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Abstract The Internet is rapidly developing toward the next generation of the Internet of Things (IoT), which accelerates the
emergence of interconnected network architectures even further. In the context of IoT, not only the Internet services becomes
sophisticated and diversified, the existing social infrastructure (e.g., transportation, electricity) are expected to be connected
and dependent on the Internet. It is pointed that due to the inter-dependency between networks, a partial malfunction in a
network can propagate to other interconnected networks. In this study, as an inspiration to solve this issue, we focus on a
method to detect influencers in an inter-dependent networks of the human brain. By configuring connectivity patterns between
subnetworks of an interconnected network, where inter—modular dependency exist, our evaluation shows the feasibility of
centralization and distribution of influencers regarding its influence and deployment. At the same time, our results showed that
the deterioration of the robustness caused by inter-dependency can be reduced as that of interconnected networks where no
inter-modular dependency exists.
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1. Introduction

Information networks are characterized by rapid growth and in-
creased complexity and has been developing toward the next gener-
ation of the Internet of Things (IoT). In the context of 10T, not only
the Internet services becomes sophisticated and diversified, the ex-
isting social infrastructure (e.g., transportation, electricity) or other
vital services for everyday life are expected to be connected and
dependent on the Internet [1,2]. These types of interdependent
systems are often referred to as Network of Networks (NoN). The
development toward IoT permits connecting various heterogeneous
services in everyday life via the Internet protocol, which results in
the acceleration of the emergence of NoN architectures even further.

Virtualized networks is considered as one example of interdepen-
dent network systems. In the IoT scenario, virtualization of wireless
sensor networks (WSN) has been widely studied [3,4]. A virtualized
WSN consists of two network layers: infrastructure providers de-
ploy physical network resources and form infrastructure layer, and
multiple service layers are virtually constructed by combining the
physical resources on the infrastructure layer. Thus, there exists in-
extricable interdependency via the infrastructure layer. The service
layers are also expected to functionally cooperate to provide further
complex and sophisticated services. Another example of interde-
pendent network system would be the functionally interconnected
network in smart cities [5]. Toward the future IoT society, the num-
ber of IoT devices and the types of services on the Internet have
been showing explosive increase. Smart cities intelligently integrate
information collected via the IoT devices to improving services in
healthcare, surveillance, infrastructure, public utilities, etc., result-
ing in the realization of smart homes or smart grids. For instance,
smart homes could contain air conditioning systems capturing tem-
perature, humidity, and circulation from IoT devices in order to pro-
vide best services in response to various requirements. Beside the
new situations we can foresee at the moment, also the number of au-
tomated and interconnected service systems operating over the IoT
infrastructure is expected to drastically increase.

While welcoming the future convenient and sophisticated tech-
nological society, there exists a problem behind the collaboration
of those different service networks. It is pointed that due to the
inter-dependency between networks, a partial malfunction in a net-
work such as device failure or computer-virus infection can prop-
agate to other interconnected networks. Therefore, an appropriate
strategy to design interconnected networks that can deal with the
above-mentioned problem, which has not been addressed so far.

In this study, as an inspiration to solve this issue, we focus on a
previous study in neuroscience field. Morone et al. [6, 7] has pro-
posed a method to model interdependency of modularly connected
brain networks and detect influencers, i.e. a set of influential nodes
from a topological viewpoint, in the brain networks. The brain net-
work is composed of a number of modules, which provides a speci-

fied function (e.g. visual processing) alone, but also provides more

complex and sophisticated function (e.g. cognition) in collabora-
tion with other modules. While connections within modules just
pass signals over nodes, i.e. neurons, around the modules, Connec-
tions between modules control the cooperation of different func-
tions. Hence, a processing halt in a module cause malfunction in
other modules. In the light of similarity between information net-
works and brain networks as interdependent network systems, we
apply Morone’s method to design influencers in interconnected net-
works. Not only for detecting influencers or comparing interdepen-
dent and non-interdependent systems, we do also aim to configure
influence and location of influencers in interconnected networks by
changing connectivity between networks.

The purpose of this study is to reveal the way to design inter-
connected networks that are robust against network malfunction
caused by computer-virus or physical disasters, taking into account
the inter-modular dependency between subnetworks. Therefore, we
first focus on a method to detect influencers in an inter-dependent
networks, the human brain networks. We apply this method to
reveal the appearance pattern of influencers in interconnected net-
works with various topological shape, and also to reveal the differ-
ence between the networks where inter-dependency are considered
or not. Second, by focusing on the assortativity between networks,
we propose a method to configure the intra-modular connectivities.
Our proposed method helps to know how we can control the in-
fluence and location of influencers in interconnected networks. It
also reveals how we can compensate the degradation on robustness
caused by the inter-dependency between subnetworks. These results
will guide the future studies on the construction of interconnected

networks with high reliability.

2. Related Works

2.1 Models of Network of Networks

As shown in Table 1, in the Brain NoN model, four different
node-states are defined using three variables. The variable n; refers
to the existence state of node i, the variable o; refers to the local
effectiveness of node ¢, and the variable p; refers to the global ef-
fectiveness of node 7. The existence state is considered given, and
local/global effectiveness of a node depends on the existence state

of itself and its neighbors. The definition for o; is given as follows:
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where F (i) denotes the set of nodes connected to node ¢ via inter-
modular links. Note that F(7) takes ¢ when the node 7 has no inter-

modular links. That is, the condition for node ¢ to become active

Table 1 Definition for node state
Sign ‘ State ‘ ni | oi | pi
O removed 0[0]0O0
o exist 1100
@ | locallyeffective | 1 | 1 | O
@ | globally effective | 1 | 1 | 1



Module 1 Module 2

Figure 1 Example of node-state transition in Brain NoN model [6]

differs depending on whether it has inter-modular links. If it has one
or more inter-modular links (i) node ¢ have to be INPUT and (ii) at
least one node connected to node ¢ via inter-modular links have to
be INPUT. Meanwhile, if it has no inter-modular links, the condi-
tion is just (i) node ¢ have to be INPUT. This variable o; implies
that a node that has inter-modular links cannot be useful without
support from other adjacent modules since the service provided on
this network of networks is interdependent.

In the Brain NoN model, a node is regarded as globally effec-
tive only when it belongs to the giant component of an intercon-
nected network. Whether a node is included in the giant compo-
nent is calculated through a percolation analysis using a message
passing method. On the message passing, each node first calculates
the probability whether the node itself belongs to the giant compo-
nent based on the information from adjacent nodes. Then, the node
passes the resultant probability to all its adjacent nodes. The proba-

bility is defined as follows:
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where S(7) denotes the set of all adjacent nodes of node 7, and py—;
denotes the information from the adjacent nodes, i.e. the probabil-
ity for them to be included in the giant component. Starting with a
set of random values for ¢ and p, nodes continue passing informa-
tion until the values converge. Then, the converged probability is
regarded as the global effectiveness.

The signs in Table 1 corresponds to the node state in Fig. 2, which
shows an example of state transition in a Network of 2 Networks (2-
NoN). Black lines correspond to intra-modular links and blue ones
to inter-modular links. The set of nodes circled by a red dotted line
corresponds to the giant component detected in the perforation pro-
cedure described above.

2.2 Identifying Influencers in Network of Networks

This study deals with identification of influencers to enhance
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Figure 2 Description of Collective Influence

the robustness and communication efficiency of interconnected net-
works with inter-modular dependency. Influencers are a set of vital
nodes in terms of the network connectivity or communication effi-
ciency. Identification of those vital nodes that maximizes the influ-
ence over a network is known as NP-hard problem [8], and there
exist many heuristic methods have been proposed so far [9], such
as betweenness centrality or page-rank. This study focus on one
of recent works [7] which proposed the Collective Influence (CI)
algorithm to identify influential nodes. Not only does the CI algo-
rithm show superior performances for the identification of influen-
tial nodes in comparison with other conventional methods, it is also
optimized for interdependent NoN.

CI of node 7 represents its influence on other nodes in the same
network centered around node 7. CI of node 7 for a single network

is defined as follows:

CL(i) = (ki — 1) (kv —1) 3
i’ €dBall(i,l)
where k; denotes the degree of node 7, Ball(z,1) denotes the set of
nodes within [ hops centered around node 4, and 9Ball(4, [) denotes
the set of nodes on the edges of Ball(z, ).

Morone et al. [7] also define the CI algorithm for inter-dependent

modular networks as follows:
Clizy (i) =ki > ki
i’ €9Ball(4,1)
+ > {k;- > kj} “)
je]—‘(i):k;?“tzl j’ €8Ball(j,l)

Note that the variable & considers both links within and between
modules. The first term of the equation corresponds to CI of node ¢
itself, and the second term corresponds to the sum of CI of node j
which is connected to the node ¢ via inter-modular links. The con-
dition k;’“t = 1 means that the node j is taken into account if it
has only an inter-modular link. This is because if node j has more
than one inter-modular links, it is not directly affected by the state

of node 1.

3. Method for Constructing Interconnected Net-
works

This study aims to reveal the relation of the following three ele-
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ments: the performance of interconnected networks, the interdepen-
dency between subnetworks, and the intra-modular connectivity. In
this study, we focus on the assortativity for the intra-modular con-
nectivity, and thus, we describe how to construct an interconnected
network topology with configuration on inter-modular assortativity
for the evaluation.

3.1 Assortativity between Networks

Newman was the first person who proposed measuring the assor-
tativity of a network with the assortativity coefficient [10]. Then, a
following research introduced universal assortativity coefficient to
define the assortativity between networks [11]. This coefficient re-
flects the contribution of an individual edge’s to the assortativity of
the entire network, i.e. Newman’s assortativity [10], The assortativ-
ity coefficient is calculated from the remaining degree distribution
q(k) defined as follows:

(k+1)p(k+1)
Zj ip(5) ’

where p(k) denotes the probability that a randomly selected node

q(k) = (5)

has nodal degree of k.
Then, the universal assortativity coefficient p; on a link [ can be
introduced given ¢(k). The definition of the universal assortativity

of link [ is as follows:
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where j and k denote the remaining degrees of the two endpoints
of link /, which have the same expected value of the remaining de-

gree Ug = 37, jq(j). The term L denotes the number of links in
2
the whole network, and the term o = 3, 7%q(j) — (Zk kq(k))

denotes the variance of the remaining degree distribution g(k). As
seen in Fig. 3, when p; > 0, the link is called an assortative link;
otherwise when p; < 0, a disassortative link. A link with p = 0 has
no correlation.

Then, we use the term p = >, s pi» which reflects the sum of
the assortativity of all inter-modular links, for measuring the assor-
tativity between networks.

3.2 Construction of Interconnected Networks

First, two subnetworks are prepared beforehand, that composes
an interconnected network. We deploy a set of /N nodes for each

subnetwork, and connect L;y¢r, links among the nodes based on
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Figure 3 Connectivity between modules and the universal assortativity co-

efficient

a certain network models, which are commonly used in graph-
theoretical evaluation. In this study, connectivity pattern for inside
subnetworks are considered as given, and thus, the description for
the network model is described in the following section.

Then, Linter links are assigned between the two subnetworks so
that the connectivity achieves a specified value for inter-modular
assortativity of the interconnected networks. In order to obtain a
appropriate connectivity pattern for the assortativity, inter-modular
links are rewired repeatedly. The rewiring process is conducted
stochastically with the connectivity pattern determined by the fol-

lowing procedure:

(1) Linter edges are randomly assigned between the two subnet-
works. Note that no endpoint node have multiple inter-modular
links.

(2) The assortativity between the modules p is calculated. If p
matches the targeted value, the procedure is finished. Other-
wise, the following steps are repeated.

(3) An existing link between the modules, whose assortativity is
farthest away from the target value, is deleted. If the current
assortativity p is higher than the targeted value, the most assor-
tative inter-modular link is selected, and vice versa.

(4) A new link is created on two nodes in two different modules.
The pair of nodes are randomly selected under the condition
that the new link can move the assortativity p closer to the tar-

get value. Then, go back to Step 2.

The resultant topology of interconnected networks are used for

the evaluation.
4. Evaluation

In this section, we evaluate the performance of interconnected
networks. By this evaluation, we aim is to reveal topological char-
acteristics of influencers in interconnected networks, comparing the
cases when inter-modular dependency exists and not. We also reveal
the way to enhance the robustness and efficiency by configuring the
inter-modular assortativity in interconnected networks.

4.1 Evaluation Environment

First, we describe the settings for the simulation evaluation. As
explained in Sec. 3., we construct topologies of interconnected
networks composed of two subnetworks. Each network contains
N = 100 nodes, and forms a topology with L;ntrq = 300 links
based on the network models explained in Sec. 4. 1. 1. After creat-
ing subnetworks, we assign L;p¢e,- inter-modular links between the
two subnetwork so that the connectivity pattern achieves a specified
value of p. We set the value for Lin¢er equal to N and let every
node have just an inter-modular link to simplify the problem. Al-
though the range of p ideally takes -1 to 1, it is much more limited
because of the topological shape of each subnetwork. To reveal the
deference between interconnected networks with inter-modular de-
pendency and without, see Sec. 4.1.2. The metrics for evaluating

influencers are described in Sec. 4.1.3



4.1.1
a) Erdos-Rényi (ER) Model

The ER model is a class of random network models [12]. The

Intra-Modular Connectivity

degree distribution of the ER model follows a Gaussian distribution
that is similar to the distribution observed in information networks.
For the network construction, we repeat randomly choosing a pair
of nodes and connecting them until the number of generated intra-
modular links reaches Liptrq-

b) Barabdshi-Albert (BA) Model

The second type of networks corresponds to the BA model [13],
which is one of the most well-studied complex network models.
The BA model is characterized by that there exists extremely high-
degree nodes (i.e. hub nodes) and a core cluster of hub nodes (i.e.
rich-club) and that its degree distribution follows a power-law.

For the topology construction, we first pick a small set of nodes to
create an initial full-mesh topology. Then, we repeatedly add a new
node to the initial topology, and at each time we probabilistically
choose m other nodes from the existing topology for generating a
link between those nodes and the new node. At this time, the prob-
ability that node 4 is chosen is given by p; = k;/%;k;, where k;
is the degree of the node ¢. Hence, m is chosen so that almost the
same number of intra-modular links (L;y+rq) are finally generated.

4.1.2 Inter-Modular Dependency

As mentioned in Sec. 2.1, we apply the rule of node-state tran-
sition in the Brain NoN model to the generated interconnected net-
works. In addition, we also define Pure NoN, a basic model that
does not consider the interdependence between subnetworks. For
the Pure NoN, we replace Eq. 2 with o; = n; and inter-modular
links works just the same as the intra-modular links. The compari-
son of Brain NoN and Pure NoN let us know what we have to con-
sider on the construction of inter-dependent networks.

4.1.3 Evaluation Metrics

We evaluate the performance based on hop length among nodes.

a) Average Hop Length of Remaining Effective Nodes

In order to measure the effect of influencers, we remove influ-
ential nodes using CI algorithm on an interconnected network and
see the change of average hop length (AHL) of remaining networks
other than the failed parts. Here, AHL is defined as the average of
the number of hops among all the pairs of nodes. It should be noted
that only nodes with p = 1 are considered in the calculation of
AHL. Since we focus on the most influential nodes of influencers,
the hop count is measured when 10% of nodes are removed.

b) Average Hop Length of Influencers

We also check the appearance patterns of influencers by focus-
ing of the hop length among influencers. After detecting influencers
as 10% of all nodes after generating network failure, we count hop
count of all the pairs of influencers based on the original topology of
interconnected networks. By doing this, we confirm how sparsely
the influencers are located.

4.2 Evaluation Results

Figures 4(a) and 4(b) shows the evaluation results for the ER and

BA model, respectively. The x-axis corresponds to the assortativity
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Figure 4 Average hop length (AHL) for an interconnected network of no
failure (black), AHL of 10%-node failed topology (red), and AHL

of influencers (blue)

between subnetworks, and the y-axis corresponds to the hop length.
As seen in the x-axis, the range of assortativity is quite limited be-
cause of the number of inter-modular links and the degree distribu-
tion of subnetworks. Black line shows AHL of all the possible pairs
of nodes in an original interconnected network topology, red line
shows AHL among globally effective nodes when 10% of nodes are
removed, and blue line shows AHL among influencers. Each figure
is the compilation of the results from 100 computer simulations.

Regarding the black line, it is interesting that AHL of all nodes
do not change even if we configure the inter-modular assortativity
between modules. Our previous research showed assortativity be-
tween modules affect performance of an interconnected networks,
where inter-modular dependency are not considered. This time,
however, we assign an inter-modular link to every node in each sub-
network, and thus, average hop length of all nodes converge on the
same value.

According to the red lines, when top 10% of influential nodes are
removed, the networks of Brain NoN and Pure NoN showed differ-
ent behavior. Both the lines are shifted toward upper side, because
of the lack of influencers, i.e., high-centrality nodes. However, red-
dotted line is almost horizontal because the same nodes are removed

as influencers regardless of inter-modular assortativity. It is true al-
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though the same set of nodes are removed, inter-modular connectiv-
ity differs. However, the effect is considered too small to change the
performance similarly to the black line. Meanwhile, for the network
of Brain NoN, the hop count increases with the inter-modular assor-
tativity. For disassortative networks, even if highly influential node
is removed and the other node connected via an inter-modular link is
turned down due to the inter-dependency, the latter node is of quite
low importance for sustaining connectivity. Whereas for assortative
networks, influential node is connected to another influential node,
and thus, malfunction on one side becomes quite critical.

As for the blue lines, we observe that influential nodes are ba-
sically connected close to each other, and located further closer
when assortativity increases. In assortative networks, pairs of in-
fluential nodes are connected via inter-modular links, which result-
ing in the closeness of influencers. The results also show that hop
length among influencers slightly decreases when Brain NoN model
is applied. This is because a node is more likely to be chosen as
influencers if its adjacent node in the other module is also highly
influential.

When comparing Figs. 4(a) and 4(b), we can see some differences
on the performance. Both the red and blue lines showed larger gaps
to the black line. This characteristic can be attributed the degree dis-
tribution of the BA model. There exist extremely high degree node
in scale-free networks, and thus influencers are closely connected

and hop length increased when influencers are removed.
5. Conclusion and Future Work

In this study, we applied a method to detect influencers, i.e. im-
portant node on robustness or communication, in interconnected
networks that have inter-modular dependency. We also configured
the connectivity patterns between subnetworks from the viewpoint
of assortativity.

It is conceivable that interdependent networks are more fragile
since a partial network failure affects the other connected module.
However, our results showed that if inter-modular connectivity cor-
responds to the disassortative mixing, the deterioration of the ro-
bustness can be reduced as that of interconnected networks where
no inter-modular dependency exists. At the same time, to put it
the other way, if we assortatively connect the subnetworks, unitary
management would be much easier since the influencers have higher
influence over the interconnected networks. We also confirmed that
as the inter-modular assortativity increases components of the influ-
encers are located closer. This implies that assortative mixing be-
tween subnetworks help centralization of influencers from topolog-
ical viewpoint as well, whereas disassortative mixing is preferable
to geometrically distribute the influencers. These findings would
guide to design reliable interconnected networks that match various
environmental requirements in the future IoT context.

However, there remain several issues yet to be tackled to design
interconnected and interdependent networks. In the context of infor-

mation networking, we should take into consideration that different

service modules are mutually connected via control plane or op-
erated by the control plane. For example, network virtualization is
realized by the combination of virtualized service layer and physical
control plane. Social infrastructure services such as transportation
or electricity are also connected to and controlled by the Internet.
Another untested point is regarding the connectivity within subnet-
works. Although we used the ER and BA model, not only the degree
distribution, but configuring assortativity on a given degree distribu-
tion would help to control the influence and appearance pattern of
influencers.
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