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Research Background

• Communication services are becoming more diverse and dynamic

• Internet of Things (IoT) is currently being realized

• Communication service providers will offer flexible and dynamic 
network functions

• Network functions: process packets in the “middle” of networks

• Examples: firewalls, intrusion detection systems (IDS), caches

• Network functions have been implemented in hardware

• Not flexible and not dynamic
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Network Functions

• NFV implements network functions in software

• Virtual Network Functions (VNFs):

• Network functions virtualized by NFV

• Run on Virtual Machines (VMs)

• VNF placement problem

• Decision of placement of VNFs on Physical Machines (PMs) in 
physical networks

Network Function Virtualization (NFV)

VM

Large delay Small delay
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Dynamic VNF Placement Problem

• Reconfiguration of VM/VNF placements on physical network when 
requests for VNF chains arrive/depart

• Main requirement for placement computation: short calculation 
time

• Solving optimization problem at every request change: 

• Difficult to realize since even the static VNF placement problem is 
NP-hard
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Our Objective and Approach

• Objective

• Propose method which meets the requirements of the dynamic VNF 
placement problem

• Approach

• Utilization of knowledge from biological evolution under varying 
environments 

• When organisms evolve in varying environments:

• They become robust to environmental changes [6]

• Their evolution speeds up [2] 
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[15] N. Kashtan and U. Alon, “Spontaneous Evolution of Modularity and Network Motifs,” PNAS, vol. 102, no. 39, pp. 13773–13778, Sep. 2005.

[16] N. Kashtan, E. Noor, and U. Alon, “Varying Environments Can Speed Up Evolution,” PNAS, vol. 104, no. 34, pp. 13711–13716, Aug. 2007.
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System Model

(Step 1) Request for a VNF 
chain from a user arrives

(Step 2) Controller splits 
VNFs of chain into 
components

• Components: small VNF 
software modules [4]

(Step 3) Controller places 
components on PMs and 
assigns cores to them

(Step 4) Controller decides 
routes of traffic for 
chains through required 
components

6[13] ETSI, GS NFV-SWA 001 - V1.1.1 - Network Functions Virtualisation (NFV); 

Virtual Network Functions Architecture, Dec. 2014.

(Step 4) Controller 
decides routes 
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Formulation of VNF Placement Problem

• Minimize average delay and number of cores under constraints 
(2)-(4):

(2) Each VNF must have sufficient number of cores to guarantee 
requested transmission speed for each user

(3) VMs cannot use more cores than available on PMs 

(4) Components on VM cannot use more cores than possibly available 
on VM
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minimize  𝑑 + 𝑊 ∙  𝑖,𝑘 𝑚𝑖,𝑘

subject to:

𝑇𝑎 ∙ 𝑣𝑎
𝑆

≤ 𝑛𝑘,𝑗,𝑎 ∙ 𝐶 ∀𝑘, 𝑗, 𝑎

 𝑘 𝑚𝑖,𝑘 ≤ 𝑁𝑖 ∀𝑖
 𝑗,𝑎 𝑛𝑘,𝑗,𝑎 ≤ 𝑚𝑖,𝑘 ∀𝑘, 𝑖

variables   𝑚𝑖,𝑘, 𝑛𝑘,𝑗,𝑎, 𝑝(𝑟,𝑟′)
𝑢

(1)

(2)

(3)

(4)

𝑚𝑖,𝑘: number of cores which the VM 𝑘 occupies on PM 𝑖
𝑛𝑘,𝑗,𝑎: number of cores which component 𝑗 of VNF 𝑖 occupies on VM 𝑘

Evolutionary Algorithm (EA)

• An optimization heuristic which imitates 
biological evolution

• Every loop (generation), EA calculates fitness, 
applies mutations and crossovers to 
individuals, selects better individuals, and 
uses these as population in the next 
generation

• Individual: representation of solutions

• Population: set of all individuals

• Fitness: goodness of individuals according to 
objectives

• Mutation: randomly and slightly change 
individual

• Crossover: randomly combine two 
individuals
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• An optimization algorithm as extension of EA, 
which imitates biological evolution in varying 
environments

• MVG changes its objective regularly every fixed 
number of generations

• Effects of regular changes:

• Individuals become robust to objective changes

• Evolution itself speeds up

• Because getting stuck in local solutions is prevented

no

Modularly Varying Goals (MVG) [15]
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[15] N. Kashtan and U. Alon, “Spontaneous Evolution of Modularity and

Network Motifs,” PNAS, vol. 102, no. 39, pp. 13773–13 778, Sep. 2005.

[16] N. Kashtan, E. Noor, and U. Alon, “Varying Environments Can Speed Up Evolution,” 

PNAS, vol. 104, no. 34, pp. 13711–13 716, Aug. 2007.
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Individuals robust to 
objective changes
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local solutions

Conventional EA

Normal EA
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local solutions

Evolvable VNF Placement (EvoVNFP)

• Dynamic VNF placement method addressing dynamic 
arrivals/departures of requests of VNF chains

• Calculation of placements by MVG (described in detail later)

• When simulations generate placements which meets predetermined 
objectives, the controller implements generated placements as real 
ones
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MVG (described in detail later)

Objective Changes of MVG in EvoVNFP

• Objective changed every fixed number of generations (= period) 
according to remaining requests

• Switching between true objective and relaxed sub-objectives

• Generates adaptive structure and speeds up evolution

• Example: When true objective is to place three chains, the relaxed 
objectives consist of placing two out of the three chains
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Example of EvoVNFP Simulation

• Intentionally use EA without re-initialization of population when 
objectives change

• Intentionally change objectives every period
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Example of EvoVNFP Simulation

• Intentionally use EA without re-initialization of population when 
objectives change

• Intentionally change objectives every period
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• Example structure of an individual (see figure below): 

• Individual represents placement in network

• Connection between VM layer and component layer: allocation of 
component on VM

• Connection between PM layer and VM layer: allocation of VM on PM

• Mutation: randomly change one element of an individual

• Change connections or the number of cores saved in nodes

Individuals and Mutations
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Fitness Function

• Function to calculate how well placements adapt to objectives

• If individuals can be converted to placements:

• Smaller average delay of chains and number of used cores  better 
fitness

• Otherwise: 

• Fitness is a negative value

• Smaller number of elements in individuals violating the constraints 
better fitness
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𝐹 =

 𝑑

𝑑𝑚𝑎𝑥
+

𝑊( 𝑖,𝑘 𝑚𝑖,𝑘)

𝑐𝑚𝑎𝑥

−1

− Z

𝑑𝑚𝑎𝑥: reference value of delay
𝑐𝑚𝑎𝑥: maximum number of cores
𝑍: number of elements which violate the constraints

if individuals can be converted to placements

otherwise

Simulation Settings

• Physical network: 5 routers, 10 PMs, each PM has 16 cores

• Requests: tuples consisting of ingress router, egress router, VNF 
chain, and transmission rate

• Example: (𝑟1, 𝑟3, {𝑉𝑁𝐹1 → 𝑉𝑁𝐹2}, 200 Mbps)

• Reference methods for comparison:

• Conventional EA (Conv): normal EA at every arrival/departure of 
requests

• Random Immigrant GA (RandImm) [19]

• RandImm initializes randomly selected individuals after mutation step 
instead of changing objectives every period as in EvoVNFP

• Parameters:

• Population size: 1000, elite size: 100, mutation probability: 0.8

• Period (EvoVNFP): 20 generations, replacement rate (RandImm): 0.3

• Fixed load of system: 𝐿𝑜𝑎𝑑 = 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 × 𝑠𝑜𝑗𝑜𝑢𝑟𝑛 𝑡𝑖𝑚𝑒 = 0.2

16[19] J. Grefenstette, “Genetic Algorithms for Changing Environments,” in Proceedings of PPSN 1992. Elsevier, Sep. 

1992, pp. 137–144.

Evaluation Metrics

• Failure probability

• Probability of finding no feasible solution until the next objective 
change

• Number of generations

• Number of generations until obtaining the first feasible solution

• Cost of reconfigurations

• Weighted average of the number of reconfigurations [20, 21]

• Performance of generated placements

• Sum of the number of cores assigned to VMs (system performance)

• Average delay of chains (user performance)
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Migrations of VMs/components in a router 30

Migrations of VMs/components between routers 120

Resizing of VMs/components, removal of VMs 1

Addition of VMs 60

[21] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A Cost-Aware Elasticity Provisioning System for the Cloud,” in 

Proceedings of ICDCS 2011, Jun. 2011, pp. 559–570.

[20] J. Barrera, M. Ruiz, and L. Velasco, “Orchestrating Virtual Machine Migrations in Telecom Clouds,” in Proceedings of 

OFC 2015,  Mar. 2015, pp. 1–3.

Failure Probability

• EvoVNFP shows best performance among all three methods

• This means that EvoVNFP can follow the dynamics of request 
arrivals/departures
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Number of Generations

• EvoVNFP can generate solutions with the fewest generations

• This means that EvoVNFP can generate solution in a short time
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EvoVNFP is 
the fastest

Cost of Reconfigurations

• Methods without re-initialization of population when requests 
arrive/depart have lower cost

• EvoVNFP and RandImm have similar cost, lower than Conv
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Performance of Generated Placements

• EvoVNFP can generate better solutions than comparative methods 

• This means that EvoVNFP can generate high-performance solutions 
while reducing the failure probability
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Summary and Future Work

• Summary

• Proposal of dynamic VNF placement method named EvoVNFP

• EvoVNFP generates placements which meet user requests by MVG

• When requests arrive/depart, EvoVNFP runs EA without reinitializing 
population

• EvoVNFP switches between real objectives and relaxed sub-objectives 
every fixed number of generations

• Confirmation of effectiveness of EvoVNFP by computer simulations

• EvoVNFP reduces failure probability of not generating valid placements 
and also reduces time to generate solutions

• Furthermore, EvoVNFP generates high-performance placements

• Future work

• Application of different evaluation metrics
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