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Abstract

The amount of traffic in the Internet has been increasing both in quantity and in fluctuation

as the devices connected to the Internet and the services on the Internet become popular. Predic-

tive Traffic Engineering (TE) is one approach to accommodating such fluctuating traffic without

congestion. In the predictive TE methods, a controller collects the traffic information, predicts the

future traffic, and changes the routes or resource allocation based on the predicted traffic.

The accuracy of the prediction is important for the predictive TE; if the predicted traffic is

inaccurate, the resources may not be allocated properly and congestions may occur. Many methods

to predict the future traffic have been proposed. Most of them model the traffic changes based on

the time series of monitored traffic and predict the future traffic using the model. However, it is

difficult to accurately predict traffic only from the previously monitored traffic, if the signs of the

fluctuation are not included in the previously monitored traffic.

The real-world information is useful for the prediction of future traffic, because the real-world

information may include the signs of the traffic fluctuation, which are not included in the previ-

ously monitored traffic data. For example, the number of people in each area can increase the

accuracy of the prediction, because the traffic in an area becomes large if the number of people

in the area increases. In addition, if the number of peoples in the nearby areas increases, we can

easily predict that the number of people in the area will also increase, which causes the increase

of the traffic from the area.

In this thesis, we propose a predictive traffic engineering method which predicts future traffic

using the information monitored in the real-world. Though the real-world information may con-

tribute to the accurate prediction of future traffic, it is difficult to model the relation between future
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traffic and the real-world information. That is, we need a new method to predict future traffic using

such information whose relation to the future traffic cannot be clearly modeled.

Therefore, we propose a prediction method inspired by the human-brain cognition process

which makes decisions from uncertain information. In this model, a human brain has stochas-

tic variables and updates the variables by Bayesian inference every time a new observation is

obtained. Then, a human brain makes a decision based on the stochastic variables.

In our method, we define multiple states by the monitored information including both of traffic

and real-world information. In addition, our method learns the future traffic corresponding to

each state. Then, our method predicts future traffic by deciding the current state from the traffic

and real-world information by the process inspired by the human-brain cognition process; our

method has the stochastic variables indicating the confidence about that the current traffic and

real-world information belong to the corresponding state, and updates the variables every time a

new observation is obtained. Finally, our method allocates the resources based on the future traffic

corresponding to the states whose confidences are high.

We evaluate our method by simulation. The results demonstrate that our method avoids con-

gestions without requiring a large amount of extra resources; the amount of resources required to

avoid congestion is reduced by 25 % compared with the predictive TE using only the past traffic

information.
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1 Introduction

The amount of traffic through networks has been increasing both in quantity and in fluctuation as

the devices connected to the Internet and the services on the Internet become popular. Network

operators need to accommodate such fluctuating traffic without congestion. Traffic Engineering

(TE) is one approach to accommodating such fluctuating traffic without congestion [1–5]. In these

methods, routes and/or resource allocations are changed dynamically so as to accommodate the

traffic without congestion.

Most of the methods that dynamically control network resources use the observed network

traffic. However, the resource allocated based on the observed traffic does not suit the actual traffic

when significant traffic change occurs, but the configured resource allocation is not changed until

the next control cycle. This problem may be solved by setting the short control interval. However,

the short control interval caused the network stabilization.

One approach to allocating the fluctuating traffic without causing the network stabilization is

the predictive TE [6]. In the predictive TE, a controller collects the traffic information and predicts

the future traffic. Then, the controller allocates the resources based on the predicted traffic. The

predictive TE allocates a sufficient amount of resources to avoid the congestion without setting the

control interval short.

The accuracy of the prediction is important for the predictive TE; if the predicted traffic is

inaccurate, the resources may not be allocated properly and congestions may occur. Many methods

to predict future traffic have been proposed [7–10]. For example, Yu et al. proposed the traffic

prediction that combines ARIMA and FARIMA based on the multifractal spectrum for mobile

networks, and Feng et al. compared the prediction models such as IMA, FARIMA, ANN and

wavelet-based prediction and demonstrated that the optimal model depends on the network.

Most of the traffic prediction models the traffic changes based on the time series of monitored

traffic and predict the future traffic using the model. However, it is difficult to accurately predict

traffic only from the previously monitored traffic, if the signs of the fluctuation are not included in

the previously monitored traffic.

The real-world information can contribute the accurate prediction of future traffic, because the

real-world information may include the signs of the traffic fluctuation, which are not included in

the previously monitored traffic data. For example, the number of people in each area can improve
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the accuracy of the prediction, because the traffic in an area becomes large if the number of people

in the area increases. In addition, if the number of peoples in the nearby areas increases, we can

easily predict that the number of people in the area will also increase, which causes the increase

of the traffic from the area.

In this thesis, we propose a predictive traffic engineering method which predicts future traffic

using the information monitored in the real world. Though the real-world information may con-

tribute the accurate prediction, it is difficult to model the relation between the future traffic and

the real-world information. That is, we need a new method to predict future traffic using such

information whose relation to the future traffic cannot be clearly modeled.

In this thesis, we propose a prediction method inspired by the human-brain cognition process

which makes decisions from uncertain information. Bayesian decision-making theory is one of

the theoretical models that explain the process human brain makes decisions based on uncertain

information. Bayesian decision-making theory treats observed information and the confidence of

cognitive objects as stochastic variables. Then, the variables are updated by Bayesian inference

every time a new observation is obtained. Finally, a human brain makes decisions based on the

stochastic variables.

Bayesian Attractor Model (BAM) is one of the cognitive models of brain based on Bayesian

decision-making theory [11]. In this model, the cognitive options are embedded as attractors.

Then, a brain has stochastic variables related to the options, and recognize which option is suitable

by updating the variables by Bayesian inference.

In our method, we define multiple states by the monitored information including both of traffic

and real-world information. In addition, our method learns the future traffic corresponding to each

state. We embed the defined states as attractors. Then, our method predicts future traffic by

deciding the current state from the traffic and real-world information by the process inspired by

BAM; our method has the stochastic variables indicating the confidence about that the current

traffic and real-world information belong to each state, and updates the variables every time a new

observation is obtained. Finally, our method allocates the resources based on the future traffic

corresponding to the states whose confidences are high.

The rest of this thesis is organized as follows. Section 2 explains the related work. Section 3

explains Bayesian Attractor Model (BAM). Section 4 proposes the predictive traffic engineering

incorporating real-world information. Section 5 evaluates our method. Section 6 concludes this
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thesis.
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2 Related Work

2.1 Traffic Engineering

The amount of traffic through networks has been increasing both in quantity and in fluctuation.

A network must accommodate such fluctuating traffic without congestion. Dynamically changing

the routes and/or resource allocations is one of the promising approaches to accommodating such

fluctuating traffic, and many methods to change the routes and/or resource allocations, which are

called traffic engineering (TE) have been proposed.

Many papers on the TE focus on the routes in the backbone networks or data center networks.

For example, Chiesa et al. discussed algorithms to set weights for routing for the case of Equal-

Cost-Multi Path (ECMP) [2]. Akyildiz et al. discussed the traffic engineering methods for the

software defined networks (SDN), where a route of a flow is set by setting the flow tables of the

switches.

The methods to allocate the resources for mobile networks have also been proposed. Ra-

manathan et al. proposed a method to dynamically allocate resources so as to provide contin-

uous service to mobile users by estimating the resource requirements of potential handoff con-

nections [12]. Zulhasnine et al. discussed the problem on the resource allocation between D2D

communication and the cellular networks [13]. They formulated the resource allocation problem

by a mixed integer nonlinear programming and proposed a heuristic method to solve the problem.

Lopez et al. proposed a distributed and coordinated radio resource allocation algorithm for cellu-

lar networks [14]. This method dynamically allocates the modulation and coding scheme (MCS),

resource block (RB), and transmit power so that the users ’demands are satisfied.

Most of the methods that dynamically control network resources use the observed network

traffic. However, the resource allocated based on the observed traffic does not suit the actual traffic

when significant traffic change occurs, but the configured resource allocation is not changed until

the next control cycle. This problem may be solved by setting the short control interval. However,

the short control interval caused the network stabilization.

One approach to allocating the fluctuating traffic without causing the network stabilization is

the predictive TE [6]. In the predictive TE, a controller collects the traffic information and predicts

the future traffic. Then, the controller allocates the resources based on the predicted traffic. The

predictive TE allocates a sufficient amount of resources to avoid the congestion without setting the
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control interval short.

The accuracy of the prediction is important for the predictive TE; if the predicted traffic is

inaccurate, the resources may not be allocated properly and congestions may occur. That is, we

need the method to predict the future traffic accurately.

2.2 Traffic Prediction

The prediction of future traffic is required by the predictive TE. There are many papers on traffic

prediction.

Rutka proposed a method to predict future traffic by using the self-similarity model [8]. He

applies a neural network to learn the predictive model using the self-similarity and predicts the

future traffic from the history of the traffic data by the proposed model. Lu proposed a prediction

method using the RBF neural network and optimized its hyperparameters by the Genetic Algo-

rithm [9]. Yu et al. proposed the traffic prediction that combines ARIMA and FARIMA based on

the multifractal spectrum for mobile networks [15]. Feng et al. compared the prediction models

such as IMA, FARIMA, ANN and wavelet-based prediction and demonstrated that the optimal

model depends on the network [16].

The above methods predict the future traffic based on the time series of monitored traffic and

predict the future traffic using the model. However, it is difficult to accurately predict traffic

only from the previously monitored traffic, if the signs of the fluctuation are not included in the

previously monitored traffic.

The real-world information may contribute the accurate prediction of future traffic, because

the real-world information may include the signs of the traffic fluctuation, which are not included

in the previously monitored traffic data. For example, the number of people in each area may

improve the accuracy of the prediction, because the traffic in an area becomes large if the number

of people in the area increases. In addition, if the number of peoples in the nearby areas increases,

we can easily predict that the number of people in the area will also increase, which causes the

increase of the traffic from the area.

Therefore, in this thesis, we propose a method that predicts the future traffic by using not only

the traffic information but also the real-world information.
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2.3 Bayesian Decision Making

In this thesis, we predict the future traffic by the method inspired by the cognitive process of the

human brain.

There are many papers that formalize the human decision making. One of the models of the

human decision making is the Bayesian decision-making theory. There is converging evidence

from various communities that Bayesian approaches can serve as a coherent description of human

decision making [17].

Bayesian decision-making theory treats observed information and the confidence of cognitive

objects as stochastic variables. Then, the variables are updated by Bayesian inference every time

a new observation is obtained. Finally, a human brain makes decisions based on the stochastic

variables.

The mechanisms of the neurons that make decisions based on Bayesian decision-making the-

ory have also been being investigated. Ma et al. have investigated how the neuron encodes the

probabilistic distribution [18]. They argued that the high variability in the responses of cortical

neurons implies that populations of neurons automatically represent probability distributions over

the stimulus. They demonstrated that the Poisson-like variability observed in cortex reduces a

broad class of Bayesian inference to simple linear combinations of populations of neural activity.

In this thesis, we use one of the models of the human decision making, which was proposed

by Bitzer er al. [11]. The detail of this model is explained in Section 3.
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3 Bayesian Attractor Model(BAM)

The Bayesian Attractor Model (BAM) models the process by which the brain makes decisions

based on uncertain sensing information [11]. The BAM encodes the predefined i options ϕ1, · · · , ϕi

called attracter, and makes decisions that which options the current status is. The BAM has the

decision state zt as its internal state, and updates zt based on the observation value xt obtained

from the outside by performing the Bayesian inference. The rest of this section explains how the

states are updated and decisions are made in BAM.

3.1 Update of decision state

BAM has the following generative model of the decision state zt and observation xt.

zt − zt−∆t = ∆tf(zt−∆t) +
√

∆twt (1)

xt = Mσ(zt) + vt (2)

where f(z) is the Hopfield dynamics, wt, vt are Gaussian noise variables, and M = [µi, · · · , µN ]

is a matrix indicating the observation values and µi is the observation value corresponding to the

state ϕi, which is the i-th predefined attractor. σ(x) is a sigmoid function tanh(ax/2)+1
2 where a is

slope of sigmoid function.

In the BAM, the decision state zt is updated every time the observations xt is obtained by

inverting the generative model using Bayesian inference. The generative model is nonlinear,

Bitzer et al. uses the Unscented Kalman Filter [19] to update the mean decision state of zt. In

addition to updating of the mean decision state, the posterior distribution P (zt|xt) over the deci-

sion state is also obtained.

3.2 Decision making

The above state estimation outputs the posterior probability P (zt|xt). Thus, the decision is made

by handling the probability. Bitzer et al. introduced the threshold λ. When P (zt = phii) > λ,

it selects the option ϕi. When P (zt = ϕi) ≤ λ for all i, the decision is not made until a new

observation is obtained.
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4 Predictive traffic engineering incorporating real-world informa-

tion

4.1 Overview

In this thesis, we propose a predictive traffic engineering incorporating real-world information for

mobile networks. In mobile networks, the traffic from each area may change in time due to the

change in the traffic generated by each user and/or the change in the number of people in the area.

Network operators must prepare a sufficient amount of resources for each area to accommodate

the traffic without congestion. In this thesis, we discuss the method to predict the future traffic

from each area and determine the amount of resources required for each area.

In mobile networks, the number of people in each area is useful information to predict the

traffic from the area, because the traffic in an area becomes large if the number of people in the

area increases. In addition, if the number of peoples in the nearby areas increases, we can easily

predict that the number of people in the area will also increase, which causes the increase of the

traffic from the area. Therefore, our method uses the real-world information such as the number

of users in each area in addition to the traffic volume of each area.

Though the real-world information may contribute the accurate prediction of the future traffic,

it is difficult to model the relation between future traffic and the real-world information. That is,

we need a new method to predict future traffic using such information whose relation to the future

traffic cannot be clearly modeled.

In this thesis, we propose a prediction method inspired by the human-brain cognition process

which makes decisions from uncertain information. In this model, a human brain has stochastic

variables and updates the variables by Bayesian inference every time a new observation is ob-

tained. Then, a human brain makes a decision based on the stochastic variables. Figure 1 shows

the overview of our method.

The rest of this section explains how our method predicts future traffic and how our method

allocates resources based on the prediction.
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Figure 1: Application of human brain cognition process to TE

4.2 Traffic prediction based on human brain cognition process

Our method predicts the future traffic from each area and allocates the resources based on the

prediction for each area. In this section, we focus on an area and predict traffic in the area at time

slot t+ p by using the information monitored at time slot t.

In our method, we define the state of the network by the observation information. We also

assign the future traffic amount for each state by using the observed information. By doing so, we

can predict the future traffic by deciding the state of the network from the observation information.

To decide the state of the network we use the Bayesian Attractor Model (BAM) [11], which is one

of the cognitive models of the human brain.

The rest of this subsection explains the observation information used for prediction, the defi-

nition of the state of the network, and how to apply BAM to make decisions of state.

4.2.1 Observed information

In this thesis, we use the number of users in each area in addition to the amount of traffic from

the area. To predict the number of users in each area, the numbers of users in the nearby areas

are also useful information; if the number of peoples in the nearby areas increases, we can easily

predict that the number of people in the area will also increase, which causes the increase of the

traffic from the area. Thus, we also use the information of nearby areas. In addition to the absolute

values of the number of users and the amount of traffic, whether the values are increasing or not
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is useful; the increase of the number of people in nearby areas may be a sign that the number of

people and/or the amount of traffic will increase. Therefore, we also use the increase rates of the

traffic and the number of people.

In this thesis, our method uses the following information in the areas whose distance from the

area whose future traffic is to be predicted is less than m when predicting the traffic at the time

slot t+ p

• Traffic amount at the time slot t

• Difference between traffic amounts at the time slot t− p and the time slot t

• Number of users at the time slot t

• Difference between the number of users at the time slot t− p and the time slot t

4.2.2 State

If the information observed at the time slot t is similar to that observed at the time slot t′, the traffic

amount at the time slot t+ p is similar to the traffic amount at the time slot t′+ p. Thus, we define

the state by clustering method; we divide the observation information that is collected in advance

into k clusters C1, C2, · · · , Ck so that each cluster includes the similar information. Each cluster

indicates the state to be determined by the decision making.

We also assign the future traffic for each cluster. The future traffic for the cluster Cn is deter-

mined by

T future
n = max

t∈Cn

Tt+p (3)

where Tt+p is the traffic amount at the time slot t + p. By defining the future traffic by Eq. (3),

we can avoid the case that the traffic amount at the time slot t′ + p for t ∈ Cn becomes larger than

the predicted traffic for the cluster Cn. That is, we can allocate a sufficient amount of resources to

avoid congestion by using the predicted traffic.

In this thesis, we define the k cognitive states based on observation information using k-means

method.
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4.2.3 Application of BAM to state cognition

In this thesis, we use k decision makers so that ith decision maker decides whether the current

state belongs to the ith option (i.e. ith cluster defined in the previous subsection). Each decision

maker performs decisions based on BAM.

Hereafter, we explain how to use the observation information in each decision maker and

definition of attractor in BAM.

How to use observed information In each decision maker, observations are used to determine

whether the current state belongs to the target cluster or not. In this thesis, we calculate the

input of the BAM model xi in each decision maker so that the BAM model can easily obtain the

information on whether the current state belongs to the target cluster or not

xi = σ(
a

a+ b
,

b

a+ b
)

a = D(X,Mi)

b = min(D(X,M1), D(X,Mi−1), · · · , D(X,Mi+1), D(X,Mk))

(4)

where xiis the input for BAM to make a decision whether the current state belongs to the cluster

Ci(1 ≤ i ≤ k) or not, X is the vector of the current observation value, D(y1,y2) is the is the

Euclidean distance between vectors y1andy2, σ is a sigmoid function. yi is the centroid of the

observation information belonging to ith Cluster.

xi become close to 0, 1 when observation value is close to the centroid of observation infor-

mation in the cluster Ci. On the other hand, xi becomes close to 1, 0 when the observation value

is close to the other clusters.

Definition of attractor Each decision maker decides whether the current state belongs to the

target cluster or not. That is, each decision maker has two attractors zyes and zno; zyes corresponds

to the case that the current state belongs to the target cluster, and zno corresponds to the case that

the current state belongs to the other cluster. Then, we define the observed values for zyes and zno

as follows.
µyes = (0, 1)

µno = (1, 0)
(5)
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4.3 Resource allocation based on prediction

The above procedure outputs the posterior probability P (zyes|x) (hereinafter we call confidence)

and the predicted traffic amount for each cluster. In this thesis, we allocate resources based on this

confidence.

If the current observation information clearly indicates that the current state belongs to a cer-

tain cluster, P (zyes|x) only for the cluster becomes high. However, there may be the case that

P (zyes|x) for multiple clusters become high. In this case, we allocate the resources based on the

maximum value of the predicted traffic whose corresponding P (zyes|x) is high so as to avoid the

risk of congestion. That is, we allocate resources to accommodate the traffic whose volume is

larger than

T allocate = max
n∈{n|Pn(zyes|x)>λ}

T future
n

where Pn(zyes|x) is the confidence of the decision maker corresponding to the nth cluster, and λ

is the threshold.
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5 Evaluation

In this evaluation, we demonstrate the effect of using the real-world information, and the effect of

the prediction inspired by the cognitive process of the human brain.

5.1 Evaluation method

5.1.1 Evaluation environment

For this evaluation, the data of the people movement and the traffic generated by the users are

required. However, no actual data of the movement of people is available.

In this thesis, we synthetically generate the data of people movement and the traffic generated

by the people by using the pseudo-generated GPS trajectory dataset called Open PFLOW [20]

(University of Tokyo CSIS-JoRAS), and Synthetic Traffic Generator [21].

Open PFLOW includes a typical movement pattern of people in the metropolitan area for one

day. In this data set, a pair of time and GPS corresponding to a user is recorded every 5 seconds.

However, the number of people included in this data is 617,040 and does not include the data

corresponding to all users in the metropolitan area.

Therefore, assuming that there are multiple users who move in a similar way, we generate the

number of people in each area by assigning a scale factor to each user in the Open PFLOW and

summing the scale factors of the users in the area. By randomly changing the scale factors, we can

generate multiple data; we use one of them as the training data for the prediction, and the others

for the evaluation.

Synthetic Traffic Generator reproduce the amounts of traffic, the number of requests and the

interval time between requests on from x : 00 : 00 to (x + 1) : 00 : 00 (0 ≤ x ≤ 23) based

on the real data. This simulator generates most of the requests on x : 00 : 00, but the request of

each user occurs in more various time zones in the actual network. Therefore, in this evaluation,

we regenerate the request time so that the request uniformly distribute between x : 00 : 00 and

(x + 1) : 00 : 00. The Synthetic Traffic Generator generates only requests and does not generate

the information on the amount of traffic in shorter time granularity. In this evaluation, traffic of

each user was generated assuming that the traffic rate is constant from the beginning to the end of

the request.

In this evaluation, we define the area by partitioning around Chiyoda-ku, Tokyo, into areas
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Figure 2: Time series of the number of users at prediction target area and its surroundings

of 0.0036 (about 350 m) in both latitude and longitude. We focus on one of the areas as the

target area. Figure 2 shows the time series of the number of people in the target and nearby areas.

Figure 3 shows the time series of the traffic in the areas. In these figures, sequence 1 corresponds

to the target area.

In this evaluation, for simplicity, the unit of the allocated resources set so that one unit can

accommodate 16 Mbps. In our evaluation, we set p to 40 minutes. That is, we predict 40-minute

future traffic and allocate resources so as to avoid congestion for 40 minutes.

5.1.2 Compared method

In this evaluation, we evaluate the effect of using real-world information and the effect of predic-

tion inspired by the cognitive process of the human brain. In order to evaluate the above effect, in

this evaluation, we compare the following method with the proposed method (hereinafter referred

to as cognitive TE method with real-world information).

Cognitive TE without real-world information This method predicts the future traffic by the

same way as our cognitive TE with real-world information but uses only the information on traffic

volumes to predict future traffic. The information used by this method at the time slot t is the
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Figure 3: Time series of the amounts of traffic at prediction target area and its surroundings

following information of the areas whose distances from the target area are less than m

• Traffic volume at time slot t

• Difference between the amount of traffic at the time slot t− p and the time slot t

This method is the same as the proposed method except for the information used for prediction.

By comparing our method with this method, we demonstrate the effect of using the information

of the number of people.

Deterministic TE With real-world information This method predicts the future traffic by us-

ing the same information as our method. However, this method does not use the process inspired

by the cognitive model of the human brain. Instead, this method determines the cluster of the

current status as the cluster whose centroid is the nearest to the current observation. By comparing

with this method, we demonstrate the effect of prediction based on the cognitive process.

Deterministic TE Without real-world information This method predicts the future traffic in

the same way as the deterministic TE with real-world information but uses only the information

on the traffic volumes.
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5.1.3 Parameter settings

In this evaluation, we set m = 2 and p = 480. That is, all methods use the observation information

of the areas whose distances from the target area are less than two areas (about 700 m) and use the

difference from the observed value 40 minutes ago as the rate of increase of the traffic amounts

and the number of people.

We also set the sensory uncertainty to 0.42, and dynamic uncertainty to 0.3 in the BAM. We

set the slope of the sigmoid functions a to 2.0. The other parameters in the BAM are set to the

same values as the values set by Bitzer et al. [11]

5.1.4 Metrics

In this thesis, we allocate resources to the target area using each method so as to avoid congestion.

We allocate the resources that can accommodate T future + α Mbps of traffic, where T future is the

predicted traffic and α is a margin. Setting a large margin avoids the congestion but requires more

resources. It is preferable to avoid congestion with a limited amount of resources

Therefore, we investigate the number of time slots where the congestion occurs and the total

amount of allocated resources.

5.2 Evaluation results

Figure 4 shows the results. The horizontal axis indicates the number of time slots when congestion

occurs due to lack of resources and the vertical axis indicates the total amounts of resources allo-

cated when we set α so as to make the number of time slots when congestion occurs less than the

value on the horizontal axis. The total amounts of resources indicates the total amounts of traffic

volume (KByte) that can be relayed in all time slots by the allocated resources. We also plot the

sum of traffic that cannot be accommodated, the number of time slots when congestion occurs and

the sum of extra resource in Figures 5, 6, and 7.
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Figure 4: Sum of allocated resources necessary to keep number of timeslot when congestion occurs

below a certain level
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Figure 5: Sum of shortage resource
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Figure 6: Number of timeslot when congestion occurs
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Figure 7: Sum of surplus resource
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Figure 8: Sum of allocated resources necessary to keep sum of shortage resource below a certain

level
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Comparing the cognitive TE with real-world information and the cognitive TE without real-

world information, the cognitive TE with real-world information requires a smaller amount of

resources to keep the number of time slots when congestion occurred to less than a certain value.

This is because the real-world information enables us to capture the difference in the states which

could not be distinguished by using only traffic volume information, which leads accurate predic-

tion of future traffic. As shown in Figures 2 and 3, the traffic volumes has a strong correlation with

the number of users. That is, the number of users is useful information for the prediction of the

traffic. In addition, the fluctuation of the number of users does not include large noises, compared

with the fluctuation of the traffic. The cognitive TE without real-world information cannot accu-

rately decide the status of the network only from the traffic information due to their large noise.

On the other hand, the cognitive TE with real-world information accurately decides the states even

in such cases.

We next compare the cognitive TE with real-world information and the deterministic TE with

real-world information. Figure 4 shows that the cognitive TE requires a smaller amount of re-

sources. This is because the cognitive TE with real-world information controls based on confi-

dence. The cognitive TE request extra resources when confidences for multiple candidates become

large. As a result, small α is enough to avoid congestion. On the other hand, the deterministic

TE does not consider the confidences. As a result, large α is required to avoid congestion, which

causes a large amount of extra resources.
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6 Conclusion and future work

In this thesis, we proposed a predictive traffic engineering method which predicts future traffic

using the information monitored in the real world. Though the real-world information may con-

tribute the prediction of the future traffic, it is difficult to model the future traffic as the function

of the real-world information. That is, we need a new method to predict future traffic using such

information whose relation to the future traffic cannot be clearly modeled.

Therefore, we proposed a prediction method inspired by the human-brain cognition process

which makes decisions from uncertain information. In this model, a human brain has stochas-

tic variables and updates the variables by Bayesian inference every time a new observation is

obtained. Then, a human brain makes a decision based on the stochastic variables.

In our method, we define multiple conditions by the monitored information including both

of traffic and real-world information. Our method learns the future traffic corresponding to each

condition. Then, our method predicts future traffic by estimating the condition of the current

traffic and real-world information by the process inspired by the human-brain cognition process;

our method has the stochastic variables indicating the confidence about that the current traffic

and real-world information belong to the corresponding condition, and updates the variables every

time a new observation is obtained. Finally, our method allocates the resources based on the future

traffic corresponding to the conditions whose confidences are high.

We evaluated our method by simulation. The results demonstrate that our method avoids

congestions without requiring a large amount of extra resources; the amount of resources required

to avoid congestion is reduced by 25 % compared with the predictive TE using only the past traffic

information.

Our future work includes the parameter settings of our method. Especially, the number of

clusters k may have a large impact on the accuracy of the prediction. The evaluation of our method

in a different environment is also included in our future work. For example, we will evaluate our

method in the case of the different p.
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