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Research Background

• Communication services are becoming more diverse and dynamic

• Internet of Things (IoT) is currently being realized

• Communication service providers will offer flexible and dynamic 
network functions

• Network functions process packets in the “middle” of networks

• Examples: firewalls, intrusion detection systems (IDS), caches

• Network functions have been implemented in hardware

• Not flexible and not dynamic
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Network Functions

• NFV implements network functions in software

• Virtual Network Functions (VNFs):

• Network functions virtualized by NFV

• Run on virtual machines (VMs)

• VNF placement problem

• Decision of VNF placement on physical machines (PMs) in physical 
networks

Network Function Virtualization (NFV)
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System Model

(Step 1) Request from user 
for a VNF chain arrives

(Step 2) Controller splits 
VNFs of chain into 
components

• Components: small VNF 
software modules [4]

(Step 3) Controller places 
components on PMs and 
assigns cores to them

(Step 4) Controller decides 
routes of traffic for 
chains through required 
components
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(Step 4) Controller 
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Dynamic VNF Placement Problem

• Reconfiguration of VM/VNF placements on physical network when 
requests for VNF chains arrive/depart

• Main requirement for placement computation: short calculation 
time

• Solving optimization problem at every request change: 

• Difficult to realize since even the static VNF placement problem is 
NP-hard
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Objective

• We previously proposed an evolutionary method for dynamic VNF 
placement problems named Evolvable VNF Placement (EvoVNFP) 
[12]

• Utilizing knowledge from biological evolution under varying 
environments 

• When organisms evolve in varying environments:

• Organisms become robust to environmental changes [13]

• Evolution of organisms speeds up [14] 

• Objective

• Evaluating EvoVNFP in greater detail to clarify the influence of the 
parameter settings on the performance
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Evolvable VNF Placement (EvoVNFP)

• Dynamic VNF placement method addressing dynamic 
arrivals/departures of VNF chain requests

• Calculation of placements by a special type of Evolutionary Algorithm 
(described in detail later)

• When simulations generate placements which meet predetermined 
objectives, the controller implements these generated placements as 
real ones
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Special EA (described in detail later)

• An optimization algorithm as extension of EA, 
which imitates biological evolution in varying 
environments

• MVG changes its objective regularly every fixed 
number of generations

• Effects of regular changes:

• Individuals become robust to objective changes

• Evolution itself speeds up

• Because getting stuck in local solutions is prevented

no

Modularly Varying Goals (MVG) [13]
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[13] N. Kashtan and U. Alon, “Spontaneous Evolution of Modularity and

Network Motifs,” PNAS, vol. 102, no. 39, pp. 13773–13 778, Sep. 2005.
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Detailed Behavior of EvoVNFP

• Intentionally change objectives every fixed number of generations 
(= period)

• Intentionally use EA without re-initialization of population when 
objectives change
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• Example structure of an individual (see figure below): 

• Individual represents placement in network

• Connection between VM layer and component layer: allocation of 
component on VM

• Connection between PM layer and VM layer: allocation of VM on PM

• Mutation: randomly change one element of an individual

• Change connections or the number of cores saved in nodes

Individuals and Mutations
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Fitness Function

• Evaluate how well placements adapt to objectives

• If individuals can be converted to placements:

• Small average delay of chains and small number of used cores  high 
fitness

• Otherwise: 

• Fitness is a negative value

• Small number of elements in individuals violating the constraints  high 
fitness
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𝑑𝑚𝑎𝑥: reference value of delay
𝑐𝑚𝑎𝑥: maximum number of cores
𝑍: number of elements which violate the constraints

if individuals can be converted to placements

otherwise

Simulation Settings

• Physical network: 5 routers, 10 PMs, each PM has 16 cores

• Requests: tuples consisting of ingress router, egress router, VNF 
chain, and transmission rate

• Example: (𝑟1, 𝑟3, {𝑉𝑁𝐹1 → 𝑉𝑁𝐹2}, 200 Mbps)

• Reference methods for comparison:

• Conventional EA (Conv): normal EA that is rerun whenever there is an 
arival/departure of requests

• Random Immigrant GA (RandImm) [15]

• RandImm initializes randomly selected individuals after mutation step

• Parameters:

• Population size: 1000, elite size: 100, mutation probability: 0.8

• Replacement rate (RandImm): 0.3

12[15] J. Grefenstette, “Genetic Algorithms for Changing Environments,” in Proceedings of PPSN 1992. Elsevier, Sep. 

1992, pp. 137–144.
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Types of Evaluations and Metrics

• Evaluations under varying parameters

• Evaluation with varying system load (EvoVNFP, Conv, RandImm)

• Evaluation of different period lengths (EvoVNFP)

• Evaluation metric

• Failure probability

• Probability of finding no feasible solution until the next objective change
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Evaluation with Varying System Load

• Failure probability of EvoVNFP is lowest

• Failure probability increases when the average load increases
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Evaluation of Different Period Lengths

• 𝑇𝑝 = 5 is the best setting for the considered simulation setting
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Summary and Future Work

• Summary

• Evaluating dynamic VNF placement method named EvoVNFP in 
greater detail by computer simulations

• EvoVNFP generates placements which meet user requests by MVG

• When requests arrive/depart, EvoVNFP runs EA without reinitializing 
population

• EvoVNFP switches between real objectives and relaxed sub-objectives every 
fixed number of generations

• Evaluation of EvoVNFP by computer simulations

• EvoVNFP can follow the dynamics of the request arrival/departure

• Specific parameter settings of EvoVNFP make its adaptability even better

• Future work

• Application of further evaluation metrics
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