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Abstract

In recent years, the types of network services provided through the Internet are increasing day

by day, especially Internet of Things (IoT) services have been developed. A large number of de-

vices have connected to the Internet. Network virtualization has attracted attention as a technology

to flexibly accommodate various network services including IoT services. In order to provide IoT

services with sufficient communication quality and availability by network virtualization, it is im-

portant to design virtual networks with high communication efficiency and high robustness against

network failures. However, it is difficult to design virtual networks for IoT environment since there

are a great number of devices. To obtain a guideline for designing virtual networks with high com-

munication efficiency and high robustness, our research group has focused on fractal property. Our

research group has preliminarily proposed a construction model of virtual networks with the fractal

property and have verified that the virtual network constructed by the model achieves robustness

against node failures. However, the previous construction model does not consider the physical

distance between node pairs, which may lead to low communication efficiency on accommodating

actual services. In this thesis, we investigate a design guideline of fractal virtual networks with

high communication efficiency and robustness considering physical distances for networks with

various sizes. In the evaluation of communication efficiency and robustness of the virtual network

designed by our construction method, we show that the communication efficiency improves by

more than 30%.
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1 Introduction

In recent years, the Internet has provided various network services as an IT infrastructure that

supports our daily lives. In network services, there are video streaming services, SNSs, cloud ser-

vices and IoT services. Especially in IoT environment, the network scale is huge and different for

each service, and then it is difficult for network administrators to control the whole of networks.

Therefore, considering performance and management aspects of network services, demands of

network administrators such as separating the traffic for each service and efficiently using the net-

work equipment are increasing. Network virtualization technology has gained attention as one of

technologies to meet these requirements. The network virtualization technology is a technique of

logically dividing a physical network resource and constructing multiple virtual networks on a sin-

gle physical network. By the network virtualization technology, physical infrastructure providers

(InPs) provide an independent virtual network with different functions and performances to each

service provider (SP), whereby the service providers can independently develop their own network

services using their own virtual networks [1].

Virtual networks need high efficiency and robustness to provide network services with suf-

ficient communication quality and availability because in the case of low efficiency, users of a

network service can not enjoy the service with satisfactory communication quality and in the case

of low robustness, virtual node/link failures do not allow node pairs to communicate with each

other and unfortunately the service may result in failure. Hence, it is desirable that the virtual

network holds high efficiency and high robustness. However, at present, there is no design guide-

lines for virtual networks with high efficiency and high robustness, and it is not clear what kind of

virtual network SPs should build.

Then, we focus on fractal property as an approach for constructing large-scale virtual net-

works with high efficiency and high robustness. The fractal property is the property that the same

structure and properties are seen even if the scale for observing the object is changed. In network

science, when we assume that a certain node is a starting point and the hop length from that node

increases, the increase rate of the number of reachable nodes from that node becomes constant.

One of the criteria for quantitatively determining that a network has fractal property is that fractal

dimension df has a finite value. By hop length l and the number of nodes M reachable from
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within l hops from a certain origin node, df is defined as

M ∼ ldf . (1)

Our research group has clarified that a topology with fractal property has a large number of redun-

dant paths compared to a topology without fractal property and is robust against node failures [2].

Furthermore, we have devised a design model of a network topology with fractal property and

confirmed that the fractal network using the design model shows excellent performance of fail-

ure tolerance [3]. However, most of the existing studies on fractal networks including [3] does not

take physical aspects of networks into account when they devise network design model. Therefore,

there is a problem that it could be impossible to accommodate the virtual network configuration

based on the existing model on the physical network. For example, when you attempt to arrange

a lot of virtual nodes in one physical node, it is conceivable that the upper limit of the number of

virtual nodes that the physical node can accommodate is exceeded. Besides, when many virtual

nodes are arranged between only nodes in distance on the physical network and the virtual links

are constructed, that leads not only to waste the usable bandwidth of the physical networks but

to make efficiency low even in communication of nearby nodes. Daqing et al. [4] suggest that

the physical distance between nodes has strong relationship with df , and as the physical distance

between the nodes becomes shorter, df becomes smaller. That is, we can express the physical

distance by df . Actually, since the physical distance is not taken into account in the network using

the model of the existing studies, its df takes a fixed value. Daqing et al. also suggest that df

is related to the physical diffusion phenomenon, and as df increases, the information spreading

speed in the information network, that is, the efficiency increases. For this reason, in the network

using the existing design model, the information spreading speed is constant, and the average hop

length and the diameter of the network increase as the scale increases, resulting in low efficiency.

In order to solve the problem, in this paper, we devise a virtual network design method with df

as the control parameter of cost, give the virtual network high efficiency and high robustness by

considering the physical distance and the properties are kept high in IoT environment of different

scales.
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2 Related Work

2.1 Internet of Things

Internet of Things (IoT) is the future Internet where not only people but things can connect each

other through the Internet [5]. IoT mainly consists of sensors, clouds, analytic systems and ac-

tuators. First, the sensors bring various information from circumstances around our lives such as

temperature, sound or image. Second, the information is sent to the clouds through the Internet

and is stored as big data in the clouds. Third, analytic systems (often artificial intelligences) an-

alyze the big data, and they exploit and organize meaningful data from a meaningless series of

numbers and letters. Fourth, according to analysis results, actuators begin to work, and they feed

back various information to us or do some work automatically. In this way, IoT can improve our

quality of lives.

In recent years, many SPs have developed own IoT services. Morandi et al. [6] focus on an

urban IoT environment and design it to follow the Smart City vision. In the paper, they pro-

vide a comprehensive survey of the enabling technologies, architectures and protocols to realize

the Smart City. Moreover, they mention the technical solutions for the Smart City and present

best-practice guidelines for the design of it. Piyare et al. [7] proposes an extensible and flexible

architecture for integrating wireless sensor networks with the cloud. As the testbed, they develop

a REST-based Web service and realize remote monitoring system. It enables data access from

anywhere and has the alert function that notifies users via email or tweets for monitoring data

numbers when they exceed a certain threshold. Gachet et al. [8] launches the project for the health

care of the elder people, using technologies associated with IoT. The main concern of the elderly

is their health and its consequences depending on their self-rated ill health. Since the elderly have

different health problems, doctors need to accurately diagnose each patients. However, the diag-

nostics is often dependent on how well the patients understand their ill health and that may lead

incorrect results. Then, to correctly know the patients’ body states, Gachet et al. use the sensors

to quantitively calculate their states and develop the system that feeds back the state information

to doctors.

Here, note that the scale of each network service is different and especially in IoT environment,

the scale is often huge. The network of wireless sensor networks [7] is actually composed of

thousands of sensors while the one of the Smart City [6] consists of millions or more of devices.
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Therefore, there is a problem that it is difficult for network administrators to control the whole of

a large and different scale of IoT networks and that causes inefficient network configuration.

2.2 Network Virtualization

Network virtualization is a technique that enables us to manage networks easily by dividing phys-

ical networks logically for each SP [9]. In detail, in the network virtualization, multiple virtual

machines (virtual nodes) are activated on a single general-purpose server, the virtual nodes are

connected by virtual links using a part of the bandwidth of the physical line and a virtual network

is constructed. Virtual networks can be established on a single physical network unless the capac-

ity of the physical machine is insufficient and it is guaranteed by security protocols that the virtual

networks do not interfere with each other. Multiple virtual networks, therefore, can independently

co-exist on the single physical network and network managers can operate a lot of different virtual

networks for each SPs by system softwares for the operation such as OpenFlow [10].

Note that when SPs construct virtual networks, they need to consider the topologies of the

networks and what structures the topologies hold such as the scale-free [11], small-world [12],

hierarchical or modular structures [13]. The worst case is that they selfishly construct a virtual

network ignoring the structure of it and that causes such low efficiency or low robustness that

network services cannot work well. Therefore, it is important that in order to provide a sufficient

quality of network services to users, network designers understand the structures of the network

topologies and what effects given the network by the structures.

2.3 Virtual Networks for IoT Services

In this section, we introduce how virtual networks under IoT environment are designed in terms of

topologies. As noted above, since the scale of the IoT networks is huge, it is impossible for humans

to design the whole virtual network considering whether each link between all node pairs are

established or not. In addition, there are few guidelines for designing such a large-scale network.

Thus, network designers currently construct the large-scale network in their own way and they

often do not comprehend what properties their networks have. In this paper, we present a new

design model for such a large-scale network and show the guidelines to the network designers.

As an approach for designing the large-scale virtual networks, Yoshinobu et al. [3] focus on a
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fractal property. The fractal property is also called a self-similar property and means a property

that a similar structure can be seen on any scale. In Yoshinobu’s design method, they prepare

an arbitrary network in advance and duplicate the same network as the first network. Then, the

two networks are connected at some level of density, they further duplicate the same network as

the newly constructed network and connect these two networks. After that, the above procedure

is repeated. It is clear that the network designed in that way has the fractal property. However,

the model excludes the physical aspects of the virtual network, that is, the model does not take

into account the arrangement of virtual nodes in the physical network. As a result, when the

virtual network is embedded into the physical network, it is possible that the virtual network

is composed of a lot of long links from a viewpoint of the physical distance depending on the

arrangement of virtual nodes and virtual links and the efficiency of the virtual network becomes

low. The lack of physical concepts of networks is true not only for the method in [3] but for

many of the existing studies, where the network topologies are built often based on only degree

properties [11, 12, 14, 15]. Thus, there are few guidelines for designing the large-scale virtual

networks currently and incorporating physical perspectives is a key point.
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3 Method for Constructing Virtual Network with Fractal Property

In the existing model, since the physical distance is not taken into consideration, the fractal dimen-

sion, which is pointed out to be related to the communication efficiency in [4], is fixed, and the

communication efficiency decreases as the network scale increases. Therefore, in a large-scale en-

vironment such as IoT, the efficiency of the network using the existing model is low. This chapter

shows a generation algorithm that obtains a network whose fractal dimension is arbitrary, thereby

confirming that arbitrary fractal dimensions can be actually obtained.

3.1 Relation between Fractal Dimension and Physical Distance

As noted already, similar structures can be seen on different scales in the network showing the frac-

tal property. However, even among the fractal networks, there are different structures in terms of

diffusion [16]. For example, if many nodes are allowed to connect only adjacent nodes, the diffu-

sion speed is slow, while if even a few nodes can connect nodes at a distance, the diffusion speed

rapidly gets faster. That sounds the small-world property but the difference between the small-

world and the fractal is that there is no bias in the fractal network from a viewpoint of the degree.

The small-world network often has the scale-free property and so-called ’hub nodes’ shrink the

diameter of the network. However, if the ’hub nodes’ are broken, the damage is very serious and

it is possible that the entire network collapses. On the other hand, since the fractal network has

no bias in the degree distribution, the damage to a part of the network anywhere seldom causes

serious situations, as the objects with the fractal property in the natural world is robust [17]. That

is, the fractal network has different efficiency by controlling link length distribution and is robust

against node failures at some level. The link length distribution of the fractal network, related to

the diffusion, is characterized by a fractal dimension.

As a method for quantitatively evaluating the fractal dimension, Box-Counting Algorithm or

Cluster-Growing Algorithm is widely used. In the Box-Counting Algorithm, nodes that can reach

each other within a certain hop length are called Boxes, and the number of Boxes for covering the

entire network with non-overlapping Boxes is counted. However, since there are countless Box

patterns that can cover the entire network, various heuristic methods have been proposed [18],

but since it is impossible to obtain a stable solution in a large-scale network, it is unsuitable for

strict fractal analysis. On the other hand, in the Cluster-Growing Algorithm, the number of nodes
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reachable from an origin node within a certain hop length is counted. Although different results

are obtained depending on the selection of the origin node, a method of obtaining a stable solution

by taking statistics of results at a lot of origin nodes is generally used in the complex network

field. Since it is mathematically proved that the result by Box-Counting Algorithm and the result

by Cluster-Growing Algorithm are equivalent, we assume fractal analysis using Cluster-Growing

Algorithm in the following.

Equation (1) is commonly used to obtain the fractal dimension, but since the focus is on the

hop length in the construction model of Chapter 3.2, It is necessary to redefine it as the link length

r instead of the hop length l as follows:

M ∼ rdf . (2)

Using Equation (2), we obtain df by following the procedure below.

1. Select a node to be an origin (hereinafter, the origin node).

2. Let the set of nodes adjacent to the origin node be shell 1, the node set adjacent to shell 1

and not included in the previous shell be shell 2, and repeat the procedure until it covers all

nodes.

3. Measure the following two.

(a) The average Euclidean distance r between the nodes in shell s and the origin node.

(b) The number of nodes M(s) in shell s.

We execute the above procedure on multiple origin nodes and average the results. By definition,

s is the shortest path length between the origin node and any nodes in shell s. An example of

applying this procedure to both a square lattice network and a tree network is shown in Figure 1.

The fractal dimension is determined from Equation (2).

3.2 Procedure for Fractal Virtual Network Construction

Daqing et al. [4] suggest that when the link length distribution, viewing the network in physical

space, follows a power distribution, the fractal dimension is found in the scaling exponent of that

distribution. Therefore, we aim to generate a network showing the desired fractal dimension by

giving the scaling exponent as a parameter. A specific generation algorithm is shown below.
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Figure 1: Calculation examples of r and M for a square lattice network (a) and for a tree network

(b) [4]

Parameters to be input to the algorithm The number of nodes n, the average degree λ of the

network to generate, the exponent δ of link length following power distribution.

Step 1. Arrangement of nodes Arrange n nodes in a two-dimensional square lattice, but do not

construct any links here. Let the distance between the nearest nodes be 1. Let the node ID

of each node be 0, 1, 2, ..., n − 1.

Step 2. Determination of the degree of each node Select node i (∈ {0, 1, 2, ..., n − 1}) ran-

domly and repeat from Step 2.1 to Step 2.2. for all nodes below.

Step 2.1. Generate an integer random number pi according to Poisson distribution P (λ).

Step 2.2. Set pi as the degree of node i.

Step 3. Establishment of links Select node i (∈ {0, 1, 2, ..., n − 1}) randomly and check the

number of nodes connected to i. If the number of nodes already connected to i is less than

pi, continue from Step 3.1. to Step 3.5. until the number of nodes connected to i is equal to

pi. Perform the above procedure for all nodes.

13



Step 3.1. Generate a random number q based on the probability distribution function Q(r)

following a power distribution

Q(r) = crd−1r−δ, (3)

where d = 2 since d is the dimension of Euclidean space that embeds the network

into, c is a normalization factor to adjust to satisfy
∫ L
1 Q(r)dr = 1 and L =

√
n

because L is the upper limit of the power distribution.

Step 3.2. Let q be the link length.

Step 3.3. Create the node group of the connection destination candidate of node i. Calculate

the node group excluding the node i itself from all the nodes and the node already

connected to the node i as the node group of the connection destination candidate.

Step 3.4. Select the node closest to the link length q from the node i from the node group of

the connection destination candidate. If there are multiple nodes at the same distance,

select one at random. Let u be the selected node.

Step 3.5. Check the degree of u and the number of nodes already connected to u. If the

number of nodes already connected to u is less than pu, build a link between node i

and u. Otherwise, remove u from the connection destination candidate and return to

Step 3.4.

3.3 Topological Properties of Fractal Virtual Networks

Degree Distribution Analysis

Since degrees of all nodes are referred to in Step 3 of the algorithm of Chapter 3.2, it is guaran-

teed that the degree distribution given to our model is the same as the degree distribution of the

generated network.

Link Length Distribution Analysis

In the network construction algorithm of Chapter 3.2, the link length distribution (LD) of the net-

work is strictly different from the LD given as an input to our model. The reason is why if it is

repeated multiple times that the node closest to the link length q from the node i is removed from
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the connection candidates in steps 3.4 to 3.5 in the algorithm of Chapter 3.2, a link having a link

length different from the original link length q is constructed. If the LD given to the generation

algorithm and the LD of the generated network are significantly different, it is impossible to ob-

tain a network showing the fractal dimension to be expected by originally changing the scaling

exponent δ of the power distribution given as the LD. In addition, It is impossible to evaluate

the relationship between the fractal dimension and properties such as efficiency and robustness.

Therefore, the difference between the LD given to our model and the LD of the generated network

is evaluated and we verify that the difference is acceptable.

As the inputs of our model, we give the number of nodes n = 900 and the average degree

λ = 4, the exponent of the required LD δ = 1.0, 2.0, 3.0, 4.0, 5.0. The evaluation result is shown

in Figure 2. The horizontal axis represents the distance r, and the vertical axis represents the

complementary cumulative distribution function (CCDF) with the logarithmic scale of base 2.

The LD given as the input of our model is expressed by the blue line and the red line indicates the

LD of the generated network. Looking at Figure 2, there is no big difference in inclination of both

lines as a whole. Therefore, we believe that it is possible to control the fractal dimension by giving

various values of δ to our model. However, as the value of δ gets larger, there is a larger difference

between the values indicated by both lines. The reason for this is why if we give our model a large

value of δ, our model tries to construct more short-distance links, but there is a limit to the number

of short-distance links that can be constructed. Therefore, even if a value greater than δ = 5 is

given to our model, it is considered that the LD of the generated network hardly changes.

The conclusion of this section is that although it is somewhat different depending on the value

of δ, it is verified that it is possible to change the slope of the generated network by changing δ.

Therefore, it is possible to control the fractal dimension using our model.

Fractal Dimension

We analyze whether the network using our model has fractal properties, and if so, how the fractal

dimension df correlates with the parameter δ. We prepare networks by giving the values of n =

1024, λ = 4, δ = 1.1, 2.0, 2.5, 2.6, 3.0, 3.5, 4.5 to our model. For all the network we parepare, the

fractal dimensions are calculated by the method of Chapter 3.1. By checking whether each fractal

dimension is different or not, we verify that a network showing arbitrary fractal dimension can be

obtained by changing δ.
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The result of the analysis is shown in Figure 3. The horizontal axis of Figure 3 is the distance

r, and the vertical axis is the number of reachable nodes M with r. By setting both axes to a

logarithmic scale, the slope of the straight line composed of the obtained data points shows the

fractal dimension. As a result, the fractal dimension of the network of δ = 1.1 is about 4.0,

the fractal dimension of the network of δ = 4.5 is about 2.0, and the fractal dimensions of the

other networks increases as δ decreases. The relationship between δ and the slope is clear, which

shows that it is possible to evaluate the relationship between the fractal dimension and efficiency

or robustness in the next chapter.
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(b) δ = 4.0
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(d) δ = 2.0
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(e) δ = 1.0

Figure 2: Link length distribution
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4 Efficiency and Robustness of Fractal Virtual Networks

Through the evaluation in this chapter, we verify that our model is effective as a design guideline

for a large-scale network because the virtual network based on our model shows high efficiency

(efficiency) and high robustness and shows high performance on various scales .

4.1 Metrics for Efficiency and Robustness

In the evaluation, the efficiency and robustness of each network is evaluated. To do this evaluation,

we refer to the information centrality CI
S [19] expressed as

CI
S =

∆E

E
=

E(G) − E(G′)
E(G)

, (4)

where CI is information centricity, S is a set of failure nodes, G is a pre-failure graph, G′ is a

post-failure graph. E(G) is defined as

E(G) =
1

n(n − 1)

∑
i 6=j∈G

1
dij

(5)

where n is the number of nodes in the graph G and dij is the shortest path length between i and

j. The information centrality is an metric showing how much the node group included in a certain

range contributes to the entire network from a viewpoint of efficiency. If a network collapse due to

node failures, the shortest path length of two nodes between the divided subnetworks is assumed to

be ∞. In addition, since the deletion of a node leads to increasing the shortest path length between

multiple node pairs, E(G′) ≤ E(G) always holds.

However, the information centricity CI
S is an metric indicating how much S contributes to the

entire network from the viewpoint of efficiency by removing S from the network. That is, CI
S

indicates the importance of the node group S, which is different from the meaning of robustness.

In this case, it is inappropriate to use CI
S that focuses on the failed node group in order to evaluate

how much the remaining node group can maintain the communication function when the node

group fails. Attention to the failed node group is expressed as
∑

i6=j∈G
1

dij
of Equation (5) and the

efficiency before node failures contains the reciprocal of the shortest path length from/to the failed

node group. Therefore, the robustness metric RSr shown in Equation (6) and the partial Efficiency

ESr shown in Equation (7) are obtained by correcting the equations not to contain the reciprocal
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of the shortest path length from/to the failed node group as following

RSr =
∆ESr

ESr

=
ESr(G) − ESr(G − Sr)

ESr(G)
(6)

and

ESr(G) =
1

n(n − 1)

∑
i 6=j∈G−Sr

1
dij(G)

(7)

where Sr is a node group included in the failure radius r. This makes it possible to calculate the

change of efficiency only in the nodes other than Sr.

4.2 Evaluations

In this chapter, we evaluate how efficient and robust the fractal virtual network is under node

failures.

4.2.1 Comparison with Random Network under Unified Cost Conditions

In this section, Efficiency and RSr are evaluated using a network that unifies link construction

costs. We verify that fractal networks is superior to non-fractal ones in terms of efficiency and

robustness. Here, the cost means the sum of the physical link lengths and the number of links.

The network to compare and evaluate is a network of δ = 1.1 (hereinafter Fractalδ=1.1) and a

random network (hereinafter Random). The reason for using Random is to consider the advantages

of the link length distribution being a power distribution from the viewpoints of efficiency and

robustness because the difference between Fractalδ=1.1 and Random is the power distribution or

the exponential distribution of the link length distribution.

Networks for Evaluation

The network to be evaluated is as follows.

• Fractalδ=1.1: Fractalδ=1.1 is a network generated by giving n = 900, λ = 4, δ = 1.1 to the

generation algorithm in Chapter 3.2.

• Random: Random is a random network based on ER model. As a method of constructing

Random, first, n nodes are set in a two-dimensional square lattice and then randomly select

two nodes in that network. Second, we calculate the Euclidean distance of the two nodes

and decide whether to construct the link using the probability density function according to

20



the exponential distribution of the average µ. After that, we randomly select two nodes and

decide whether to build links until the number of links is equivalent to the number of links

in Fractalδ=1.1. In order to unify the cost (the sum of the physical distances), µ is set to the

average value of the physical distance of Fractalδ=1.1, here µ is 8. Also, we construct links

avoiding self loops and overlapping links.

Failure Scenario

When a node is selected as a center of node failures, the nodes within the Euclidean radius r from

the selected node and the associated links to the generation network are excluded (hereinafter

range failure). In this evaluation, all nodes are selected as the center of failed nodes O and range

failures occur for r = 0, 2, 4 from each node.

Result

The evaluation result of efficiency is shown in Figure 4. Labels of each network are appended to

the horizontal axis and the efficiency of Equation (5) is shown on the vertical axis. As a result, we

found that the network efficiency of Fractalδ=1.1 is about 0.05 higher than Random. Considering

this difference from the viewpoint of the hop length, in Fractalδ=1.1, all node pairs can be reached

to each other with the efficiency of 0.22, that is, with an average hop length of about 5 hops, while

Random has the efficiency of 0.15, that is, an average of about 6.5 hops. The difference is about

1.5 hops.

Next, the evaluation result of RSr is shown in Figure 5. The horizontal axis shows the label of

each network, and the vertical axis shows the distribution of RSr with a box-and-whisker. r is the

failure radius, and the box-whisker chart shows the distribution of RSr when range failures happen

in the network with the failure radius of each of (a), (b) and (c) for the center node of failure 900

nodes (all nodes). The points in each graph indicate average values. As a result, we find that

RSr of Fractalδ=1.1 is smaller when RSr is viewed as the maximum value or the average value,

that is, Fractalδ=1.1 is more robust. The reason why the RSr of Fractalδ=1.1 becomes smaller is

because the stable reachability of the shortest path between node pairs at short distance is greatly

different. Here, the stable reachability of the shortest path indicates such property that when nodes

fail, the shortest path of node pairs not including the failure nodes does not switch. The link length

distribution of Fractalδ=1.1 follows the power distribution of the scaling exponent −1.1 while the
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link length distribution of Random follows the exponential distribution of the average 8. Thus,

there are many links around the link length 8 in Random, but in Fractalδ=1.1 the number of links

decreases as the link length becomes longer from 1. Therefore, in Fractalδ=1.1, there are many

short-distance links physically and reachable to short-distance nodes with short-distance links, but

in Random, in order to reach short-distance nodes, medium distance is needed by passing through

multiple nodes and links. As a result, the shortest path that physically arrives at a short distance

node when a failure occurs is almost unchanged at Fractalδ=1.1, but it can be considered that the

shortest path varies greatly in Random.

4.2.2 Efficiency and Robustness of Networks with Different Fractal Dimensions

In this section, we evaluate the efficiency and robustness of networks with various fractal dimen-

sions. This clarifies the relationship between cost, efficiency and robustness when the fractal

dimension is regarded as cost parameter for the network design.

Networks for Evaluation

We use networks generated by giving n = 1024, λ = 4, δ = 1.1, 2.0, 2.5, 2.6, 3.0, 3.5, 4.5 to

the generation algorithm of Chapter 3.2. Besides, we use a grid network Grid that accounts for

δ = ∞.

Failure Scenario

We assume range failures for a center of all nodes as noted already. Also, range failures occur for

r = 0, 2, 4 from each node.

Result

The evaluation result of Efficiency is shown in Figure 6. The horizontal axis represents the ex-

ponent δ of the link length distribution to be given our model and the vertical axis represents the

efficiency of Equation (5). Looking at figure 6, in the range of δ in [1, 3], there is a negative linear

relationship between δ and efficiency. However, in the range of δ in [3, 4.5], the slope becomes

gentle. The reason is why as the value of δ increases, the network approaches the grid shape and

the sum of link lengths gradually approaches the minimum value at some δ value. In addition,

compared with the fractal network of δ = 4.5 and Grid which is a two-dimensional lattice net-

work, it is seen that the efficiency of the fractal network is more than twice as it can be achieved
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Figure 5: Comparison of RSr with both Fractal and Random networks
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by only including a small number of long distance links. Since the shape of Grid’s network is

close to that when δ is increased, the results of Grid’s efficiency are displayed where the value

of δ is large. In conclusion, it turned out that the efficiency increases as δ decreases (the fractal

dimension increases).

The evaluation result of the relationship between δ and RSr in each r is shown in Figure 7. In

the evaluation, we calculate the robustness metric RSr when range failures occur for all nodes as

the center of failure O. Since RSr represents the change in efficiency other than the failure node

group Sr, it means that the smaller the value of RSr , the more robust it is. The horizontal axis

shows the distribution of the exponent δ of the required link length distribution of the generation

network and the vertical axis shows the distribution of RSr . The points in each δ mean the average

value. Looking at figure 7, the maximum value of RSr increases with the increase of δ. For this

reason, it can be seen that for networks close to the grid shape having a large value of δ, the

network is seriously damaged depending on the failure location compared with the failure scale.

The reason for this is that in a network where δ is large, there are few long-distance links in

the entire network, and if the node holding the long-distance link fails, the efficiency is greatly

reduced. Also, the result of Grid supports this idea. In other words, Grid without long distance

links has low efficiency and there is no room for large change in RSr . Next, when looking at

Figure 7, RSr is not changed at all at any failure scale in (a), (b) and (c). We consider that this

stability against δ is brought by the fractal property that the fractal structure originally have. That

is, since the fractal structure has the same structure anywhere at any scale, the same robustness is

seen even if any nodes fail.

As a consideration, we evaluate hierarchical module property of what connection structure the

high efficiency and high robustness of the network generated by our method (hereinafter generated

network) are brought about . As an evaluation means, the evaluation is performed referring to [13]

and expressing a matrix relating to link density in a network by a temperature graph. We make a

concrete explanation using Figure 8 and Figure 9. Figure 9 is the adjacency matrix corresponding

to the network in Figure 8 and each element ρi (i = 1, 2, 3) is the link density, which is the value

obtained by normalizing the number of links in and between the modules with the number of all

the node pairs in and between the modules. For example, when looking at the hierarchy of l = 0,

each module ID corresponds to row and column, and the link density in all modules is ρ1. Next,

in the hierarchy of l = 1, the number of links of each module pair is 2, and the link density is
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Figure 8: Evaluation method for hierarchical modularity: An example of hierarchical module

structure

Table 1: Procedure to determine module ID

0 1

2 3

ρ2. The condition for being a hierarchical module structure is to satisfy ρ1 ≥ ρ2 ≥ ρ3 ≥ .... In

this evaluation, it is evaluated whether or not the generated network satisfies the above condition,

compared with other networks.

As a method of determining the Module ID corresponding to the row and column of the ad-

jacency matrix, the entire network is divided into four such as Table 1, and Module ID are deter-

mined in order from the upper left. In addition, the Module ID at the hierarchical level below is

divided into 4 sections of Table 1, which are 0, 1, 2 and 3 in the same way. Further, we divide one

section into four, and make it 4, 5, 6, and 7. In this way, Module IDs are allocated while repeating

recursively division, thereby the Module IDs are determined at each hierarchical level.

For hierarchical modularity evaluation, the following four networks are prepared.

• Fractalδ=1.1: Fractalδ=1.1 is a network generated by giving n = 1024, λ = 4, δ = 1.1 to

the generation algorithm in Chapter 3.2.
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Figure 9: Evaluation method for hierarchical modularity: An example of the adjacency matrix

corresponding to the hierarchical module structure in Figure 8

• Fractalδ=4.5: Fractalδ=4.5 is a network generated by giving n = 1024, λ = 4, δ = 4.5 to

the generation algorithm in Chapter 3.2.

• Random: Random is a random network based on ER model. As a method of constructing

Random, first, n nodes are set in a two-dimensional square lattice and then randomly select

two nodes in that network. Second, we calculate the Euclidean distance of the two nodes

and decide whether to construct the link using the probability density function according to

the exponential distribution of the average µ. After that, we randomly select two nodes and

decide whether to build links until the number of links is equivalent to the number of links

in Fractalδ=1.1. In order to unify the cost (the sum of the physical distances), µ is set to the

average value of the physical distance of Fractalδ=1.1, here µ is 8. Also, we construct links

avoiding self loops and overlapping links.

• Pure: Pure is a network that has both scale-free and hierarchical properties [20]. By using

the network construction model of [20], it is possible to generate a network with a beautiful

hierarchical structure. By comparing with Pure, we know the upper limit of hierarchy that
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Figure 10: Procedure to construct hierarchical modular structure

Fractal can take. we explain the generation procedure of the hierarchical modular structure

with a refinement so that it can be applied to a network in which nodes are arranged in a

two-dimensional lattice using the Figure 10 . In Figure 10, n is the number of steps and

N is the number of nodes. At the 0th step of (a), we connect four nodes so that the link

density becomes 1. Next, in the first step of (b), three new networks of the previous step

(a) are duplicated and arranged in a two-dimensional square lattice. Besides, we construct

links from the other nodes to the node located at the top left so that they do not overlap.

Thereafter, the network of the previous step is newly duplicated and arranged in a two-

dimensional square lattice and the procedure of constructing a link from all the nodes to the

node located at the top left position is repeated until the number of nodes in the network

reached the number of given nodes.

The results of the evaluation are shown in Figure 11, 12, 13 and 14. First, comparing (a),

(b), (c) and (d) of Figure 11 and 12, the proportion of yellow and black is more in Figure 11,

ant the difference in value clearly appears. This is because Fractalδ=4.5 is composed of shorter

link lengths and nodes at short distance are more densely connected while nodes at long distance

are more sparsely connected. In particular, paying attention to (c), it turns out that Fractalδ=4.5

is more modular than Fractalδ=1.1, which indicates that the module structure can be seen at the

lower hierarchical level. Next, looking at Figure 13, the value of link density between modules

at long distance frequently exceeds the link density between modules at short distance, so it does

not show hierarchical module property. In particular, as is clear from (d), no modular structure
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is taken at the low hierarchical level. In Random, a large number of links with an average link

length of 8 are constructed, but on the other hand, the number of links with a link length of 1 is

very small, and at a hierarchical level with a small module size such as (d), there frequently are

no links. Finally, looking at Figure 14, Module 0 and all the other modules are always connected

with a constant link density, such a structure is seen locally, and we can see that the modularity

is high from the clear difference of colors. In other words, it turns out that the network takes the

hierarchical module structure as expected. However, the hierarchical module structure regularly

constructed in this manner has scale-free property, and although it is robust against random node

failures, it is considered that it is weak against selective failures to hub nodes, which have a large

number of degrees. That is, in the worst case of failures, it is possible that the network is seriously

damaged. In conclusion, the fractal network takes the hierarchical modular structure and has

different modular size per fractal dimension.

4.2.3 Efficiency and Robustness on Different Scale of Networks

It is considered that the scale of the virtual network under the IoT environment is not only large,

but the scale differs for each IoT service. In the previous evaluations, we showed that the virtual

network with the fractal property has high efficiency and high robustness, but the network scale

at that time was always constant. Therefore, under the IoT network environment where various

scales are expected, the fractal network using our model is not always effective. Therefore, by

evaluating efficiency and robustness of the fractal networks which give various parameters of the

number of nodes to our model, we show the fractal network is effective at any scale in terms of

efficiency and robustness.

Networks for Evaluation

We prepare the following networks for evaluation.

• Fractalδ=1.1: Fractalδ=1.1 is generated by giving n = 256, 1024, 2304, 4096, 6400, 9216,

12544, 16384, λ = 4 and δ = 1.1 to the generation algorithm of Chapter 3.2.

• Random: Random is a random network based on ER model. As a method of constructing

Random, first, n nodes are set in a two-dimensional square lattice and then randomly select

two nodes in that network. Second, we calculate the Euclidean distance of the two nodes
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Figure 11: Hierarchical modularity of the fractal network with δ = 1.1
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Figure 12: Hierarchical modularity of the fractal network with δ = 4.5
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Figure 13: Hierarchical modularity of a random network
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(d) The number of modules = 256

Figure 14: Hierarchical modularity of a hierarchical modular network
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and decide whether to construct the link using the probability density function according to

the exponential distribution of the average µ. After that, we randomly select two nodes and

decide whether to build links until the number of links is equivalent to the number of links

in Fractalδ=1.1. In order to unify the cost (the sum of the physical distances), µ is set to the

average value of the physical distance of Fractalδ=1.1. Also, we construct links avoiding self

loops and overlapping links.

Failure Scenario

The larger the scale of networks is, the larger range failures occur. In this evaluation, the scale of

networks is different. That is why when we assume range failures of the same scale, influences

of the failures decreases as the network scale is larger. Then, inevitably the larger network will

be robust, but it is a mistaken interpretation. Therefore, by making the scale of the network

proportional to the size of the range failures, robustness is evaluated so that the effects of range

failures are equal among networks of different scales. The failure radius r(n) of range failures is

assumed to be r(n) =
√

n/c, using the number of nodes n and the constant c. In this evaluation,

c = 8 is set. Also, the value of RSr(n)
is calculated by selecting 100 failure centers O randomly

and we obtain RSr(n)
.

Result

The evaluation result is shown in Figure 15. The horizontal axis of figure 15 represents the number

of nodes and the vertical axis represents efficiency. Compared with Random, Fractalδ=1.1 has high

efficiency at any number of nodes. Fractalδ=1.1 holds more short-distance links while increasing

the maximum physical link length in proportion to the square root of the number of nodes when

the number of nodes increases according to the generation algorithm. On the other hand, Random

holds only medium-range links with an average of µ, so even if it is between short-distance nodes,

it needs many hops until the nodes reach from/to each other. For this reason, we believe that the

difference in hop length for reaching nodes at short distance appears as a difference in efficiency,

and the difference is larger as the number of nodes increases.

The result of Figure 15 is calculated using Equation (5) and the reciprocal of the shortest path

length of each node pair is averaged. That is, the efficiency indicated as the value of the y axis

represents efficiency per node pair. However, when constructing a large-scale virtual network,
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it is more important to see how much the performance of the entire network improves than to

see each node pair. Thus, we consider the sum of the reciprocal of the shortest path length by

removing the average part of Equation (5). The result is shown in Figure 16. The horizontal

axis of Figure 16 represents the number of nodes and the vertical axis represents the sum of

reciprocals of the shortest path length. Looking at Figure 16, as the number of nodes increases,

the difference between the sum of reciprocals of hop length expands between Fractalδ=1.1 and

Random, In 16384, Fractalδ=1.1 shows a larger value by about 5 million. When there is a difference

of 1 in the sum of reciprocals of hop lengths, there is at least a difference of 1 when converted into

the sum of hop lengths. Therefore, in the number of nodes 16384, it can be said that Fractalδ=1.1

succeeded in reducing extra communication equivalent to at least 5 million hops in the entire

network compared with Random.

The evaluation result on robustness is shown in Figure 17. The horizontal axis of Figure 17

is the number of nodes and the vertical axis is the robustness metric RSr(n)
. From Figure 17,

Fractalδ=1.1 is always lower in value of RSr(n)
than Random. In other words, Fractalδ=1.1 is more

robust than Random. In addition, the value of Fractalδ=1.1 is more stable. The reason for this

result is that Fractalδ=1.1 may be less biased in the structure of the network. Even if you change

the scale, Fractalδ=1.1 has the same structure regardless of where you look in the network, so we

believe that robustness will be kept constant.
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5 Conclusion

In this thesis, we showed the configuration method for large-scale virtual networks such as IoT

networks by focusing on the fractal property and improved the efficiency of the network by control-

ling the fractal dimension, maintaining high robustness that the fractal structures originally have.

Our method generates a fractal virtual network with arbitrary fractal dimension by controlling the

exponent of the link length distribution following the power distribution. We evaluated efficiency

and robustness of the fractal network in various conditions. First, we revealed that fractal networks

are more efficient and more robust than random networks, that is, non-fractal networks because

fractal networks have stable reachability between neighbor nodes. Second, as the fractal dimen-

sion is higher, long links appear in the network and the efficiency is improved more. Third, even if

the scale of the network is changed, the fractal network always shows higher efficiency and higher

robustness than the non-fractal network. In conclusion, we showed the guideline for designing a

large-scale virtual network with high efficiency and high robustness.

We just show the design method for large-scale virtual networks before services using the net-

works start to work but the method does not consider constant changes of the network environment

such as traffic changes or changes of scale. Therefore, we assume such changes and according to

the changes, control and manage the virtual network keeping the fractal property.
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