Traffic Engineering

- Increasing the time variation of traffic in a backbone network
- Deployment of streaming, cloud services, etc.
- Traffic Engineering (TE)
- Periodical measurement of traffic and optimization of routes

Bayesian Decision Making

- Decision making of brain under uncertainty
 - Estimates/Predicts state based on observation
 - Decides action with a certain confidence

Bayesian Framework for TE

- Collected Data: \(X_t \)
- Data Selection
- Data Request
- Route: \(R_{t+1} \)
- Controller
- Estimated Distribution: \(P(X_t) \)
- Distribution: \(P(X_{t+1}) \)
- Decision Maker
- Prediction
- Estimated Distribution: \(P(X_{t+1}) \)
- Predictor
- Decision Maker

Difficulty in Integration

- Direct/Indirect interactions among different processes
 - Estimation accuracy directly depends on which data is monitored
 - Route decision indirectly depends on which data is monitored
 - etc.

- Only partial integrations in previous work
 - Traffic estimation and monitoring
 - Traffic prediction and route decision

Uncertainty of Traffic Information

- Causes of uncertainty
 - Lack of observation
 - Lag between observation and control

- Existing technology against the uncertainty in TE
 - Traffic monitoring
 - Stochastic/Robust route decision
 - Traffic estimation
 - Traffic prediction

Integration of whole processes has not been achieved

Increasing the time variation of traffic in a backbone network

There is some uncertainty of traffic information.
Estimator

- **Role**
 - Estimating current traffic from partial data and previous prediction

 \[x_t = \text{data} \]

- **Calculation**
 \[P(x_t|x_t, O_t) : \text{estimation} \]

- **Estimator**
 - Data collection method
 - Prediction result at \(t = 1 \)

- **Likelihood**
 - Prior distribution (from data)
 - Posterior distribution

Predictor

- **Role**
 - Estimating current traffic model which current traffic pattern follows
 - Predicting next traffic using model and estimated current traffic

- **Calculation**
 \[P(x_t'|x_t', O_t) \]

- **Predictor**
 - Model estimation:
 \[P(x_t'|x_t', O_t) = \sum_{x_t} P(x_t|x_t', O_t) P(x_t') \]

- **Decision Maker – Route Decision**
 - Setting routes to accommodate predicted traffic including errors
 - Keeping the probability of congestion lower than \(p \) by SMP-TE

- **Calculation**
 \[\min \left\{ \sum_{\text{routes}} \left[(1 - w) \mathbb{I}(x_t, R_t) + w \| \Delta R_t \|^2 \right] \right\} \]

- **Decision Maker – Data Selection**
 - Deciding which data to collect at next time
 - Considering how the new data affects on other processes

- **Calculation**
 \[\min \left\{ \sum_{x_t} P(x_t|x_t', O_t) \right\} \]

Summary and Future work

- **Summary**
 - Problem of existing approach in TE
 - Traffic uncertainty is separately tackled by different processes
 - Integrating the different processes is not completely achieved
 - Our proposal
 - Establishing a Bayesian framework of TE to handle the uncertainty
 - Considering how the decision affects the other processes in decision making

- **Future work**
 - Implementing the proposed framework with particular methods
 - Especially data selection
 - Evaluation for the effectiveness of the proposed framework