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あらまし 近年実用化が進んでいる IoTネットワーク環境においては、ネットワークを通じて多種多様なサービスを

展開するため、IoTネットワーク同士の相互接続が必須となっている。さらに、交通、航空、電力など、主要な社会イ

ンフラもネットワーク化が進み、それらの高度利用を目的として相互接続が進められている。しかし他方では、ネッ

トワークの相互接続は、特に信頼性の観点から相互依存の状態を引き起こし、単一のネットワーク内の障害が他のネッ

トワークへと波及するという問題も認識されている。そこで本研究では、脳機能モジュール間の相互依存性を考慮し

た、脳ネットワークにおけるインフルエンサーの特定手法に着目した。相互依存性の存在する相互接続ネットワーク

のネットワーク間接続構造を様々に変化させ、インフルエンサーを評価することにより、インフルエンサーの影響力

と配置の一元化及び分散化が可能であることを示した。同時に、相互依存性の存在しない相互接続ネットワークと同

等の頑健性を実現可能であることを示した。
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Abstract The Internet is rapidly developing toward the next generation of the Internet of Things (IoT), which accelerates the

emergence of interconnected network architectures even further. In the context of IoT, not only the Internet services becomes

sophisticated and diversified, the existing social infrastructure (e.g., transportation, electricity) are expected to be connected

and dependent on the Internet. It is pointed that due to the inter-dependency between networks, a partial malfunction in a

network can propagate to other interconnected networks. In this study, as an inspiration to solve this issue, we focus on a

method to detect influencers in an inter-dependent networks of the human brain. By configuring connectivity patterns between

subnetworks of an interconnected network, where inter–modular dependency exist, our evaluation shows the feasibility of

centralization and distribution of influencers regarding its influence and deployment. At the same time, our results showed that

the deterioration of the robustness caused by inter-dependency can be reduced as that of interconnected networks where no

inter-modular dependency exists.
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1. Introduction

Information networks are characterized by rapid growth and in-

creased complexity and has been developing toward the next gener-

ation of the Internet of Things (IoT). In the context of IoT, not only

the Internet services becomes sophisticated and diversified, the ex-

isting social infrastructure (e.g., transportation, electricity) or other

vital services for everyday life are expected to be connected and

dependent on the Internet [1, 2]. These types of interdependent

systems are often referred to as Network of Networks (NoN). The

development toward IoT permits connecting various heterogeneous

services in everyday life via the Internet protocol, which results in

the acceleration of the emergence of NoN architectures even further.

Virtualized networks is considered as one example of interdepen-

dent network systems. In the IoT scenario, virtualization of wireless

sensor networks (WSN) has been widely studied [3,4]. A virtualized

WSN consists of two network layers: infrastructure providers de-

ploy physical network resources and form infrastructure layer, and

multiple service layers are virtually constructed by combining the

physical resources on the infrastructure layer. Thus, there exists in-

extricable interdependency via the infrastructure layer. The service

layers are also expected to functionally cooperate to provide further

complex and sophisticated services. Another example of interde-

pendent network system would be the functionally interconnected

network in smart cities [5]. Toward the future IoT society, the num-

ber of IoT devices and the types of services on the Internet have

been showing explosive increase. Smart cities intelligently integrate

information collected via the IoT devices to improving services in

healthcare, surveillance, infrastructure, public utilities, etc., result-

ing in the realization of smart homes or smart grids. For instance,

smart homes could contain air conditioning systems capturing tem-

perature, humidity, and circulation from IoT devices in order to pro-

vide best services in response to various requirements. Beside the

new situations we can foresee at the moment, also the number of au-

tomated and interconnected service systems operating over the IoT

infrastructure is expected to drastically increase.

While welcoming the future convenient and sophisticated tech-

nological society, there exists a problem behind the collaboration

of those different service networks. It is pointed that due to the

inter-dependency between networks, a partial malfunction in a net-

work such as device failure or computer-virus infection can prop-

agate to other interconnected networks. Therefore, an appropriate

strategy to design interconnected networks that can deal with the

above-mentioned problem, which has not been addressed so far.

In this study, as an inspiration to solve this issue, we focus on a

previous study in neuroscience field. Morone et al. [6, 7] has pro-

posed a method to model interdependency of modularly connected

brain networks and detect influencers, i.e. a set of influential nodes

from a topological viewpoint, in the brain networks. The brain net-

work is composed of a number of modules, which provides a speci-

fied function (e.g. visual processing) alone, but also provides more

complex and sophisticated function (e.g. cognition) in collabora-

tion with other modules. While connections within modules just

pass signals over nodes, i.e. neurons, around the modules, Connec-

tions between modules control the cooperation of different func-

tions. Hence, a processing halt in a module cause malfunction in

other modules. In the light of similarity between information net-

works and brain networks as interdependent network systems, we

apply Morone’s method to design influencers in interconnected net-

works. Not only for detecting influencers or comparing interdepen-

dent and non-interdependent systems, we do also aim to configure

influence and location of influencers in interconnected networks by

changing connectivity between networks.

The purpose of this study is to reveal the way to design inter-

connected networks that are robust against network malfunction

caused by computer-virus or physical disasters, taking into account

the inter-modular dependency between subnetworks. Therefore, we

first focus on a method to detect influencers in an inter-dependent

networks, the human brain networks. We apply this method to

reveal the appearance pattern of influencers in interconnected net-

works with various topological shape, and also to reveal the differ-

ence between the networks where inter-dependency are considered

or not. Second, by focusing on the assortativity between networks,

we propose a method to configure the intra-modular connectivities.

Our proposed method helps to know how we can control the in-

fluence and location of influencers in interconnected networks. It

also reveals how we can compensate the degradation on robustness

caused by the inter-dependency between subnetworks. These results

will guide the future studies on the construction of interconnected

networks with high reliability.

2. Related Works

2. 1 Models of Network of Networks
As shown in Table 1, in the Brain NoN model, four different

node-states are defined using three variables. The variable ni refers

to the existence state of node i, the variable σi refers to the local

effectiveness of node i, and the variable ρi refers to the global ef-

fectiveness of node i. The existence state is considered given, and

local/global effectiveness of a node depends on the existence state

of itself and its neighbors. The definition for σi is given as follows:

σi = ni

[
1−

∏
j∈F(i)

(1− nj)

]
, (1)

where F(i) denotes the set of nodes connected to node i via inter-

modular links. Note that F(i) takes ϕ when the node i has no inter-

modular links. That is, the condition for node i to become active

Table 1 Definition for node state
Sign State ni σi ρi

⃝ removed 0 0 0

⃝ exist 1 0 0

⃝ locally effective 1 1 0

⃝ globally effective 1 1 1
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Figure 1 Example of node-state transition in Brain NoN model [6]

differs depending on whether it has inter-modular links. If it has one

or more inter-modular links (i) node i have to be INPUT and (ii) at

least one node connected to node i via inter-modular links have to

be INPUT. Meanwhile, if it has no inter-modular links, the condi-

tion is just (i) node i have to be INPUT. This variable σi implies

that a node that has inter-modular links cannot be useful without

support from other adjacent modules since the service provided on

this network of networks is interdependent.

In the Brain NoN model, a node is regarded as globally effec-

tive only when it belongs to the giant component of an intercon-

nected network. Whether a node is included in the giant compo-

nent is calculated through a percolation analysis using a message

passing method. On the message passing, each node first calculates

the probability whether the node itself belongs to the giant compo-

nent based on the information from adjacent nodes. Then, the node

passes the resultant probability to all its adjacent nodes. The proba-

bility is defined as follows:

ρi = σi

[
1−

∏
k∈S(i)

(1− ρk→i)

]
(2)

where S(i) denotes the set of all adjacent nodes of node i, and ρk→i

denotes the information from the adjacent nodes, i.e. the probabil-

ity for them to be included in the giant component. Starting with a

set of random values for φ and ρ, nodes continue passing informa-

tion until the values converge. Then, the converged probability is

regarded as the global effectiveness.

The signs in Table 1 corresponds to the node state in Fig. 2, which

shows an example of state transition in a Network of 2 Networks (2-

NoN). Black lines correspond to intra-modular links and blue ones

to inter-modular links. The set of nodes circled by a red dotted line

corresponds to the giant component detected in the perforation pro-

cedure described above.

2. 2 Identifying Influencers in Network of Networks
This study deals with identification of influencers to enhance
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Figure 2 Description of Collective Influence

the robustness and communication efficiency of interconnected net-

works with inter-modular dependency. Influencers are a set of vital

nodes in terms of the network connectivity or communication effi-

ciency. Identification of those vital nodes that maximizes the influ-

ence over a network is known as NP-hard problem [8], and there

exist many heuristic methods have been proposed so far [9], such

as betweenness centrality or page-rank. This study focus on one

of recent works [7] which proposed the Collective Influence (CI)

algorithm to identify influential nodes. Not only does the CI algo-

rithm show superior performances for the identification of influen-

tial nodes in comparison with other conventional methods, it is also

optimized for interdependent NoN.

CI of node i represents its influence on other nodes in the same

network centered around node i. CI of node i for a single network

is defined as follows:

CIl(i) = (ki − 1)
∑

i′∈∂Ball(i,l)

(ki′ − 1) (3)

where ki denotes the degree of node i, Ball(i, l) denotes the set of

nodes within l hops centered around node i, and ∂Ball(i, l) denotes

the set of nodes on the edges of Ball(i, l).

Morone et al. [7] also define the CI algorithm for inter-dependent

modular networks as follows:

CIl≧1(i) = k′
i

∑
i′∈∂Ball(i,l)

k′
i′

+
∑

j∈F(i):kout
j =1

[
k′
j

∑
j′∈∂Ball(j,l)

k′
j′

]
(4)

Note that the variable k considers both links within and between

modules. The first term of the equation corresponds to CI of node i

itself, and the second term corresponds to the sum of CI of node j

which is connected to the node i via inter-modular links. The con-

dition kout
j = 1 means that the node j is taken into account if it

has only an inter-modular link. This is because if node j has more

than one inter-modular links, it is not directly affected by the state

of node i.

3. Method for Constructing Interconnected Net-
works

This study aims to reveal the relation of the following three ele-
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ments: the performance of interconnected networks, the interdepen-

dency between subnetworks, and the intra-modular connectivity. In

this study, we focus on the assortativity for the intra-modular con-

nectivity, and thus, we describe how to construct an interconnected

network topology with configuration on inter-modular assortativity

for the evaluation.

3. 1 Assortativity between Networks
Newman was the first person who proposed measuring the assor-

tativity of a network with the assortativity coefficient [10]. Then, a

following research introduced universal assortativity coefficient to

define the assortativity between networks [11]. This coefficient re-

flects the contribution of an individual edge’s to the assortativity of

the entire network, i.e. Newman’s assortativity [10], The assortativ-

ity coefficient is calculated from the remaining degree distribution

q(k) defined as follows:

q(k) =
(k + 1)p(k + 1)∑

j jp(j)
, (5)

where p(k) denotes the probability that a randomly selected node

has nodal degree of k.

Then, the universal assortativity coefficient ρl on a link l can be

introduced given q(k). The definition of the universal assortativity

of link l is as follows:

ρl =
(j − Uq)(k − Uq)

Lσ2
q

, (6)

where j and k denote the remaining degrees of the two endpoints

of link l, which have the same expected value of the remaining de-

gree Uq =
∑

j jq(j). The term L denotes the number of links in

the whole network, and the term σ2
q =

∑
l j

2q(j)−
(∑

k kq(k)
)2

denotes the variance of the remaining degree distribution q(k). As

seen in Fig. 3, when ρl > 0, the link is called an assortative link;

otherwise when ρl < 0, a disassortative link. A link with ρ = 0 has

no correlation.

Then, we use the term ρ =
∑

l∈S ρl, which reflects the sum of

the assortativity of all inter-modular links, for measuring the assor-

tativity between networks.

3. 2 Construction of Interconnected Networks
First, two subnetworks are prepared beforehand, that composes

an interconnected network. We deploy a set of N nodes for each

subnetwork, and connect Lintra links among the nodes based on
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Figure 3 Connectivity between modules and the universal assortativity co-

efficient

a certain network models, which are commonly used in graph-

theoretical evaluation. In this study, connectivity pattern for inside

subnetworks are considered as given, and thus, the description for

the network model is described in the following section.

Then, Linter links are assigned between the two subnetworks so

that the connectivity achieves a specified value for inter-modular

assortativity of the interconnected networks. In order to obtain a

appropriate connectivity pattern for the assortativity, inter-modular

links are rewired repeatedly. The rewiring process is conducted

stochastically with the connectivity pattern determined by the fol-

lowing procedure:

（ 1） Linter edges are randomly assigned between the two subnet-

works. Note that no endpoint node have multiple inter-modular

links.

（ 2） The assortativity between the modules ρ is calculated. If ρ

matches the targeted value, the procedure is finished. Other-

wise, the following steps are repeated.

（ 3） An existing link between the modules, whose assortativity is

farthest away from the target value, is deleted. If the current

assortativity ρ is higher than the targeted value, the most assor-

tative inter-modular link is selected, and vice versa.

（ 4） A new link is created on two nodes in two different modules.

The pair of nodes are randomly selected under the condition

that the new link can move the assortativity ρ closer to the tar-

get value. Then, go back to Step 2.

The resultant topology of interconnected networks are used for

the evaluation.

4. Evaluation

In this section, we evaluate the performance of interconnected

networks. By this evaluation, we aim is to reveal topological char-

acteristics of influencers in interconnected networks, comparing the

cases when inter-modular dependency exists and not. We also reveal

the way to enhance the robustness and efficiency by configuring the

inter-modular assortativity in interconnected networks.

4. 1 Evaluation Environment
First, we describe the settings for the simulation evaluation. As

explained in Sec. 3., we construct topologies of interconnected

networks composed of two subnetworks. Each network contains

N = 100 nodes, and forms a topology with Lintra = 300 links

based on the network models explained in Sec. 4. 1. 1. After creat-

ing subnetworks, we assign Linter inter-modular links between the

two subnetwork so that the connectivity pattern achieves a specified

value of ρ. We set the value for Linter equal to N and let every

node have just an inter-modular link to simplify the problem. Al-

though the range of ρ ideally takes -1 to 1, it is much more limited

because of the topological shape of each subnetwork. To reveal the

deference between interconnected networks with inter-modular de-

pendency and without, see Sec. 4. 1. 2. The metrics for evaluating

influencers are described in Sec. 4. 1. 3
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4. 1. 1 Intra-Modular Connectivity

a ) Erdös-Rényi (ER) Model

The ER model is a class of random network models [12]. The

degree distribution of the ER model follows a Gaussian distribution

that is similar to the distribution observed in information networks.

For the network construction, we repeat randomly choosing a pair

of nodes and connecting them until the number of generated intra-

modular links reaches Lintra.

b ) Barabáshi-Albert (BA) Model

The second type of networks corresponds to the BA model [13],

which is one of the most well-studied complex network models.

The BA model is characterized by that there exists extremely high-

degree nodes (i.e. hub nodes) and a core cluster of hub nodes (i.e.

rich-club) and that its degree distribution follows a power-law.

For the topology construction, we first pick a small set of nodes to

create an initial full-mesh topology. Then, we repeatedly add a new

node to the initial topology, and at each time we probabilistically

choose m other nodes from the existing topology for generating a

link between those nodes and the new node. At this time, the prob-

ability that node i is chosen is given by pi = ki/Σjkj , where ki

is the degree of the node i. Hence, m is chosen so that almost the

same number of intra-modular links (Lintra) are finally generated.

4. 1. 2 Inter-Modular Dependency

As mentioned in Sec. 2. 1, we apply the rule of node-state tran-

sition in the Brain NoN model to the generated interconnected net-

works. In addition, we also define Pure NoN, a basic model that

does not consider the interdependence between subnetworks. For

the Pure NoN, we replace Eq. 2 with σi = ni and inter-modular

links works just the same as the intra-modular links. The compari-

son of Brain NoN and Pure NoN let us know what we have to con-

sider on the construction of inter-dependent networks.

4. 1. 3 Evaluation Metrics

We evaluate the performance based on hop length among nodes.

a ) Average Hop Length of Remaining Effective Nodes

In order to measure the effect of influencers, we remove influ-

ential nodes using CI algorithm on an interconnected network and

see the change of average hop length (AHL) of remaining networks

other than the failed parts. Here, AHL is defined as the average of

the number of hops among all the pairs of nodes. It should be noted

that only nodes with ρ = 1 are considered in the calculation of

AHL. Since we focus on the most influential nodes of influencers,

the hop count is measured when 10% of nodes are removed.

b ) Average Hop Length of Influencers

We also check the appearance patterns of influencers by focus-

ing of the hop length among influencers. After detecting influencers

as 10% of all nodes after generating network failure, we count hop

count of all the pairs of influencers based on the original topology of

interconnected networks. By doing this, we confirm how sparsely

the influencers are located.

4. 2 Evaluation Results
Figures 4(a) and 4(b) shows the evaluation results for the ER and

BA model, respectively. The x-axis corresponds to the assortativity

(a) ER model

(b) BA model

Figure 4 Average hop length (AHL) for an interconnected network of no

failure (black), AHL of 10%-node failed topology (red), and AHL

of influencers (blue)

between subnetworks, and the y-axis corresponds to the hop length.

As seen in the x-axis, the range of assortativity is quite limited be-

cause of the number of inter-modular links and the degree distribu-

tion of subnetworks. Black line shows AHL of all the possible pairs

of nodes in an original interconnected network topology, red line

shows AHL among globally effective nodes when 10% of nodes are

removed, and blue line shows AHL among influencers. Each figure

is the compilation of the results from 100 computer simulations.

Regarding the black line, it is interesting that AHL of all nodes

do not change even if we configure the inter-modular assortativity

between modules. Our previous research showed assortativity be-

tween modules affect performance of an interconnected networks,

where inter-modular dependency are not considered. This time,

however, we assign an inter-modular link to every node in each sub-

network, and thus, average hop length of all nodes converge on the

same value.

According to the red lines, when top 10% of influential nodes are

removed, the networks of Brain NoN and Pure NoN showed differ-

ent behavior. Both the lines are shifted toward upper side, because

of the lack of influencers, i.e., high-centrality nodes. However, red-

dotted line is almost horizontal because the same nodes are removed

as influencers regardless of inter-modular assortativity. It is true al-
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though the same set of nodes are removed, inter-modular connectiv-

ity differs. However, the effect is considered too small to change the

performance similarly to the black line. Meanwhile, for the network

of Brain NoN, the hop count increases with the inter-modular assor-

tativity. For disassortative networks, even if highly influential node

is removed and the other node connected via an inter-modular link is

turned down due to the inter-dependency, the latter node is of quite

low importance for sustaining connectivity. Whereas for assortative

networks, influential node is connected to another influential node,

and thus, malfunction on one side becomes quite critical.

As for the blue lines, we observe that influential nodes are ba-

sically connected close to each other, and located further closer

when assortativity increases. In assortative networks, pairs of in-

fluential nodes are connected via inter-modular links, which result-

ing in the closeness of influencers. The results also show that hop

length among influencers slightly decreases when Brain NoN model

is applied. This is because a node is more likely to be chosen as

influencers if its adjacent node in the other module is also highly

influential.

When comparing Figs. 4(a) and 4(b), we can see some differences

on the performance. Both the red and blue lines showed larger gaps

to the black line. This characteristic can be attributed the degree dis-

tribution of the BA model. There exist extremely high degree node

in scale-free networks, and thus influencers are closely connected

and hop length increased when influencers are removed.

5. Conclusion and Future Work

In this study, we applied a method to detect influencers, i.e. im-

portant node on robustness or communication, in interconnected

networks that have inter-modular dependency. We also configured

the connectivity patterns between subnetworks from the viewpoint

of assortativity.

It is conceivable that interdependent networks are more fragile

since a partial network failure affects the other connected module.

However, our results showed that if inter-modular connectivity cor-

responds to the disassortative mixing, the deterioration of the ro-

bustness can be reduced as that of interconnected networks where

no inter-modular dependency exists. At the same time, to put it

the other way, if we assortatively connect the subnetworks, unitary

management would be much easier since the influencers have higher

influence over the interconnected networks. We also confirmed that

as the inter-modular assortativity increases components of the influ-

encers are located closer. This implies that assortative mixing be-

tween subnetworks help centralization of influencers from topolog-

ical viewpoint as well, whereas disassortative mixing is preferable

to geometrically distribute the influencers. These findings would

guide to design reliable interconnected networks that match various

environmental requirements in the future IoT context.

However, there remain several issues yet to be tackled to design

interconnected and interdependent networks. In the context of infor-

mation networking, we should take into consideration that different

service modules are mutually connected via control plane or op-

erated by the control plane. For example, network virtualization is

realized by the combination of virtualized service layer and physical

control plane. Social infrastructure services such as transportation

or electricity are also connected to and controlled by the Internet.

Another untested point is regarding the connectivity within subnet-

works. Although we used the ER and BA model, not only the degree

distribution, but configuring assortativity on a given degree distribu-

tion would help to control the influence and appearance pattern of

influencers.
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