Implementation of Quantum Decision-Making Based Recommendation Method for Adaptive Bitrate Streaming

TATSUYA OTOSHI, MASAYUKI MURATA
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY

Dynamic Adaptive Streaming

- Switch the rate according to the situation
 - Ex) Low bitrate for the low network throughput
- MPEG-dash (Dynamic Adaptive Streaming over HTTP)
 - Video server retains the multiple video profiles
 - Video divided into segments at regular intervals
 - Player dynamically selects the profile on the user terminal

QoE Control by Agent

- Your own choice
 - Choose something close to what you want
 - Include errors that people easily make
- Agent collects the user’s choice
 - Corrects mistakes while respecting the user’s wishes

QoE Modeling and Challenges

- Quality of experience (QoE) Model
 - Quantify user’s satisfaction for video streaming
 - Factor is basically only the communication quality
- Psychological Effect on QoE
 - User’s behavior includes cognitive bias
 - Ex) Cognitive dissonance
 - Users prefer what they select

Purpose and approach

- Purpose
 - Modeling user’s behavior, including psychological effects
 - Guiding the user to correct selection
- Approach
 - Modeling user by Quantum Decision Making, etc.
 - Induce appropriate selection based on the model

Quantum Decision Making

- Probabilistic decision based on cognitive status
- Cognitive status is modeled as a quantum state
 - Cognitive status changes after decision-making

\[\psi' = |\alpha_f\rangle \]

Decision Making

Question: A Is True?

Answers: A is False (with Probability 70%)
Quantum State

- **Defined**
 - Quantum state: $|\psi\rangle \in \mathcal{H}$
 - \mathcal{H} is the complex Hilbert Space

- **Superposition**
 - $|\psi\rangle = \psi_1|\psi_1\rangle + \psi_2|\psi_2\rangle$
 - $|\psi_1\rangle, |\psi_2\rangle$: Probability Amplitude

- **Cognitive state as quantum state**

User model by Quantum decision making

- **Cognitive status**
 - Superposition of available video profiles
 - $|\psi\rangle = \psi_0|\psi_0\rangle + \psi_1|\psi_1\rangle + \psi_2|\psi_2\rangle$

- **Decision Making**
 - $P(\alpha_i|\psi_1\rangle$: The probability to select the image quality α_i

Quantum Observation

- **Observation value is obtained by quantum observation**
 - Probability of getting value A is probability amplitude
 - $P(\alpha = |A\rangle) = |\psi(\alpha = A)\rangle$

- **Convergence of probability**
 - When value A is observed, the quantum state changes into $|A\rangle$
 - If you do the same measurement immediately after observing A

Decision making as a quantum observation

Cognitive state update

- **Quantum Reinforcement Learning**
 - Amplify the probability amplitude of a particular observation
 - $Q_1(t + s) = Q_1(t) + \alpha Q_1(t)$
 - Steady state
 - $Q_1(t) = (1 - e^{0})|\psi_1\rangle|\psi_1\rangle$

User's State Updates

- **Probability of rational choice is increased by getting more information**
 - Amplify the probability of $Q_1 = \text{argmax} F(q_1)$
 - $F(q_1) = \sum |q_1(t + 1) - q_1(t)| - \lambda_1 \Delta q_1(t) Q_1(t) Q_0(t)$

A Model Behavior: Quantum Zeno effect

- **Choosing the same choice by frequent decision**
 - It has been confirmed by the psychological experiment

Challenges and approach in recommendation

- **Challenges**
 - Frequent recommendation occurs quantum Zeno effect

- **Approach**
 - Waiting until the user's cognitive state changes into the rational decision
 - Consider repeating recommendations
Recommendation Timing Selection

- Minimize the expected time to make the rational choice
 \[\text{minimize: } E[t \times n] = \frac{t}{p(t)} \]

Implementation

- Extend Dash.js to communicate with recommendation agent
 - Notify the agent of the streaming information
 - Follow the instructions of the agent to perform the recommendation

Evaluation environment

- Video
 - Segment Length: 4 seconds
 - Video Profiles: 10 profiles from 200kbps to 12Mbps

- Network
 - Network emulator limits the bandwidth

- User behavior during recommendation
 - Follow the quantum decision-making model

Result

- Throughput is decreased by the network emulator
 - At time 30, throughput changes from 10Mbps to 4Mbps

Summary and future work

- Summary
 - Modeling user’s bitrate selection by quantum decision making
 - Proposed a method to perform recommendations in a timely manner
 - Implement the recommendation method in the MPEG-DASH

- Future work
 - Study of the agent placement (Edge or Core)
 - A study of fitting method of quantum decision-making model to user