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Uncertainty of Traffic Information

- Causes of uncertainty
Lack in observation Lag between observation and control

Data at time t TI Route attime t+1

« Existing technology against the uncertainty in TE

« Traffic monitoring!3 « Traffic estimation?
« Stochastic/Robust route decision!®  « Traffic predictiond

Integrating these technologies is
desired to overcome the uncertainty
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Bayesian Decision Making

- Decision making of brain under uncertainty
- Estimates/Predicts state based on observation
- Decides action with a certain confidence

- Bayesian decision model for brainl8!

— Prediction
1 P(Z41 %)

Observation Decision

P(zelxo.0) > 47
x; : observation
z, . state
A : confidence level
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Traffic Engineering

- Increasing the time variation of traffic in a backbone network
- Deployment of streaming, cloud services, etc.

- Traffic Engineering(TE)
- Periodical measurement of traffic and optimization of routes
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There is some uncertainty of
4
Path 2 ¢
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Difficulty in Integration

- Direct/Indirect interactions among different processes
- Estimation accuracy directly depends on which data is monitored
- Route decision indirectly depends on which data is monitored

- etc. ‘ Traffic ) ( Traffic ‘
Estimation Prediction

Estimated traffic

Monitored data Predicted traffic

( Traffic ) ( )
‘\ Monitoring | roue RouteDeuswnJ

- Only partial integrations in previous work
- Traffic estimation and monitoring!?
- Traffic prediction and route decision!®

Integration of whole processes has not been achieved
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Bayesian Framework for TE
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e.g. 0; = (nodel, node4)

. xl = (xl'xd) xt .
Estimator Ty Predictor
- Role - Role

- Estimating current traffic from partial data and previous prediction - Estimating current traffic model which current traffic pattern follows
x{ : data P(X) = P(X,|x{,0,) : estimation - Predicting next traffic using model and estimated current traffic
x,': data P(O|x} _ P L
0, : data collection method ‘ —>( o) Prediction D(Ress) = PFeral'or) - preciction
P(X,) : prediction result at t — 1 estimation
. Y
- Calculation ) 9 : model parameter | P(X,) : estimation
, , N - Calculation
P(X,|x{,00) < P(x(|X,, 0)P(Xy) Likelihood Model estimation: P(6]xg..) o P(x..|0)P(6)
Likelihood  Prior distribution Prior distribution Prediction: P(Xe41lx0.0) = X g, PXesa|Xe—sie, ) P(X) P(O1x0,)
(from data) ~ (from prediction) model distribution of parameter
Posterior distribution .
i marginalizing ‘ :
: 2
observed models 6 P(8lxp.) predicted 8

Decision Maker — Data Selection

- Role
- Deciding which data to collect at next time
- Considering how the new data affects on other processes

Decision Maker — Route Decision
Data selection

Predictor Vﬁ’?”"”‘)
— 0,:data collection method

- Role
- Setting routes to accommodate predicted traffic including errors
- Keeping the probability of congestion lower than p by SMP-TEI®!
Route calculation
Pyl >cl<p
. P(&,): Predicted traffic — P(X‘E‘j.'.)nﬁ d:g:::ﬂ
PO Rer1 (00

traffic

/—Q/. Resa  routes
s predicted
w— actual
time
- Calculation
minimize : Ep(g,, ) pljoplf Kerr Rera (0, 0]

cost : delay, loss, etc.
10

P(R¢+): Predicted traffic
subject to: C(0,) < W
observation cost: bandwidth

cost : delay, loss, etc.

- Calculation
(= wF (G R) + w||A?i||2)]

minimize : E[Z,{q+1
subject to : Ply}(k) > '] <p
probability of congestion

routes change : R; — R;_q
predictive
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Summary and Future work

- Summary
- Problem of existing approach in TE

- Traffic uncertainty is separately tackled by different processes

- Integrating the different processes is not completely achieved

« Our proposal
- Establishing a Bayesian framework of TE to handle the uncertainty
- Considering how the decision affects the other processes in decision making

« Future work
- Implementing the proposed framework with particular methods

- Especially data selection
- Evaluation for the effectiveness of the proposed framework
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