
2017/2/14

1

Application of Evolutionary Mechanism to
Dynamic Virtual Network Function Placement

Mari Otokura1, Kenji Leibnitz2, Yuki Koizumi1, Daichi Kominami1,
Tetsuya Shimokawa2, Masayuki Murata1

1 Osaka University, Japan

2 NICT, Japan

1

Research Background

• Communication services are becoming more diverse and dynamic

• Internet of Things (IoT) is currently being realized

• Communication service providers will offer flexible and dynamic
network functions

• Network functions: process packets in the “middle” of networks

• Examples: firewalls, intrusion detection systems (IDS), caches

• Network functions have been implemented in hardware

• Not flexible and not dynamic

2

Edge Network

Core
Network /

Internet

Cloud

IoT devices / users

Network Functions

• NFV implements network functions in software

• Virtual Network Functions (VNFs):

• Network functions virtualized by NFV

• Run on Virtual Machines (VMs)

• VNF placement problem

• Decision of placement of VNFs on Physical Machines (PMs) in
physical networks

Network Function Virtualization (NFV)

VM

Large delay Small delay

3

VNF1 VNF2→

Request of a user

VNF1

VM

VNF2

VM

VNF1

VM

VNF2

Dynamic VNF Placement Problem

• Reconfiguration of VM/VNF placements on physical network when
requests for VNF chains arrive/depart

• Main requirement for placement computation: short calculation
time

• Solving optimization problem at every request change:

• Difficult to realize since even the static VNF placement problem is
NP-hard

4

VM

VNF1 VNF2

VM

VNF3

Request arrive and
reconfigure

placement

time

VNF2 VNF3

VM

VNF1 VNF2
VNF1 VNF2

Request of a user

Our Objective and Approach

• Objective

• Propose method which meets the requirements of the dynamic VNF
placement problem

• Approach

• Utilization of knowledge from biological evolution under varying
environments

• When organisms evolve in varying environments:

• They become robust to environmental changes [6]

• Their evolution speeds up [2]

5

[15] N. Kashtan and U. Alon, “Spontaneous Evolution of Modularity and Network Motifs,” PNAS, vol. 102, no. 39, pp. 13773–13778, Sep. 2005.

[16] N. Kashtan, E. Noor, and U. Alon, “Varying Environments Can Speed Up Evolution,” PNAS, vol. 104, no. 34, pp. 13711–13716, Aug. 2007.

VNF1 VNF2
Request

of a user

Controller

(Step 3) Controller
places the components

on physical network

(Step 1)
Request arrives

PM7

VM3

VNF2

Comp1

VNF2

Comp2

: Core

PM1 PM2 PM3 PM4

PM6
PM5

PM10 PM9 PM8 PM7
VM 3

VNF2

Comp 1

VNF2

Comp 2

VM 1 VM 2

VNF1

Comp 1

VNF1

Comp 2

VNF1 VNF2

VNF1

Comp 1

VNF1

Comp 2

(Step 2) Controller
breaks down VNFs
into components

VNF2

Comp 1

VNF2

Comp 2

System Model

(Step 1) Request for a VNF
chain from a user arrives

(Step 2) Controller splits
VNFs of chain into
components

• Components: small VNF
software modules [4]

(Step 3) Controller places
components on PMs and
assigns cores to them

(Step 4) Controller decides
routes of traffic for
chains through required
components

6[13] ETSI, GS NFV-SWA 001 - V1.1.1 - Network Functions Virtualisation (NFV);

Virtual Network Functions Architecture, Dec. 2014.

(Step 4) Controller
decides routes

2017/2/14

2

Formulation of VNF Placement Problem

• Minimize average delay and number of cores under constraints
(2)-(4):

(2) Each VNF must have sufficient number of cores to guarantee
requested transmission speed for each user

(3) VMs cannot use more cores than available on PMs

(4) Components on VM cannot use more cores than possibly available
on VM

7

minimize 𝑑 + 𝑊 ∙ 𝑖,𝑘 𝑚𝑖,𝑘

subject to:

𝑇𝑎 ∙ 𝑣𝑎
𝑆

≤ 𝑛𝑘,𝑗,𝑎 ∙ 𝐶 ∀𝑘, 𝑗, 𝑎

 𝑘 𝑚𝑖,𝑘 ≤ 𝑁𝑖 ∀𝑖
 𝑗,𝑎 𝑛𝑘,𝑗,𝑎 ≤ 𝑚𝑖,𝑘 ∀𝑘, 𝑖

variables 𝑚𝑖,𝑘, 𝑛𝑘,𝑗,𝑎, 𝑝(𝑟,𝑟′)
𝑢

(1)

(2)

(3)

(4)

𝑚𝑖,𝑘: number of cores which the VM 𝑘 occupies on PM 𝑖
𝑛𝑘,𝑗,𝑎: number of cores which component 𝑗 of VNF 𝑖 occupies on VM 𝑘

Evolutionary Algorithm (EA)

• An optimization heuristic which imitates
biological evolution

• Every loop (generation), EA calculates fitness,
applies mutations and crossovers to
individuals, selects better individuals, and
uses these as population in the next
generation

• Individual: representation of solutions

• Population: set of all individuals

• Fitness: goodness of individuals according to
objectives

• Mutation: randomly and slightly change
individual

• Crossover: randomly combine two
individuals

8

start

end?

mutation/
crossover

fitness calc

init

select
individuals for

next generation

end

yes

no

g
e
n

e
ra

tio
n

• An optimization algorithm as extension of EA,
which imitates biological evolution in varying
environments

• MVG changes its objective regularly every fixed
number of generations

• Effects of regular changes:

• Individuals become robust to objective changes

• Evolution itself speeds up

• Because getting stuck in local solutions is prevented

no

Modularly Varying Goals (MVG) [15]

9

start

end?

mutation/
crossover

fitness calc

init

select
individuals for

next generation

end

yes

no

periodic objective
change

change point
generation?

yes

[15] N. Kashtan and U. Alon, “Spontaneous Evolution of Modularity and

Network Motifs,” PNAS, vol. 102, no. 39, pp. 13773–13 778, Sep. 2005.

[16] N. Kashtan, E. Noor, and U. Alon, “Varying Environments Can Speed Up Evolution,”

PNAS, vol. 104, no. 34, pp. 13711–13 716, Aug. 2007.

MVG

Individuals robust to
objective changes

MVG does not
get stuck in
local solutions

Conventional EA

Normal EA
gets stuck in
local solutions

Evolvable VNF Placement (EvoVNFP)

• Dynamic VNF placement method addressing dynamic
arrivals/departures of requests of VNF chains

• Calculation of placements by MVG (described in detail later)

• When simulations generate placements which meets predetermined
objectives, the controller implements generated placements as real
ones

10

time

EvoVNFP

simulation

Real placement

R3 arrives R1 departs

R1
R2
R3

R1+2 R1+2+3 R2+3

...

...

...

...

MVG (described in detail later)

Objective Changes of MVG in EvoVNFP

• Objective changed every fixed number of generations (= period)
according to remaining requests

• Switching between true objective and relaxed sub-objectives

• Generates adaptive structure and speeds up evolution

• Example: When true objective is to place three chains, the relaxed
objectives consist of placing two out of the three chains

11

VNF1 VNF2𝑟1 𝑟3

VNF1𝑟5 𝑟2

VNF1 VNF2𝑟2 𝑟4VNF3

VNF1 VNF2𝑟1 𝑟3

VNF1 VNF2𝑟2 𝑟4VNF3

VNF1𝑟5 𝑟2

VNF1 VNF2𝑟2 𝑟4VNF3

VNF1 VNF2𝑟1 𝑟3

VNF1𝑟5 𝑟2
True objective

(includes all requests in system)

Relaxed sub-objectives

1
3

1
3

1
3

1

1

1

Example of EvoVNFP Simulation

• Intentionally use EA without re-initialization of population when
objectives change

• Intentionally change objectives every period

12

S4

time

Example of

EvoVNFP

simulation

S1 S2 S1 S3 S1 S2 S1 S1 S3 S1 S2 S1 S3 S1 S2 S1 S1 S3 S1 S3 S1 S4

…

...

Objective

state transition

in EvoVNFP

Requests
in system 1

3 1
1
3

1
3

1

1

1
2

1

1
2

1S1

S2

S3

S4 S1 S1

S2

S3

S4

S2

S3

R3 departs R4 arrives
period

Requests

in system
Requests

in system

R1

R2

R3

R1

R2

R1

R2

R4

1
3 1

1
3

1
3

1

1

Real placement R1+2+3 R1+2 R1+2+4

2017/2/14

3

Example of EvoVNFP Simulation

• Intentionally use EA without re-initialization of population when
objectives change

• Intentionally change objectives every period

13

S4

time

Example of

EvoVNFP

simulation

S1 S2 S1 S3 S1 S2 S1 S1 S3 S1 S2 S1 S3 S1 S2 S1 S1 S3 S1 S3 S1 S4

…

...

Objective

state

transition

Requests
in system 1

3 1
1
3

1
3

1

1

1
2

1

1
2

1S1

S2

S3

S4 S1 S1

S2

S3

S4

S2

S3

R3 departs R4 arrives
period

Requests

in system
Requests

in system

R1

R2

R3

R1

R2

R1

R2

R4

1
3 1

1
3

1
3

1

1

Real placement R1+2+3 R1+2 R1+2+4

• Example structure of an individual (see figure below):

• Individual represents placement in network

• Connection between VM layer and component layer: allocation of
component on VM

• Connection between PM layer and VM layer: allocation of VM on PM

• Mutation: randomly change one element of an individual

• Change connections or the number of cores saved in nodes

Individuals and Mutations

14

＝
VM1

8

VM2

6

PM1

16

PM2

16

PM3

16

PM4

16

Comp1

2 Comp2

6

Comp3

3 Comp4

3

PM1

16

PM2

16

PM3

16

PM4

16

VM1

8

VM2

6

Comp1

2

Comp2

6

Comp3

3

Comp4

3

PM layer

VM layer

Component
layer

VM3

4

VM4

4

number of cores

Fitness Function

• Function to calculate how well placements adapt to objectives

• If individuals can be converted to placements:

• Smaller average delay of chains and number of used cores better
fitness

• Otherwise:

• Fitness is a negative value

• Smaller number of elements in individuals violating the constraints
better fitness

15

𝐹 =

 𝑑

𝑑𝑚𝑎𝑥
+

𝑊(𝑖,𝑘 𝑚𝑖,𝑘)

𝑐𝑚𝑎𝑥

−1

− Z

𝑑𝑚𝑎𝑥: reference value of delay
𝑐𝑚𝑎𝑥: maximum number of cores
𝑍: number of elements which violate the constraints

if individuals can be converted to placements

otherwise

Simulation Settings

• Physical network: 5 routers, 10 PMs, each PM has 16 cores

• Requests: tuples consisting of ingress router, egress router, VNF
chain, and transmission rate

• Example: (𝑟1, 𝑟3, {𝑉𝑁𝐹1 → 𝑉𝑁𝐹2}, 200 Mbps)

• Reference methods for comparison:

• Conventional EA (Conv): normal EA at every arrival/departure of
requests

• Random Immigrant GA (RandImm) [19]

• RandImm initializes randomly selected individuals after mutation step
instead of changing objectives every period as in EvoVNFP

• Parameters:

• Population size: 1000, elite size: 100, mutation probability: 0.8

• Period (EvoVNFP): 20 generations, replacement rate (RandImm): 0.3

• Fixed load of system: 𝐿𝑜𝑎𝑑 = 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 × 𝑠𝑜𝑗𝑜𝑢𝑟𝑛 𝑡𝑖𝑚𝑒 = 0.2

16[19] J. Grefenstette, “Genetic Algorithms for Changing Environments,” in Proceedings of PPSN 1992. Elsevier, Sep.

1992, pp. 137–144.

Evaluation Metrics

• Failure probability

• Probability of finding no feasible solution until the next objective
change

• Number of generations

• Number of generations until obtaining the first feasible solution

• Cost of reconfigurations

• Weighted average of the number of reconfigurations [20, 21]

• Performance of generated placements

• Sum of the number of cores assigned to VMs (system performance)

• Average delay of chains (user performance)

17

Migrations of VMs/components in a router 30

Migrations of VMs/components between routers 120

Resizing of VMs/components, removal of VMs 1

Addition of VMs 60

[21] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A Cost-Aware Elasticity Provisioning System for the Cloud,” in

Proceedings of ICDCS 2011, Jun. 2011, pp. 559–570.

[20] J. Barrera, M. Ruiz, and L. Velasco, “Orchestrating Virtual Machine Migrations in Telecom Clouds,” in Proceedings of

OFC 2015, Mar. 2015, pp. 1–3.

Failure Probability

• EvoVNFP shows best performance among all three methods

• This means that EvoVNFP can follow the dynamics of request
arrivals/departures

18

EvoVNFP has the
lowest failure

probability

2017/2/14

4

Number of Generations

• EvoVNFP can generate solutions with the fewest generations

• This means that EvoVNFP can generate solution in a short time

19

EvoVNFP is
the fastest

Cost of Reconfigurations

• Methods without re-initialization of population when requests
arrive/depart have lower cost

• EvoVNFP and RandImm have similar cost, lower than Conv

20

EvoVNFP and RandImm
have lower cost than

Conv

Performance of Generated Placements

• EvoVNFP can generate better solutions than comparative methods

• This means that EvoVNFP can generate high-performance solutions
while reducing the failure probability

21

EvoVNFP is
almost the same

as RandImm

EvoVNFP is the
smallest among

all 3 methods

Summary and Future Work

• Summary

• Proposal of dynamic VNF placement method named EvoVNFP

• EvoVNFP generates placements which meet user requests by MVG

• When requests arrive/depart, EvoVNFP runs EA without reinitializing
population

• EvoVNFP switches between real objectives and relaxed sub-objectives
every fixed number of generations

• Confirmation of effectiveness of EvoVNFP by computer simulations

• EvoVNFP reduces failure probability of not generating valid placements
and also reduces time to generate solutions

• Furthermore, EvoVNFP generates high-performance placements

• Future work

• Application of different evaluation metrics

22

