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Abstract—Due to the rapid growth in scale and complexity
of information networks, self-organizing systems have been
focused on for realizing new network control architectures that
have high scalability, adaptability, and robustness. However,
in self-organizing systems, the uncertainty (incompleteness,
ambiguity, and dynamicity) of information observable for
components in the system can lead to the slow adaptation
to environmental changes and the lack of a global optimality,
which complicates a practical use of self-organizing systems
in industrial and business fields. In this study, we adopt the
principle of collective decision making, in which a coordinated
decision in a group is achieved through local interactions of
components, in order to realize a network control mechanism
adaptable to such information uncertainty. Specifically, we
apply Effective Leadership model, which is a mathematical
model of collective decision making, to a self-organizing control
mechanism. In Effective Leadership model, there are two
types of individuals, informed and non-informed ones, and
collective decision is achieved through local interaction of them.
Through simulation experiments, we reveal the advantages and
characteristics of the network control mechanism based on
Effective Leadership model.

Index Terms—Collective Decision Making, Potential-based
Routing, Information Uncertainty, Bio-inspired Network Con-
trolling

1. Introduction

Because of the rapid growth in scale and complexity
of information networks, self-organizing systems have been
paid much attention for realizing new network architectures
that have high scalability, adaptability, and robustness [1],
[2]. In self-organizing systems, each component behaves
autonomously only with simple rules and local information.
As a result of local interactions of components, a global
behavior or pattern emerges in a macroscopic level. By
adopting the principle of self-organization, network control
systems can be robust and adaptable to unexpected environ-
mental changes. However, there is a significant problem for a

practical use of self-organizing control systems in industrial
and business fields. In information networks, information
observable for each component is uncertain. That is, ob-
servable information is

• dynamic according to changing condition of nodes,
• incomplete because of the constraints of sensor

nodes’ capacity,
• ambiguous because of estimation/communication er-

ror.

Such uncertainty of observable information can lead to the
slow adaptation to environmental changes and the lack of a
global optimality of systems. To tackle this problem, we
introduce the principle of collective decision making of
swarms to network control mechanisms. This is because,
in swarms of animals such as birds, fish, and insects, in-
dividuals can make a coordinated decision through local
interactions among them although the perceptive ability of
each component is limited (incompleteness, ambiguity) and
its condition, e.g., the direction of the move, is changing
dynamically (dynamicity) so that information which it has
is uncertain.

In this study, we focus on Effective Leadership model [3]
as a mathematical model of the behavior of collective
decision making in swarms, and adopt it to realizing a
network control mechanism that can work under informa-
tion uncertainty. In Effective Leadership model, there are
two types of individuals, informed individuals and non-
informed individuals. On one hand, informed individuals
are more experienced and well-informed than the others
so that they have pertinent information, i.e., the preferred
directions to move in. They have a role as leaders of the
group to guide the other individuals to move in their own
preferred directions. On the other hand, non-informed indi-
viduals have limited information and decide their direction
to move in following individuals surrounding themselves.
Consequently, informed individuals lead non-informed ones
to move in the preferred decisions through local interactions
among individuals, and, as a result, individuals can make a
coordinated decision. In Effective Leadership model, as the
group size (the number of individuals) becomes larger, the



ratio of informed individuals to the whole group needed for
the achievement of collective decision to all individuals in
the group is smaller. This indicates that Effective Leadership
model has high scalability to the size of groups.

We apply Effective Leadership model to self-organizing
network control mechanisms to conquer information un-
certainty. We take potential-based routing with an external
controller proposed in [4] as an example of self-organizing
network control mechanisms, and propose potential-based
routing based on Effective Leadership model. In previous
work [4], the authors introduce an external controller to
potential-based routing for facilitating the adaptation speed
to environmental changes. In the mechanism, an external
controller monitors the state of a network and feedbacks
control inputs to partial nodes called controlled nodes.
Through local interactions among nodes, the influence of
control feedback by the external controller expands all over
the network. In other words, controlled nodes have a role
to guide the other nodes to adapt to environmental changes
quickly. In this study, we consider controlled nodes as leader
nodes which guide the other nodes, which we call follower
nodes, to make a coordinated decision. Leader and follower
nodes correspond to informed and non-informed individuals
in Effective Leadership model, respectively.

Through simulation experiments, we reveal the advan-
tages and characteristics of the network control mechanism
based on Effective Leadership model. First, we investigate
the appropriate selection of leaders in network systems.
In Effective Leadership model, individuals move continu-
ously and their relative positions are dynamically changing.
Therefore, we investigate how the selection of leaders affect
to control efficiency when introducing to a static topology
and reveal leader selections appropriate for faster adapta-
tion to environmental changes. Second, we evaluate the
performance of our proposed mechanism in wireless sensor
networks. We evaluate our mechanism through simulations
in environment considering constraints of wireless sensor
networks, such as communication delay, packet loss and
congestion, and prove that our mechanism has high scal-
ability and work well under information uncertainty.

The remainder of this paper is as follows. First, in Sec-
tion 2, we apply Effective Leadership model to network con-
trol mechanisms to deal with two information uncertainty
while calculating control feedback. We propose potential-
based routing based on Effective Leadership model. In Sec-
tion 3, we evaluate our proposed method through simulation
experiments and discuss the results. Finally, in Section 4 we
describe conclusion and future work of this study.

2. Application of Collective Decision Making
to Potential-based Routing

In this section, we take potential-based routing with the
external controller that is proposed in previous work [4] as
an example of self-organizing network control mechanisms.
We apply Effective Leadership model [3], a mathematical
model of collective decision making in swarms, to the
mechanism.

We explain potential-based routing and its improvement,
potential-based routing with the external controller, in Sec-
tion 2.1 and Effective Leadership model in Section 2.2.
Then, in Section 2.3, we propose potential-based routing
which adopt the principle of Effective Leadership model.

2.1. Potential-based Routing

Potential-based routing is a self-organizing routing
mechanism for wireless sensor networks [4]–[8]. In
potential-based routing, data packets are forwarded in accor-
dance with a potential field, a kind of gradient fields, which
includes routing information. The potential-field emerges as
a result of local interactions of nodes.

In potential-based routing, each node is assigned a scalar
value called “potential.” In general, a potential field is
constructed so that a lower potential value is assigned to
a nearer node from the sink node. Therefore, with a simple
forwarding rule, “sending a data packet to a neighboring
node with a lower potential value,” data packets can be deliv-
ered to sink nodes. Because potentials of nodes are updated
through local interactions among nodes, it is known that
potential-based routing can work with low communication
and calculation costs even in large-scale networks.

2.1.1. Potential Field Construction. Sheikhattar and
Kalantari [6] focused on the convergence of potential-based
routing and facilitated the potential convergence speed. They
proposed a potential calculation method based not only on
current potentials but also on last potentials to accelerate po-
tential convergence. In this method, node i’s potential θi(t)
at time t is updated by (1).

θi(t+ 1) = (α+ 1)θi(t)− αθi(t− 1)

+ βσi

⎛

⎝
∑

k∈Nb(i)

{θk(t)− θi(t)}+ fi(t)

⎞

⎠ ,
(1)

where Nb(i) is a set of neighbors of node i. α is a parameter
that determines the weight of current and last potential
values when calculating the next potential value. Larger α
means that the weight of the last potential value is larger and
therefore the system becomes less subject to temporal noises
and disturbance, while the convergence speed is slower. β is
a parameter that determines of the weight of neighbor node
potentials. In prior work [6], σi is defined as σ0/|Nb(i)| (σ0

is a parameter). In this study, we set σi to constant value σ
(0 < σ < 1) since potentials diverge in some situations with
σi = σ0/|Nb(i)|. fi(t) corresponds to the flow rate of node i
at time t. For sensor node i, flow rate fi(t) is a positive
value, which indicates the data generation rate of node i.
For sink node i, flow rate fi(t) is a negative value, which
implies the amount of data packets delivered to node i. If
flow rates of nodes are set to satisfy

∑
n∈{1,··· ,N} fn(t) = 0,

then a potential field is constructed such that the actual rates
at which data packets are delivered to nodes satisfy the given
flow rates. In this study, we set flow rates of sink nodes so



Figure 1. Potential-based routing with the external controller

that the numbers of data packets delivered to each sink node
are equal for load balancing. In details, we set flow rates of
sink nodes to the same value.

2.1.2. Potential Field Construction with the External
Controller. In previous work [4], the authors introduced an
external controller, which monitors and controls a system,
into potential-based routing proposed in prior work [6] for
facilitating the convergence speed of potentials.

The role of the external controller is to (i) collect poten-
tial information of a partial set of nodes (observable nodes),
(ii) estimate potential values of the other nodes based on the
potential dynamics model, and (iii) provide control feedback
to another partial set of nodes (controlled nodes) to facilitate
potential convergence as shown in Fig. 1. In potential-based
routing with the external controller, the potential value θ′i(t)
of node i at time t is updated by (2).

θ′i(t+ 1) = (α+ 1)θ′i(t)− αθ′i(t− 1)

+ βσi

⎛

⎝
∑

k∈Nb(i)

{θ′k(t)− θ′i(t)}+ fi(t)

⎞

⎠+ ηi(t),
(2)

where ηi(t) corresponds to the control input provided to
node i by the external controller. If node i is not controlled
one, ηi(t) is 0. Control inputs are calculated based on H∞

control theory [4], [8].
In this study, we apply Effective Leadership model to

potential-based routing with the external controller. We ex-
plain the details in Section 2.3.

2.1.3. Data Packet Forwarding. When a sensor node
receives a data packet, it probabilistically determines the
next hop node of it in accordance with potentials of itself
and its neighbors. Probability Pi→n(t) that node i selects
neighboring node n ∈ Nb(i) as the next hop node of the
data packet at time t is calculated by (3).

Figure 2. Overview of Effective Leadership model

Pi→n(t)

=

{
θi(t)−θn(t)∑

j∈Nlow(i){θi(t)−θj(t)} , if n ∈ Nlow(i)

0, otherwise
,

(3)

where Nlow(i) is a set of neighboring nodes of node i with
lower potential than node i. Nodes with lower potentials are
likely to receive a larger number of data packets.

2.2. Effective Leadership Model

Effective Leadership model [3] is a mathematical model
of collective decision making in swarms. Figure 2 shows
the overview of Effective Leadership model. In Effective
Leadership model, there are two types of individuals, in-
formed individuals and non-informed individuals. Informed
individuals have information about their preferred directions,
and decide their directions according to both social interac-
tions with their neighbors and their own preferred directions.
On the other hand, non-informed individuals decide their
directions in accordance only with social interactions.

Individual i in a group has position vector ci(t) and
direction vector vi(t) at time t. Individuals attempts to main-
tain a minimum distance distα from other individuals for
avoiding collisions. When the distance between individual i
and j is lower than distα, individual i moves away from
individual j. In details, desired direction di(t) of individual i
at time t is determined by (4).

di(t+∆t) = −
∑

j∈Nb(i,distα)

cj(t)− ci(t)

|cj(t)− ci(t)|
, (4)

where Nb(i, distα) corresponds to a set of individuals whose
distances to individual i are lower than distα.

If there are no other individuals within range distα, a
non-informed individual is attracted to individuals within
range distρ. distρ indicates the local interaction range of in-
dividuals. Non-informed individual i determines its desired
direction di by (5).



di(t+∆t) =
∑

j∈Nb(i,distρ)

cj(t)− ci(t)

|cj(t)− ci(t)|

+
∑

j∈Nb(i,distρ)

vj(t)

|vj(t)|
.

(5)

The first term of the right side of (5) corresponds to
the vector from the position of individual i to the averaged
position of neighboring individuals. This implies that non-
informed individuals attempt to attract to neighboring indi-
viduals. The second term of the right side of (5) corresponds
to the averaged direction of neighboring individuals. This
implies that non-informed individuals attempt to align their
directions with neighboring individuals.

On the contrary, informed individuals decide their de-
sired directions based not only on social interactions but
also on their preferred directions. Informed individual i has
information about its preferred direction gi and decides its
desired direction d′

i(t) as time t by (6).

d′
i(t+∆t) =

d̂i(t+∆t) + ω0gi

|d̂i(t+∆t) + ω0gi|
, (6)

where d̂i(t) is the unit vector of di(t), i.e., d̂i(t +∆t) =
di(t+∆t)
|di(t+∆t)| . ω0 is a parameter that determines the weight of
preferred direction gi when the informed individual decides
its desired direction. In prior work [9], ω0 is considered as
“assertiveness” of individuals. If ω0 is 0, informed individ-
uals are not influenced by their preferred directions g. The
higher the value of ω0 is, the larger the influence amount
of preferred directions g to desired directions of informed
individuals is.

2.3. Potential-based Routing Based on Collective
Decision Making

In this paper, we applied Effective Leadership model
for a process where each node in potential-based routing
coordinates to form a potential field (Table 1). In the pro-
posed mechanism, we consider controlled nodes as leader
nodes that have a role of leaders that guide the other nodes
just like informed individuals in Effective Leadership model.
According to control feedback provided by the external
controller, leader nodes can update their potentials for faster
convergence of potentials. On the contrary, we consider non-
controlled nodes as follower nodes that behave following
their neighboring nodes just like non-informed individual.
Through local interactions among leader/follower nodes,
leader nodes guide follower nodes, which results in faster
potential field construction. The overview of the proposed
mechanism is shown in Fig. 3.

We explain the potential field construction in our pro-
posal mechanism. On one hand, follower nodes update
their potential values in accordance with local information,
i.e., potential values of itself and neighbors, using (1). On

Figure 3. Potential-based routing based on Effective Leadership model

the other hand, leader nodes update their potential values
based not only on local information but on control feedback
provided by the external controller. Potential value θ′′i (t) of
leader node i is updated using θi(t) by (7).

θ′′i (t) = (1− ω)θi(t) + ωgi(t), (7)

where gi(t) is the preferred potential value of leader node i.
ω (0 < ω < 1) is a parameter corresponding to ω0 in
Effective Leadership model, which represents the strength
of the tendency of leader individuals to lead the swarm
in (6), and it is the weight for the target potential gi(t).
Preferred potential value gi(t) is calculated using control
feedback ηi(t) provided by the external controller by (8)

gi(t) = θi(t) + ηi(t). (8)

Control feedback by the external controller is calculated
so that the potential field converges to the target potential
field Θ̄ = {θ1, · · · , θN} in a short time.

When a sensor node receives a data packet, the node
probabilistically selects the next hop node of the data packet
by using (3).

3. Simulation Experiments

In order to find a clue of applying Effective Leadership
model to the network and to evaluate the performance of
the proposed mechanism against information uncertainty, we
performed following two kinds of simulations.

First, in Section 3.1, we quantitatively evaluated the
relationship between the performance, and the number and
the positions of leader nodes through numerical simulation
using MATLAB. Through these experiments, we also in-
vestigated leader selection that fascinates the potential-field
construction. In previous work [3], the authors consider in-
dividuals in a group move dynamically and fluidly changing
their position without static topology, therefore we made an
investigation into the selection of leaders in a topology.

Second, we evaluated the performance of the proposed
mechanism assuming wireless sensor networks where each
node behaves asynchronously. We averaged the time steps
of 5 trials in the following all simulations. In Section 3.2,
we conducted simulation experiments assuming that the
external controller can observe potential information of



TABLE 1. THE CORRESPONDENCE OF EFFECTIVE LEADERSHIP MODEL AND POTENTIAL-BASED ROUTING

Effective Leadership model Potential-based routing
A group of various individuals A network composed of various kinds of nodes
with different preferences and abilities with different technical standards and performances
Leader individuals having Leader nodes receiving control inputs
more information than the others from the external controller
Non-informed individuals Follower nodes
Position information c of an individual and Potential information θ of itself
its neighboring individuals and neighboring nodes
Direction information v of an individual The changing amount of potential of a node
and neighboring individuals
Target direction g Target potential values g
Accuracy of the direction to move in Convergence time steps of the potential-field

all nodes without any communication delay for revealing
the advantages and properties of the proposed mechanism.
Actually, in real network environment, it is difficult for
the controller to observe all information in the network
and the information include communication delays. As a
result, observable information become uncertain. We then,
in Section 3.3, evaluated the performance of the proposed
mechanism in the case where observable information of the
external controller is dynamic and incomplete. Specifically,
we assumed that the external controller can observe potential
information of a partial set of nodes, observable nodes, via
sink nodes with communication delays. As a result, the
proposed mechanism proved high scalability from the results
of above 2 simulations in Section 3.1 and Section 3.2.

Third, in Section 3.3, we took errors in control caused by
uncertain information into consideration through simulation
that the controller can acquire information of a bounded
scope. As a result, the proposed mechanism proved robust-
ness against information uncertainty.

3.1. Relationship between the performance and the
number and the positions of leader nodes

Considering to apply Effective Leadership model to
network control, the number and positions of the leader
nodes become important because in previous work [3] the
authors didn’t consider individuals have static topologies
like networks. From the viewpoint of cost, it is desirable
that the number of leader nodes with higher performance
be smaller, it is also necessary to clarify the selection of
the leader nodes for that purpose. In particular, in Effective
Leadership model [3], it is shown that as the size of the
swarm (the number of individuals) is larger, appropriate
action can be taken by the group as a whole by a small
proportion of leader individuals. If a similar tendency is
found when corresponding Effective Leadership model to
network control, we can consider it to be useful for applica-
tion to a large-scale network. Therefore, in this section, we
investigated the relationship of the number and positions of
leader nodes with the control performance of the external
controller [4].

In [4], [8], using potential-based routing which is a
self-organizing route control method, authors achieved to

improve convergence speed to the target potential by intro-
ducing an external controller that observes network infor-
mation and performs control feedback. They revealed that
the positions and the number of nodes (controlled nodes)
which receive control feedback, affects the convergence
speed (control performance of the controller). In this section,
we regarded controlled nodes as leader nodes, investigated
the relationship between the number and the positions of
leader nodes and control performance of the controller,
and obtained knowledge about the number and positions
of appropriate and efficient leader nodes. In addition, as a
result, the proposed mechanism showed high scalability that
is similar in previous work [3].

The external controller is designed based on H∞ con-
trol [10] and it is calculated using MATLAB’s dhinflmi
function. This function gets control parameters as input
that are set to achieve the control target according to the
network topology and the positions of the leader nodes and
returns outputs of the optimum H∞ performance γopt and
the controller transfer function G. The transfer function G
as output satisfies the following two conditions:

• The system is stable and even when instantaneous
disturbance is given to a system in equilibrium, the
system returns to equilibrium again with the lapse
of time.

• The closed loop norm of the controller ||G||∞ is
smaller than γopt.

Here, the closed loop norm of the controller ||G||∞ rep-
resents the maximum value of the controller gain (ratio of
output to input), the smaller the value of γopt, the smaller the
gain. That is, the ability to suppress input disturbance and
converge the system to equilibrium is high. In the proposed
mechanism, the input to the controller is the deviation
between the target potential and the current potential, since
the output from the controller corresponds to the deviation
between the target potential and the potential obtained as
a result of the control. The smaller the value of γopt, the
higher the ability to converge the potential to the target value
and the robustness against noise and errors. In other words,
the higher the degree of contribution of the leader nodes to
the improvement of the control performance, the smaller the
value of γopt. In this research, the value of γopt is used as an
index to measure the control performance of the controller.
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We investigated the relationship with the control perfor-
mance of the controller by calculating the value of γopt for
all possible number and positions of leader nodes. We used
lattice-shaped topologies that the sizes were 3×3, 4×4, 5×5
and 6×6, and set the ratio of leader nodes to all nodes to
0.025, 0.05, 0.1, 0.2, 1.0. For each network size, leader node
percentage, we calculate γopt for all leader node patterns and
the network size. Figure 4 represents the minimum value of
γopt for each percentage of leader nodes.

From the result of Fig. 4, we can say that the value of
γopt decreases as the proportion of the leader node increases.
From this, it is shown that the control performance of the
controller increases as the ratio of the leader node increases.
We can consider that the reason is that the control input
propagates faster to the entire potential field. This will be
verified later.

On the other hand, compared with the decrease in γopt
when the leader node percentage changes from 0.025 to
0.2, the decrease in γopt when the leader node percentage
changes from 0.2 to 1 is fairly small. From this we can
say the less the ratio of leader nodes to all nodes the larger
the change in control performance. This tendency becomes
more prominent as the number of nodes increases (Fig.4).

Also, when the ratio of leader nodes is around 0.2, the
value of γopt decreases as the network size increases from
the network size of 3×3 to 5×5. This result shows the more
the number of nodes, the higher control performance can
be obtained with a smaller proportion of leader nodes. As
shown in [3], when the size (number of individuals) of the
group becomes larger, it gets more possible for the group
as a whole to take appropriate action by a small proportion
of leader individuals, and we achieved incorporating this
benefit to network control, which leads high scalability.

Figure 5, 6 show the selection of leader nodes of the
maximum (Fig. 6) and minimum (Fig. 5) case of γopt in
the above simulation.

There are multiple position patterns of leader nodes
where γopt is the maximum or minimum, this figure rep-
resents one of them. From Fig. 5, in the case where γopt is

Figure 5. Leader selection that mim-
imizes γopt

Figure 6. Leader selection that max-
imizes γopt
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the maximum value, that is, where the control performance
is lowest, the leader node is deployed on the edge of the
network. In contrast, in the case where γopt is minimum and
controller performs best (Fig. 6), leader nodes are deployed
to be spread uniformly throughout the network. Also, Fig. 7
shows the relationship between the number of hops to the
leader node and γopt. From this, it is said that the number
of hop count to leader nodes has a great influence on γopt.

On the other hand, when setting the leader node, it
is not cost-effective to determine the selection of leader
nodes by calculate the average hop count of all nodes in the
network because as the total number of nodes increases the
computational complexity increases greatly. In this research,
in order to select leader nodes uniformly across the field
with light cost of calculation, we classify the network into
clusters according to the number of leader nodes using the
K-Means method and placed one leader at the center of one
cluster. This solved the trade-off between the computational
complexity and the control performance.

3.2. Properties of the proposed mechanism

In this section, based on the results in Section 3.1,
we conducted evaluation in the wireless sensor network
environment. We used square lattice-shaped topologies and



Figure 8. Relationship between the ratio of leader nodes in the network
and the convergence time of potentials

the total number of nodes was set to 64 (8×8), 144 (12×12),
256 (16×16). In this simulation, the communication range
of the node is set to 50m, and the nodes existing within
the communication range are connected to each other. The
number of sink nodes is set to 4 for the total number of
nodes of 64, 6 for the case of 144, and 8 for the case of
256 total nodes.

In this evaluation, the leader node is set from 1% to
7% as a ratio with respect to the total number of nodes.
We determined the positions of the leader nodes as we
did in Section 3.1. The external controller [4] gives control
feedback to the leader node at 50 second intervals. For sim-
plification, this time, we exclude error in control feedback
by assuming that the external controller can acquire the
potential information of all the nodes without delay.

In this evaluation, immediately after the start of a simula-
tion, potential information of all nodes begins to be updated
and the external controller begins to control. Then, at 20
time steps after the start of the simulation, each sensor node
starts transmitting data packets. The generation rate of the
data packet in the sensor node located in the upper half of the
grid network is 0.75 packet/time step, and the generation rate
of data packets in the sensor node located in the lower half
is 0.25 packet/time step. At this time, the external controller
performs control so that the number of data packets received
by each sink node becomes equal. After 200 time steps from
the start of the simulation, the generation rate of data packets
in each sensor node is changed upside down in the network.
In this evaluation, after the data packet generation rate
changes, the time until the potential field converges again
is evaluated so that the number of data packets received
by each sink node becomes equal. After changing the data
packet generation rate, the generation rate of the data packet
in the sensor node located in the upper half of the lattice
network is 0.25 packet/time step, the generation rate of the
data packet in the sensor node located in the lower half is
0.75 packet/time step. The simulation settings are shown in
Table 2.

Figure 8 shows a graph plotting the relationship be-

Figure 9. Example of randomly-positioned topology of 64 nodes

TABLE 2. NETWORK ENVIRONMENT IN THE SIMULATION
EXPERIMENTS

Data Value
The size of a data packet 128 bytes

The size of a control packet 30 bytes
The size of a ID packet 28 bytes

The size of an Ack packet 22 bytes
The number of buffer of a sensor node 1
The transmission interval of ID packets 1 sec
The potential update interval (1 step) 50 sec

The control interval of the external controller 50 sec

tween network size, leader node ratio, and improvement of
convergence speed of potential field. From Fig. 8, it was
shown that as the ratio of the leader node is larger the
time to converge becomes shorter, that is, the convergence
performance improves as a whole. When the number of
nodes is 64 and the ratio of the leader node is 0.047, and
when the ratio of the leader node is 256 and the ratio of
the leader node is 0.063, this trend is not applicable and
the convergence time is prolonged, but this is caused by
the occurrence of the oscillation due to the delay occurring
when the control feedback propagates. However, although
the convergence time itself is long, the generated oscillation
is extremely fine without affecting the path control. From
the above, there is a trade-off relationship between the
ratio of the leader node and the convergence speed, and
it is necessary to properly set the ratio of the leader node
according to the control request.

3.3. Performance evaluation in the case with dy-
namic and incomplete information

In this section, we examined the proposed mechanism
from a viewpoint of robustness against uncertain informa-
tion when control. In Section 3.2, the external controller
calculated feedback input using global information without
communication delay to exclude the error from the sim-
ulation. On the other hand, considering the real network
environment, it might be better the external controller can
calculate feedback by only uncertain information. In this
evaluation, we investigated the potential convergence time
after traffic changes in three cases: (i) the external controller
can observe information of a partial set of nodes (nodes
within one hop from sink nodes) with communication delay
(observable information is dynamic and incomplete), (ii) the



Figure 10. Comparison of convergence time steps

external controller can observe potential information of all
nodes with communication delay (observable information
is dynamic), and (iii) the external controller can observe
potential information of all nodes without any communi-
cation delay (observable information is certain). Here, we
used the network topology shown in Fig. 9, and leader nodes
were selected using the same scheme as the evaluation in
Section 3.2. The other settings, including the generation rate
of data packets at sensor nodes and their changes, were
following the evaluation in Section 3.2.

Figure 10 shows the potential convergence time in
cases (i)–(iii). In Fig. 10, the vertical axis is time steps
spent to potential convergence after traffic changes and
horizontal axis is number of leader nodes in a 64-nodes
randomly-positioned topology like of Fig. 9. The red solid
line indicates the potential convergence time in case (i), the
green dotted line indicates the result of using global infor-
mation (2-hops range from sink nodes) with communication
delay, and the blue dashed line indicates that in case (ii).
Compared to case (iii), the convergence time in case (ii)
is almost same or even less compared to the red solid line
when the number of leader nodes are small (1–4) even with
communication delays. Although the controller of case (i)
can obtain information of only about 73% nodes in addition
to the communication delay, the time steps are almost same
or even less when the number of leader nodes is 1–4, or
about 1–6% of all nodes. In the blue dashed line, the time
steps spent to convergence increase when the number of
leader nodes is 10, and the reason why this outlier occurs
is currently under investigation.

4. Conclusion and Future Work

In this paper, we applied Effective Leadership model to
self-organizing network control mechanisms and proposed
potential-based routing based on Effective Leadership model
for conquering information uncertainty. Through simulation

experiments, we investigated the relationship among the
network size (the number of nodes), the ratio of leader
nodes, and the acceleration of the adaptation speed to en-
vironmental changes. Simulation results showed that as the
number of nodes increases, a lower ratio of leader nodes
is needed to facilitate the adaptation speed. Moreover, we
showed that the acceleration amount of the adaptation speed
deeply depends on the average distance between nodes and
their own nearest leader nodes.

As future work, we will consider another information
uncertainty that information become ambiguous because of
error or noise in communication. we will investigate the rela-
tionship among the network size (the number of nodes), the
ratio of leader nodes, and the acceleration of the adaptation
speed in cases with more complicated network topologies
such as random networks and small world networks. Then,
we develop a network control mechanism conquering infor-
mation uncertainty and prove its advantages.
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