has the
lowest failure

probability

Evaluation of Different Period Lengths

• 𝑇𝑝 = 5 is the best setting for the considered simulation setting

15

𝑇𝑝 = 5 is the

best setting

𝑇𝑝 = 5

R: average number of
requests in the system

Summary and Future Work

• Summary

• Evaluating dynamic VNF placement method named EvoVNFP in
greater detail by computer simulations

• EvoVNFP generates placements which meet user requests by MVG

• When requests arrive/depart, EvoVNFP runs EA without reinitializing
population

• EvoVNFP switches between real objectives and relaxed sub-objectives every
fixed number of generations

• Evaluation of EvoVNFP by computer simulations

• EvoVNFP can follow the dynamics of the request arrival/departure

• Specific parameter settings of EvoVNFP make its adaptability even better

• Future work

• Application of further evaluation metrics

16

