
Master’s Thesis

Title

Implementation and Experimental Evaluation of Dynamic and

Adaptive NFV Management System Based on Biochemical Reactions

Supervisor

Professor Morito Matsuoka

Author

Shuto Sugita

February 5th, 2020

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Implementation and Experimental Evaluation of Dynamic and Adaptive NFV Management

System Based on Biochemical Reactions

Shuto Sugita

Abstract

Network Functions Virtualization (NFV) is now paid much attention to for its cost-effectiveness

and flexibility to realize various types of network services. In order to operate the NFV system

efficiently, NFV management should be adaptive and dynamic. The NFV management includes

decision of placement of Virtualized Network Functions (VNFs) on servers, resource allocation

to VNFs, and flow routing in accordance with service function chaining requests. Furthermore,

in order to quickly respond to environmental fluctuations and to maintain the scalability of NFV

services, a distributed control is more suitable than a centralized one. One way to achieve such be-

haviors is to exploit biochemical mechanisms with autonomous dispersibility and self-organizing

properties.

Our research group has proposed a construction method of service space in virtualized network

system based on biochemically-inspired tuple space model. In this method, the behaviors in the

virtualized network system are described by biochemical reactions in tuple spaces. This makes

it possible to determine a VNF to be provided in each distributed server, share server resources

by a plurality of types of VNFs, and execute VNFs in a distributed manner. Since biochemical

reaction equations are defined and executed independently in each tuple space, this method can

realize the autonomous and decentralized behaviors in the NFV system. In the previous studies,

the behaviors of the proposed method have been confirmed with computer simulations. Also,

the proposed method has been implemented and evaluated in a simple experimental environment.

However, the applicability to the actual NFV system has not been clearly shown.

In this thesis, we implement the proposed method as components on the NFV framework in

cooperation with other components. In detail, we exploit an NFV environment using Open Plat-

form for NFV (OPNFV), which is an open source project aiming to build a software environment

1

to implement the NFV system, and implement the proposed NFV management system on the

framework. By extensive experimental evaluations, we show that the proposed NFV management

system works properly for realizing video streaming services in terms of adaptively allocating

server resources to VNFs in accordance with the amount of traffic. It is also shown that the pro-

posed system can dynamically distribute incoming flows to multiple VNFs for load balancing.

Keywords

Network Functions Virtualization (NFV)

Software Defined Networking (SDN)

Service Function Chaining (SFC)

Open Source Software

Biochemical Mechanism

2

Contents

1 Introduction 8

2 NFV Management System Based on Tuple Space Model using Biochemical Reactions 13

2.1 Tuple Space Model . 13

2.2 Application to NFV System . 13

2.2.1 Resource Allocation and Execution of VNFs 15

2.2.2 Diffusion of VNFs . 17

2.2.3 Packet Forwarding . 17

2.2.4 Summary . 18

3 Implementation Design of Proposed Method with NFV Framework 21

3.1 NFV Framework and its Integration with SDN 21

3.2 Implementation Design of Proposed Method . 21

4 Implementation 27

4.1 OPNFV . 27

4.2 NFV Management System Based on Biochemical Reactions 29

4.2.1 Overview . 29

4.2.2 Biochemical Reactions Tuple Space (BRTS) 32

4.2.3 Biochemical Reactions Manager (BRM) 33

4.2.4 Biochemical Reactions Controller (BRC) 34

4.2.5 Biochemical Reactions Orchestrator (BRO) 34

4.3 Flow Routing . 38

4.3.1 Realization of Service Function Chaining 38

4.3.2 Stochastic Selection of Flow Path . 40

5 Experiment Setup 43

5.1 Application Scenario . 43

5.2 Environment of Experiments . 43

5.3 VNF Implementations . 46

5.4 Flow Emulation for Video Streaming Service 46

3

5.5 Realization of Flow Routing by OpenFlow . 48

5.6 Preliminary Experiment . 56

5.6.1 Correlation of the Length of Execution Time Step and CPU Usage of BRTS 56

5.6.2 Correlation of Flow Rate and CPU Usage of VNF 57

5.6.3 Execution Results with Insufficient CPU Resources 62

5.6.4 Waiting Time Between Sending a Flow-Mod Message and a Packet-Out

Message in BRC . 66

6 Evaluation Results and Discussions 70

6.1 Scenario 1: Resource Allocation . 70

6.1.1 Evaluation Scenario and Parameter Settings 70

6.1.2 Experimental Results and Discussions 70

6.2 Scenario 2: Resource Allocation and Flow Routing 88

6.2.1 Evaluation Scenario and Parameter Settings 88

6.2.2 Experimental Results and Discussion 88

7 Conclusion and Future Work 97

Acknowledgments 98

Reference 99

4

List of Figures

1 NFV system . 11

2 NFV reference architectural framework . 12

3 Tuple space model with biochemical reaction 14

4 Application of tuple space model to NFV system 14

5 Movement of a packet in accordance with gradient fields 19

6 NFV framework and its integration with SDN 22

7 Compoment placement of the proposed system and information flows 25

8 A typical NFV environment constructed by OPNFV 28

9 A sequence diagram of the proposed system . 30

10 The format of NSH . 39

11 The format of NSH Service Path Header . 39

12 Example of implementation design of SFC using NSH 39

13 Stochastic determination of flow path with the proposed method 42

14 Application scenario . 44

15 Experimental network configuration . 45

16 Packet processing flow in Netfilter . 47

17 Flow routing on the experimental network . 49

18 Example of flow table . 51

19 Flow entries on br-external of the NFV Server 51

20 Flow entries on br-exs of Compute0, Compute1, and Compute2 52

21 Flow entries on br-int of Compute0 (static routing) 53

22 Flow entries on br-int of Compute0 (dynamic routing) 54

23 Flow entries on br-int of Compute1 . 55

24 Flow entries on br-int of Compute2 . 55

25 Effect of the initial value of τ on CPU usage of BRTS 58

26 Relationships between the connection and the number of responses per second . . 60

27 Relationships between the number of responses per second and CPU usage of VNF 61

28 httperf performance (no limitations) . 63

29 httperf performance (set limitation to firewall) 64

5

30 httperf performance (set limitation to IPS) 65

31 Effect of wait insertion between Flow-Mod and Packet-Out messages 67

32 Concentrations of chemical substances for Exp. A 71

33 Observed statistics for Exp. A . 72

34 Allocated CPU resources for Exp. A . 73

35 httperf performance for Exp. A . 74

36 Concentrations of chemical substances for Exp. B 75

37 Observed statistics for Exp. B . 76

38 Allocated CPU resources for Exp. B . 77

39 httperf performance for Exp. B . 78

40 Concentrations of chemical substances for Exp. C 79

41 Observed statistics for Exp. C . 80

42 Allocated CPU resources for Exp. C . 81

43 httperf performance for Exp. C . 82

44 Concentrations of chemical substances for Exp. D 84

45 Observed statistics for Exp. D . 85

46 Allocated CPU resources for Exp. D . 86

47 httperf performance for Exp. D . 87

48 Concentrations of chemical substances for Exp. E 90

49 Observed statistics for Exp. E . 91

50 Allocated CPU resources for Exp. E . 92

51 Number of flows to which each SFP is selected for flows from the client to the

media server for Exp. E . 93

52 httperf performance for Exp. E . 94

6

List of Tables

1 Correspondence between tuple space model and NFV system 19

2 Specifications of physical servers . 44

3 Specifications of virtual servers . 47

4 CPU usage of VNFs of the experiments in Subsection 5.6.3 69

5 Parameters for experiments in Subsection 6.1 89

6 Reference to figures in Subsection 6.1 . 89

7 Figures depicting experimental results in Subsection 6.2 89

7

1 Introduction

Recently, the amount and types of devices connected to the information network are rapidly in-

creasing because of the spread of smartphones and tablet-type devices and the development of

Internet of Things (IoT) [1] technologies. As a result, the network traffic has increased rapidly,

and network services have also become more diverse. Conventionally, dedicated hardware middle-

boxes are introduced to accommodate a large amount of traffic that cannot be handled by existing

equipment and to introduce new network services. However, this method requires high cost in

terms of capital expenditure (CAPEX), such as initial installation cost for preparing the equip-

ment itself and the physical space for installing the equipment. It also increases operating expense

(OPEX), such as power costs for equipment operation. Besides, since the maintenance and oper-

ation of the equipment and the response to environmental changes such as a system failure and a

sudden increase in traffic demand take time, the flexibility is low.

Network Functions Virtualization (NFV) [2] is a technology that can address such problems.

In NFV, a network function, which has been implemented by a dedicated hardware middle-box,

is implemented as a software running on a general-purpose server. The network function imple-

mented as a software is called Virtualized Network Function (VNF). As a VNF, a wide variety of

network functions such as a firewall [3], a Deep Packet Inspection (DPI) [4], a Network Address

Translation (NAT) [5], and an Evolved Packet Core (EPC) [6] have been implemented [7]. By

implementing a network function as a VNF, the network function can be managed as a software.

This makes it possible for a plurality of network functions to share one server resource, or to ex-

ecute one network function on a plurality of servers in a distributed manner. This makes costs

lower in terms of both CAPEX and OPEX, and also makes network services have flexibility to

environmental fluctuations. Figure 1 shows an example of an NFV system.

A flow receiving the NFV service may have a Service Function Chaining (SFC) request, which

describes the order of VNFs to be applied. Figure 1 depicts how VNFs are applied to a flow in

an NFV system in accordance with the SFC request. In order to operate the NFV system effi-

ciently, the NFV management should be adaptive and dynamic. The NFV management includes

decision of placement of VNFs on servers, resource allocation to VNFs, and flow routing in accor-

dance with SFC requests. Furthermore, in order to quickly respond to environmental fluctuations

and to maintain the scalability of NFV services, a distributed control is more suitable than a cen-

8

tralized one [8]. One way to achieve such behaviors is to exploit biochemical mechanisms with

autonomous dispersibility and self-organizing properties.

Our research group has proposed a construction method of service space in virtualized network

system based on biochemically-inspired tuple space model [9, 10]. In this method, the server is

represented as a tuple space. Other factors such as service requests, service demands and server re-

sources are represented as chemical substances in the tuple space. The behaviors in the virtualized

network system are described by biochemical reactions in tuple spaces. Configuring a network by

connecting a plurality of tuple spaces, this method can express movement and diffusion of services

and requests in a network system including a plurality of servers.

By applying this method to an NFV environment, it is possible to determine a VNF to be

provided in each distributed server, share server resources by a plurality of types of VNFs and

execute VNFs in a distributed manner. Since biochemical reaction equations are defined and exe-

cuted independently in each tuple space, this method can realize the autonomous and decentralized

behaviors in the NFV system. In the previous studies, the behaviors of the proposed method have

been confirmed with computer simulations [11, 12]. Also, the proposed method has been imple-

mented and evaluated in a simple experimental environment. However, the applicability to the

actual NFV system has not been clearly shown.

The standardization activities of NFV defines a framework composed of multiple components

such as NFV Management and Orchestration (MANO) and NFV Infrastructure (NFVI), and the

implementation has been progressing in recent years. NFV reference architectural framework,

which is defined in [13], is shown in Figure 2. Each component is modularized, and the adminis-

trator can build the NFV environment by selecting and combining the required components from

various types of implementations. Furthermore, the integration of Software Defined Network-

ing (SDN) with the NFV framework is discussed in [14]. By implementing the above-mentioned

proposed method as components on the standardized framework, it is possible to confirm the ap-

plicability and effectiveness of the proposed method in the actual NFV environment.

In this thesis, we implement the proposed method as components on the NFV framework

in cooperation with other components. In detail, we exploit an NFV environment using Open

Platform for NFV (OPNFV) [15], which is an open source project aiming to build a software en-

vironment to implement the NFV system, and implement the proposed NFV management system

on the framework. The proposed method is implemented as four components, which work as a

9

VNF and modules in NFV Orchestrator (NFVO), Virtualized Infrastructure Manager (VIM), and

SDN controller. According to the result of biochemical reactions with observed statistics as input,

the proposed system allocates CPU resources to VNFs and configures SDN switches for packet

forwarding dynamically and adaptively.

By extensive experimental evaluations, we confirm that the proposed NFV management sys-

tem works properly for realizing video streaming services that receives many concurrent service

requests. In detail, for the traffic generated using httperf [16], we confirm that allocation of

CPU resources to VNFs and flow routing in accordance with the SFC request by the OpenDay-

light [17] application works properly, meaning that all packets of the flows are processed by the

appropriate VNF without large latency. For determining flow paths, the proposed system exploits

Network Service Header (NSH) [18], which is now under standardization activities. We confirm

that the proposed system can dynamically and adaptively distribute incoming flows to multiple

VNFs for load balancing.

The rest of this thesis is organized as follows. Section 2 explains the tuple space model using

biochemical reactions and how to apply the model to the NFV system. Section 3 describes the

implementation design of the proposed method on the NFV framework. Section 4 describes a

network constructed using OPNFV and a specific implementation of the proposed method. Sec-

tion 5 explains the preparation for experimental evaluations and shows the results of preliminary

experiments. Section 6 presents the experimental evaluation results and gives discussions. Finally,

Section 7 concludes this thesis and presents some directions for future research.

10

RoXWer IPS

NAT

RoXWerFireZall

SFC ReqXest NFV NeWZork

SerYer SerYer

NetZork FloZ

: VNFs

FireZall IPS NAT

SZiWch SZiWch

Figure 1: NFV system

11

Computing
Hardware

Storage
Hardware

Network
Hardware

Hardware resources

Virtualisation Layer
Virtualised

Infrastructure
Manager(s)

VNF
Manager(s)

VNF 2

OrchestratorOSS/BSS

NFVI

VNF 3VNF 1

Execution reference points Main NFV reference pointsOther reference points

Virtual
Computing

Virtual
Storage

Virtual
Network

NFV Management and
Orchestration

EMS 2 EMS 3EMS 1

Service, VNF and Infrastructure
Description

Or-Vi

Or-Vnfm

Vi-Vnfm

Os-Ma

Se-Ma

Ve-Vnfm

Nf-Vi

Vn-Nf

Vl-Ha

Figure 2: NFV reference architectural framework [13]

12

2 NFV Management System Based on Tuple Space Model using Bio-

chemical Reactions

In this section, we briefly introduce the NFV management system based on biochemical reactions

in tuple spaces, which was proposed in [12].

2.1 Tuple Space Model

A tuple space model in [9] is one of the models that describes a distributed system. Figure 3 depicts

the tuple space model in this thesis. A component of the distributed system is modeled as a tuple

space. Each tuple space is defined as the place where biochemical reactions occur. Then, tuples

in the tuple space correspond to chemical substances, and the amount of the tuples corresponds

to the concentration of chemical substances. The concentration is increased and decreased by

biochemical reactions as defined in tuple spaces.

A rate of a chemical reaction is determined by the product of the concentration of each reactant

and the rate constant defined in the chemical reaction equation. By the following expression, we

consider a chemical reaction where defines X and Y are reactants, Z is a product, and a is a

reaction rate constant.

X |Y a−→ Z

In this reaction, when the concentrations of reactants X and Y are respectively x and y, the

reaction rate is axy. Due to this property, the reaction rates in chemical reactions are controlled by

the concentrations of reactants and the rate constant defined in the chemical reaction equations. In

addition, a network can be configured by connecting multiple tuple spaces. It is possible to achieve

the interaction among multiple tuple spaces by defining biochemical reactions that describe the

diffusion and movement of tuples among tuple spaces. Since biochemical reactions in each tuple

space occur independently, autonomous and decentralized behaviors in a networked system can

be described.

2.2 Application to NFV System

Figure 4 depicts how to apply the tuple space model to the NFV system. A tuple space is associated

with a server that deploys and executes VNFs. Tuples in the tuple spaces correspond to demands of

13

DiVWUibXWed S\VWem
TXSle SSaceBiRchePicaO ReacWiRQV

+ + +

+ +

TXSle SSace

TXSle SSace TXSle SSace
BiRchePicaO ReacWiRQV

+ + +
BiRchePicaO ReacWiRQV

+ + +

BiRchePicaO ReacWiRQV
+ + +

+ +

: Chemical SXbVWanceV (TXSleV)

Figure 3: Tuple space model with biochemical reaction

NFV S\sWem
SeUYeUBiRchePicaO ReacWiRQV

+ + +

+ +

SeUYeU

SeUYeU SeUYeU
BiRchePicaO ReacWiRQV

+ + +
BiRchePicaO ReacWiRQV

+ + +

BiRchePicaO ReacWiRQV
+ + +

+ +

PacNeWV

PacNeWV

MLgUaWLRQ
Rf VNF

PacNeW
FRUZaUdLQg

: SeUYeU ReVRXUce : FORZ PacNeW: DePaQd Rf VNF

Figure 4: Application of tuple space model to NFV system

14

VNFs, flow packets, server resources, and so on. The behaviors in the NFV system are described

by biochemical reaction equations in tuple spaces. Biochemical reaction equations are defined to

adaptively and autonomously determine placement of VNFs on the servers, resource allocation to

each VNF, and flow paths in accordance with SFC requests, the amount of traffic of the flows, and

the amount of server resources. Table 1 shows the correspondence between the tuple space model

and the NFV system.

An SFC request for a flow, described by a series of VNFs, f0, f1, f2, ..., fn is described as

follows.

c = {f0, f1, f2, ..., fn} (1)

When VNF f0 is executed to the flow with SFC request c, c changes as follows.

c←− c\{f0} = {f1, f2, ..., fn} (2)

A VNF that is executed at first in c is denoted by fh(c). In this thesis, subscripts f and c of

chemical substances represent a VNF and an SFC request respectively. In what follows, we present

biochemical reaction equations that achieve various behaviors for the NFV system.

2.2.1 Resource Allocation and Execution of VNFs

The placement of VNFs on physical/virtual servers and resource allocation to them should be

determined according to the demands of VNFs. In detail, VNFs with low demand should have low

priority to be executed in the servers, and vice versa. When a packet of a flow with SFC request

c arrives at a server providing VNF fh(c), VNF fh(c) is applied to the packet. Then, when c

includes multiple VNFs, c changes as in Equation (2). On the other hand, when c is composed of

one VNF, the packet leaves the system. These behaviors can be described by Reactions (3) and

(4).

VNFfh (c)|PKTc −→






VNFfh (c)|VNFfh (c)

|toserve(VNFfh (c),PKTc)|PKTc\fh (c) (c\f $= ∅)

VNFfh (c)|VNFfh (c)

|toserve(VNFfh (c),PKTc) (otherwise)

(3)

VNFf −→ 0 (4)

15

Substance VNFf with a large concentration value means that execution of the VNF f is highly de-

manded. Substance PKTc represents a packet constituting a flow with SFC request c. Substance

toserve(VNFf ,PKTc) indicates a result of applying VNF f to a packet of a flow with c. Reac-

tion (3) indicates that VNF fh(c) is executed to packets of a flow with c, and the concentration of

VNFfh (c) increases to represent the demand increase for VNF fh(c). Reaction (4) indicates that

VNFfh (c) decays to represent the demand decrease for VNF fh(c).

As mentioned earlier, the execution rate of a biochemical reaction is determined in proportion

to the product of the concentration of each reactant of the reaction. Therefore, in Reaction (3),

as the concentrations of VNFfh (c) and PKTc increase, the reaction rate increases without lim-

itation. However, performances of actual servers are limited by server resources such as CPU

performance and memory size. Therefore, Reaction (3) does not fully describe the behavior of

the NFV system. To describe the above constraints, enzyme-catalyzed reactions in biochemical

reactions are exploited [19]. In enzyme-catalyzed reactions, the reaction rate can be controlled by

the concentration of the catalyst, which does not affect the reaction itself. The basic equation of

the enzyme-catalyzed reaction is shown in Equation (5), where E is an enzyme, S is a substrate,

ES is an enzyme-substrate complex, and P is a product.

E |S ! ES → E |P (5)

The execution rate of the enzyme-catalyzed reaction is calculated by introducing an enzyme-

substrate complex into the reaction [20]. Here, Reaction (3) is extended into the following Re-

actions (6)–(8), which can describe the constraints of server resources by applying the enzyme-

catalyzed reactions mechanism.

VNFf |RSRC " RS VNFf (6)

RS VNFfh (c)|PKTc " MEDIATEc (7)

MEDIATEc −→






VNFfh (c)|VNFfh (c)|RS VNFfh (c)

|toserve(VNFfh (c),PKTc)|PKTc\fh (c) (c\f $= ∅)

VNFfh (c)|VNFfh (c)|RS VNFfh (c)

|toserve(VNFfh (c),PKTc) (otherwise)

(8)

The concentrations of substances RSRCɼRS VNFf , and MEDIATEc respectively represent

the amount of available resources of a server, the amount of server resources reserved for VNF f ,

16

and the amount of server resources allocated to the flow packets with SFC request c. Reaction (6)

indicates that server resources are reserved in accordance with the demand of each VNF, and that

the reservation is controlled by the concentration of RSRC . Reaction (7) indicates that the server

resources reserved for the VNF is allocated to the packet. Reaction (8) indicates that the VNF is

executed to the packet and the demand for the VNF increases.

2.2.2 Diffusion of VNFs

A highly-demanded VNF is required to be executed by a plurality of servers, and the servers that

execute the VNF should be located in places with high demand. To describe the diffusion of

highly-demanded VNFs to other servers, the following reaction is introduced.

VNFf −→ VNF#f (9)

This reaction indicates that a highly-demanded VNF in a server diffuses to the surrounding con-

nected servers. When the destination server of the diffusion has packets for VNF f , they are

processed in accordance with Reactions (6)–(8), resulting the evolution of VNFf at the server. On

the other hand, when the destination server has no corresponding packet, VNFf would decay in

accordance with Reaction (4). These behaviors mean that the diffused VNFs grow only on servers

that have a corresponding demand for the VNF.

2.2.3 Packet Forwarding

For packets that remain unprocessed on a server due to a lack of server resources, the packets

should move to other servers that can process. The forwarding direction of packets should be

determined so that the packets would approach servers executing the corresponding VNFs with

enough server resources. To achieve these behaviors, a gradient field is exploited to determine the

moving directions of packets. A gradient field for each VNF is constructed based on the demand

of VNFs and the available resources on each server. For that purpose, Reactions (10)–(14) are

17

introduced.

VNFf |RSRC −→ VNFf |RSRC |GRADf (10)

RS VNFf −→ RS VNFf |GRADf (11)

GRADf −→ 0 (12)

GRADf −→ GRAD#f (GRAD−
f) (13)

PKTc −→ PKT#c (GRAD+
fh (c)

) (14)

Substance GRADf constructs a gradient field for VNF f . Reaction (10) indicates that GRAD is

generated at a rate proportional to the concentrations of VNF and RSRC . Reaction (11) indicates

that GRAD is generated at a rate proportional to the concentrations of RS VNF . Note that this is

modified from the one in [12] since VNF was double counted in the original one. Reaction (12)

indicates that GRAD decays at a rate proportional to its concentration. Reaction (13) indicates

that GRAD spreads to the surrounding servers with the smaller concentration of GRAD . The

diffusion direction of the substance forming the gradient field is stochastically determined in ac-

cordance with the concentration ratio of GRAD in the connected tuple spaces. Therefore, the

gradient field is constructed so that the server providing VNFs with enough resources becomes a

summit with the largest concentration of GRAD , and the surrounding servers have smaller con-

centrations of GRAD in accordance with the distance from the summit. Reaction (14) describes

the movement of PKT to the surrounding servers with large concentration of GRAD . The for-

warding direction of a packet is also stochastically determined in accordance with the concentra-

tion ratio of GRAD in the connected tuple spaces. Figure 5 depicts the movement of a packet

with SFC request {f0, f1, f2}. The gradient fields are respectively generated for each VNF. First,

a packet moves in the direction of the summit of the gradient field for f0. Next, after the packet

is applied with f0, it moves in the direction of the summit of the gradient field for f1. Then, after

the packet is applied with f1, it moves in the direction of the summit of the gradient field for f2.

Finally, after the packet is applied with f2, the packet leaves the system.

2.2.4 Summary

We summarize all reaction equations in the NFV system in Reactions (15)–(24), where F is the

set of all VNFs provided by the NFV system, C is the set of all SFC requests that may exist in the

18

Table 1: Correspondence between tuple space model and NFV system

Tuple Space Model NFV System

Tuple Spaces General-purpose Physical/Virtual Servers

Chemical Substances Demand of VNFs, Flow Packets, Server Resources, Gradient Fields for VNFs

Biochemical Reactions
Apply VNFs to Packets, Demand Increase of VNFs, Decay of VNFs,

Server Resource Allocation to VNFs, Diffusion of VNFs, Packet Forwarding

SFC Request {!", !$, !%}

Gradient Field for !"

Gradient Field for !%

Packet

Gradient Field for !$

Apply !$

Apply !"

Apply !%

Figure 5: Movement of a packet in accordance with gradient fields

19

NFV system, and c0–c11 are the reaction rate constants for Reactions (15)–(24). These reactions

are defined for each tuple space.

∀f ∈ F ,VNFf |RSRC
c0
"
c1

RS VNFf (15)

∀c ∈ C ,RS VNFfh (c)|PKTc

c2
"
c3

MEDIATEc (16)

∀c ∈ C ,MEDIATEc
c4−→






VNFfh (c)|VNFfh (c)|RS VNFfh (c)

|toserve(VNFfh (c),PKTc)|PKTc\fh (c) (c\f $= ∅)

VNFfh (c)|VNFfh (c)|RS VNFfh (c)

|toserve(VNFfh (c),PKTc) (otherwise)

(17)

∀f ∈ F ,VNFf
c5−→ 0 (18)

∀f ∈ F ,VNFf
c6−→ VNF#f (19)

∀f ∈ F ,VNFf |RSRC
c7−→ VNFf |RSRC |GRADf (20)

∀f ∈ F ,RS VNFf
c8−→ RS VNFf |GRADf (21)

∀f ∈ F ,GRADf
c9−→ 0 (22)

∀f ∈ F ,GRADf
c10−−→ GRAD#f (GRAD−

f) (23)

∀c ∈ C ,PKTc
c11−−→ PKT#c (GRAD+

fh (c)
) (24)

20

3 Implementation Design of Proposed Method with NFV Framework

In this section, we describe the implementation design of the proposed method with the NFV

framework proposed by ETSI ISG [13, 14].

3.1 NFV Framework and its Integration with SDN

Figure 2 illustrates the NFV framework [13]. As such, three main working domains are identified

in NFV.

Virtualized Network Functions (VNFs) VNFs are software implementations of network func-

tions that run on virtual machines.

NFV Infrastructure (NFVI) NFVI is an infrastructure for running VNFs and manages both

physical and virtual resources.

NFV Management and Orchestration (NFV MANO) NFV MANO manages life cycles and re-

source orchestration of NFVI and VNFs.

NFV MANO architectural framework identifies the following functional blocks.

Virtualized Infrastructure Manager (VIM) VIM is responsible for controlling and managing

the NFVI compute, storage and network resources.

NFV Orchestrator (NFVO) NFVO has two main responsibilities: the orchestration of NFVI re-

sources across multiple VIMs; the lifecycle management of network services.

VNF Manager (VNFM) VNFM is responsible for the lifecycle management of VNF instances,

such as creation, update, and deletion.

Furthermore, the integration of SDN with the NFV framework is discussed in [14]. Figure 6 shows

NFV framework with SDN integration. SDN controller is used to manage network resources in

NFVI. SDN switch is included in physical and virtual network resources in NFVI.

3.2 Implementation Design of Proposed Method

In order to apply the proposed method to the actual NFV environment, we implement the proposed

method on the SDN-integrated NFV framework, described in the previous subsection. This sub-

21

NFV Management and Orchestration

NFV infrastructure (NFVI)

Hardware Resources

OSS/BSS

VNF

EM

Virtuali]ation Layer

NFV Orchestrator (NFVO)

Virtual
Computing

Virtual
Storage

Virtual
Network

Storage
Hardware

Network
Hardware

Computing
Hardware

VNF
Manager
(VNFM)

VNF
CaWaORg

Virtuali]ed
Infrastructure

Manager
(VIM)

NS
CaWaORg

NFVI
ReVRXUceV

NFV
IQVWaQceV

SeUYice, VNF and
InfUaVWUXcWXUe DeVcUiSWion

Vn-Nf

Vi-Ha

E[ecXWLRQ UefeUeQce SRLQWV MaLQ NFV UefeUeQce SRLQWV OWKeU UefeUeQce SRLQWV

Nf-Vi

Ve-Vnfm-em

Ve-Vnfm-vnf

Or-Vnfm

Os-Ma-Nfvo

Vi-Vnfm

Or-Vi

SDN
Switch

SDN
Switch

SDN
Controller

Figure 6: NFV framework and its integration with SDN

22

section describes the implementation design of the proposed method on the framework described

in the previous subsection.

In the proposed method, NFV management such as resource allocation to VNFs and flow

routing is conducted based on the results of biochemical reactions. In order to implement the pro-

posed method as components of the framework, the proposed method is divided into the following

functions.

Calculation of biochemical reactions

It calculates the biochemical reactions for each tuple space, corresponding the server op-

erating VNFs. For the autonomous decentralized control, this is preferably executed in a

distributed manner. Therefore, this function should be realized as a VNF.

Acquisition of flow rates and remaining data sizes waiting to be processed in VNFs

When a new flow enters the system, a concentration of PKT , corresponding to the size

of packets of the flow, needs to be injected into the corresponding tuple space. Also, the

unprocessed packets in the VNF need to be considered. These mean that flow rates and

remaining data sizes waiting to be processed in VNFs are interpreted into the concentration

of PKT in the corresponding tuple space. Acquisition of flow rates and the remaining data

sizes waiting to be processed in VNFs should be realized as a function in VIM since it is

necessary to acquire the statistics from SDN switch.

Resource allocation to VNFs

This function allocates resources to the VNF according to the concentrations of substances

in tuple spaces. Resource allocation to VNFs should be realized as a function in VIM.

Packet forwarding

Packets should be forwarded in the system according to the concentrations of GRAD in

the network. This function is composed of three sub-functions: management of the flow

path candidates, selection of a flow path based on the concentrations of GRAD , and con-

figuring SDN switches for packet processing. The first sub-function is strongly related to

the SFC management, it should be realized as a function in NFVO. The second and third

sub-functions should be realized as functions in SDN controller.

Exchange of the concentrations among components

23

As described above, since the tuple spaces are executed in a dispersed manner, it is necessary

that the components exchange the concentrations as necessary. This is realized by directly

connecting the components or via other components. These exchanges should be via one

component so that the environmental changes are appropriately taken into consideration.

Since this function is related to the orchestration of the entire system, it should be realized

as a function in NFVO.

Mutual conversion between the concentrations and the actual system values

For components using the concentrations, mutual conversion between the concentrations

and the actual system values is required. This is realized by each component using the con-

centrations or the component that the concentrations are exchanged via. Since the function

that exchanges the concentrations among components can aggregate the concentrations, the

conversion function should be integrated to the exchange function.

Based on the above discussions, we construct the following four components executing these

functions. Figure 7 depicts the placement of the components and information flows on the NFV

framework.

Biochemical Reactions Tuple Space (BRTS)

BRTS is responsible for calculation of biochemical reactions for each tuple space. For

distributed execution, this is implemented as a VNF for each tuple space.

Biochemical Reactions Manager (BRM)

BRM is responsible for acquisition of flow rates and remaining data sizes waiting to be

processed in VNFs and resource allocation to VNFs. Specifically, it acquires statistics for

each VNF from SDN switches and tells the VNF resource allocation to NFVI. This is im-

plemented as a module in VIM.

Biochemical Reactions Controller (BRC)

BRC is responsible for packet forwarding. Specifically, it performs probabilistic path se-

lection, based on the concentrations of GRAD in the tuple spaces, and configures SDN

switches for packet processing, as explained in Subsection 4.3. This is implemented as a

module in SDN controller.

24

NFV infraVWrXcWXre (NFVI)

SDN
Controller

NFV ManagemenW and OrcheVWraWion

HardZare ReVoXrceV

OSS/BSS

VNF

EM

Virtuali]ation Layer

NFV OrcheVWraWor (NFVO)

Virtual
Computing

Virtual
Storage

Virtual
Network

Storage
Hardware

Network
Hardware

Computing
Hardware

VNF
Manager
(VNFM)

VNF
CaWaORg

VirWXali]ed
InfraVWrXcWXre

Manager
(VIM)

NS
CaWaORg

NFVI
ReVRXUceV

NFV
IQVWaQceV

SeUYice, VNF and
InfUaVWUXcWXUe DeVcUiSWion

Vn-Nf

Vi-Ha

E[ecXWLRQ UefeUeQce SRLQWV MaLQ NFV UefeUeQce SRLQWV OWKeU UefeUeQce SRLQWV

Nf-Vi

Ve-Vnfm-em

Ve-Vnfm-vnf

Or-Vnfm

Os-Ma-Nfvo

Vi-Vnfm

Or-Vi

SDN
Switch

SDN
Switch

BRO

VNF SWaWXV

RoXWing

BRTS
ConcenWraWion of

Chemical SXbVWanceV

BRM

BRC

ReVoXrce
AllocaWion

VNF ConWrol

FloZ RaWe

ConcenWraWion of
Chemical SXbVWanceV

Figure 7: Compoment placement of the proposed system and information flows

25

Biochemical Reactions Orchestrator (BRO)

BRO orchestrates the entire proposed system and is responsible for exchange of the con-

centrations among components and mutual conversion between the concentrations and the

actual system values. Specifically, it acquires the concentrations from BRTSs, convert them

to the resources to allocate for VNFs, and tells the values to BRMs. Besides, it acquires

the statistics from BRMs, converts them to the concentration of PKT , and tells the values

to BRTSs. The exchange of substances between BRTSs is via this component. In addi-

tion, BRO gives BRC the concentrations of GRAD and the flow path candidates. This is

implemented as a module in NFVO.

26

4 Implementation

In this section, we describe the details of the implementation of the proposed method.

4.1 OPNFV

Implementation of NFV is in progress in open source projects such as CloudNFV [21] and Open-

MANO [22]. In this thesis, we implement the NFV environment using OPNFV [15]. OPNFV

is an open source project founded by the Linux Foundation, which aims to implement the entire

NFV framework by integrating existing open source projects such as OpenStack [23]. In OPNFV,

an NFV environment is implemented using a Linux kernel virtualization platform called Kernel-

based Virtual Machine (KVM) [24], and the environment is composed of a plurality of virtual

machines and virtual switches.

Figure 8 depicts a typical NFV environment constructed by OPNFV. There are two types

of virtual machines: Undercloud and Overcloud. Undercloud is a virtual machine that contains

components for provisioning and managing OpenStack nodes required for building an OpenStack

environment, and does not correspond to any component in the NFV framework. On the other

hand, Overcloud is an OpenStack platform environment built by the Undercloud, and is composed

of two types of nodes: Compute nodes and Controller nodes. Compute nodes are used to imple-

ment NFVI and VNFs, and VNFs are implemented as virtual machines on the compute nodes.

Controller nodes are used to implement NFV MANO and SDN controller, and perform resource

management and control of the virtual machines on the compute nodes using OpenStack. They

also control flow paths using the SDN controller.

The following four types of networks exist in the NFV environment.

admin network Network used by control plane

tenant network Network used for tenant traffic

storage network Network used for storage I/O

public network Network to connect the system to external networks and to OpenStack dashboard

When a virtual machine is created in a compute node using OpenStack, virtual switches and

virtual networks are automatically configured on Controller nodes and Compute nodes. A virtual

27

...
Controller Node(s)¬ Compute Node(s)

UndeUcloXd

OYeUcloXd

admin neWZork

pXblic neWZork

WenanW¬neWZork
sWorage¬neWZork

...

Figure 8: A typical NFV environment constructed by OPNFV

28

machine running in the OpenStack cloud is called an instance, which is connected to the tenant

network and the public network.

In this implementation, Open vSwitch (OVS) [25] is used as SDN switch, and OpenDay-

light [17] is used as SDN controller. In OpenDaylight, OpenFlow is used as an SDN protocol.

4.2 NFV Management System Based on Biochemical Reactions

4.2.1 Overview

A system that implements the proposed method basically performs processing at fixed intervals,

that is denoted as execution time step in what follows. This is to avoid an increase in the calcula-

tion overhead of execution of biochemical reactions. Figure 9 depicts a sequence diagram of the

proposed system. BRO, BRTS, and BRM are inter connected by TCP connections and proceed

synchronously. In the figure, the red section is the corresponding process, which is processed for

each tuple space and each execution time step. The process related to BRC is performed indepen-

dently from the above process when an unknown flow enters the system. In the figure, the green

section indicates the corresponding process.

The outline of BRO, BRTS, and BRM process and communication contents are described

below. A TCP connection between BRO and BRTS is on the public network, and that between

BRO and BRM is on the admin network. Note that the processes in tuple spaces are executed in a

parallel fashion.

1. For each tuple space, the following four steps are conducted.

(a) BRO establishes a TCP connection to BRTS.

(b) BRO tells BRTS the length of execution time step.

(c) BRO establishes a TCP connection to BRM.

(d) BRO tells BRM a list of process IDs for each VNF that the BRM manages.

2. For each execution time step, the following steps are conducted.

(a) When there are diffusion substances buffered by BRO, determine the diffusion desti-

nations.

29

BRTS BRO BRM

LeQgWh Rf TiPe SWeS

PURceVV IDV

NaPeV aQd CRQceQWUaWiRQV
Rf TXSOe WR IQjecW

CaOcXOaWiRQ
Rf ReacWiRQV

CRQceQWUaWiRQV

AOORcaWiRQ¬VaOXeV

ReVRXUce
AOORcaWiRQ

NaPeV¬Rf TXSOeV
WR GeW CRQceQWUaWiRQ

CRQYeUViRQ

"b\e"
"b\e"

NaPeV aQd CRQceQWUaWiRQV
Rf TXSOeV WR DiffXVe

TCP CRQQecWiRQ EVWabOiVhPeQW

TCP CRQQecWiRQ EVWabOiVhPeQW

TabOe ID

NaPeV aQd CRQceQWUaWiRQV
Rf TXSOeV WR USdaWe

SWaWiVWicV

CRQYeUViRQ

BRC

SFPV aQd
PURbabiOiW\

SFPV aQd¬PURbabiOiW\

SDN
SZiWch

PackeW-IQ

PaWh
SeOecWiRQ

FORZ-MRd

PackeW-OXW

Read
DeciViRQ
Rf¬DiffXVe

AcTXiViWiRQ
Rf SWaWiVWicV

PURceVV TUiggeUed b\ EQWeUiQg¬
Rf aQ UQkQRZQ FORZ:

PURceVV fRU Each TXSOe SSace
aQd Each E[ecXWiRQ TiPe SWeS

:

Figure 9: A sequence diagram of the proposed system

30

(b) For each tuple space, the following sub-steps are executed.

i. BRO tells BRM a list of flow table IDs that have the necessary statistics.

ii. BRM obtains statistics of the requested flow tables, and tells BRO a list of the

number and the size of packets applied to those flow tables.

iii. BRO converts the obtained statistics into the concentration of PKT .

iv. BRO tells BRTS a list of the the name and the concentration of substances whose

concentration should be updated.

v. BRO tells BRTS a list of the the name and the concentration of substances whose

concentration should be added.

(c) For each tuple space, BRTS calculates biochemical reactions to update each substance

concentration.

(d) For each tuple space, the following sub-steps are executed.

i. BRTS tells BRO a list of the the name and the concentration of substances which

should be diffused.

ii. BRO tells BRTS a list of the the name and the concentration of substances whose

concentration needs to be obtained.

iii. BRTS tells BRO a list of the concentration of requested substances.

iv. BRO converts the concentration of MEDIATE into CPU resource allocation

for VNF.

v. BRO tells a list of allocation values of CPU resource allocation for each VNF.

vi. BRM executes CPU allocation for each VNF.

(e) BRO updates the file where the SFPs handled by the system and their selection proba-

bilities calculated from the concentration of GRAD in each tuple space are described.

The details of the processing of each component and its implementation are described in the

following subsections.

31

4.2.2 Biochemical Reactions Tuple Space (BRTS)

BRTS is responsible for calculating biochemical reactions. This component is implemented as a

VNF.

Definition of biochemical reactions

Biochemical reactions are defined in a file outside the program and is read at the start of

BRTS execution. The definitions include reactants, products, and their reaction rate con-

stants. Also, the initial value of each substance concentration is defined separately.

τ -Leaping method

In order to simulate the biochemical system, we exploit τ -leaping method in [26], which

is one of stochastic simulation algorithms that can capture the inherent stochasticity in

many biochemical systems such as the chemically reacting system and the cell system. The

method collectively executes the biochemical reactions at each execution time step τ so that

the time change of the concentration of the chemical substance can be obtained in a short

time. We briefly explain the procedures of τ -leaping algorithm for a server in the proposed

method as follows.

Step 1 Set τ for the time step of the simulation

Step 2 Calculate the reaction rates of biochemical reactions by the product of reactants

concentration and reaction rate constants

Step 3 Determine the number of executions of biochemical reactions during time τ , using

a Poisson random variable

Step 4 Execute biochemical reactions at the number of times derived in Step 3, and update

the concentrations of each substance

Step 5 Progress simulation time by τ

Step 6 Return to Step 2

As the value of τ increases, the simulation can proceed faster while the results becomes dif-

ferent from the actual behavior. So τ should be carefully chosen. There is an algorithm that

32

decides the optimal τ [27], but it takes a long calculation time when executing the program.

In [11], the value of τ was determined by performing some preliminary experiments and

adjusted so that the simulation ended quickly with little error. In this thesis, the length of

execution time step of the proposed system is set identical to τ .

Further, when the τ is set to a large value, a problem may occur that concentrations of some

substances take negative values. One example of the solution for this problem is shown

in [28]. In this thesis, when the concentration of a substance takes a negative value, we

conduct the τ -leaping method twice with halved value of τ recursively.

Addition of concentration by substance injection

The substance to inject at a certain execution time step is buffered and added as a concen-

tration value immediately before the calculation of the τ -leaping method. The injection

amount is determined according to the value of τ .

4.2.3 Biochemical Reactions Manager (BRM)

BRM is responsible for acquisition of statistics and resource allocation to VNFs. This component

is executed on each Compute node implementing VNFs.

Acquisition of the statistics

In OpenFlow protocol, processing statistics are held as flow tables in switches. There are

two ways to acquire the statistics of switches: using ODL API, and directly executing OVS

commands on the machine running the switch. Acquiring statistics using ODL API, the

statistics are updated approximately every three seconds in the environment of this thesis.

This resulted in large observational errors. On the other hand, executing OVS commands on

the machine running the switch, the statistics are updated almost immediately. Hence, the

statistics are acquired by executing OVS commands.

Resource allocation to VNFs

In this thesis, CPU is treated as the resource to be allocated.

In KVM, the CPU resource allocation to a virtual machine can be limited by setting the

parameters cpu period and cpu quota. These parameters determine the upper limit of the

33

CPU time to the virtual machine. When the total CPU time allocated to the virtual ma-

chine reaches the value of cpu quota during the period specified by the cpu period, no more

CPU processing time is allocated to the virtual machine until the period of the CPU period

ends. However, in order to change the CPU resource allocation limit using this method, it is

necessary to restart the VNF server.

Hence, in the implementation of this thesis, the CPU resource allocation is realized by

using cpulimit [29]. cpulimit is a simple program which limits the CPU usage of a

process, expressed in percentage. Also, it is able to adapt itself to the overall system load,

dynamically and quickly.

4.2.4 Biochemical Reactions Controller (BRC)

BRC is responsible for flow packet routing as described in Subsection 4.3. This component is

executed on a Controller node.

The BRC starts the process triggered by a Packet-In message [30] from a switch. A Packet-In

message is the message mainly used when the SDN switch inquires of the SDN controller about

processing of a packet of an unknown flow in the OpenFlow protocol. The message also contains

information about the packet that caused it to be sent. In the implementation of this thesis, a

Packet-In message is sent when a flow whose path has not been determined enters the system.

When the BRC receives the Packet-In message, it refers to the data updated by the BRO and

the flow path is determined stochastically as explained in Subsection 4.3. Next, based on the

selected path, the flow table is modified by sending a Flow-Mod message to the switch. Finally,

the packet sent to the BRC as a Packet-In message is corrected if necessary, and the packet is sent

out to the switch as a Packet-Out message. Then, following packets of the flow are regarded as

known flow packets at the switch.

Note that based on the experiment results, we insert 20 ms wait between sending a Flow-Mod

message and a Packet-Out message. The detailed discussion can be found in Subsection 5.6.4.

4.2.5 Biochemical Reactions Orchestrator (BRO)

BRO is responsible for orchestrating of the entire proposed system. This component is imple-

mented on a Controller node.

34

Calculate the flow rate and the remaining data sizes waiting to be processed in VNFs

From the statistics received from BRMs, the flow rates and the remaining data size waiting

to be processed in VNFs are calculated.

From BRMs, statistics about the last-stage flow table that outputs packets from the interface

are acquired. From this, the total input size of packets to the VNF and the total output size

of packets from the VNF can be obtained. When the total input size of packets to the VNF

at the execution time step t is I(t) and the total output size of packets from the VNF at the

execution time step t is O(t), the input size of packets to the VNF in a certain execution

time step t din(t) can be calculated by Equation (25), and the remaining data size waiting

to be processed in the VNF dinside(t) can be calculated by Equation (26).

din(t) = I(t)− I(t− 1) (25)

dinside(t) = p(t− 1) + I(t)−O(t) (26)

din(0) = 0 and dinside(0) = 0 are defined since I(t − 1) and p(t − 1) do not exist in the

first execution time step. The flow rates can be derived from the result of Equation (25) and

the length of execution time step.

In Equation (26), when a packet loss occurs in a VNF, dinside(t) will remain high even after

the processing is over. However, this is not considered in this implementation. Additionally,

since the statistics recognized by the switch are measured in a state when a packet is first

input to the switch, a gap of size may occur depending on the presence or absence of the

NSH. This is dealt with by dividing the flow to which the packet is applied depending on

the presence or absence of the NSH and applying correction. Furthermore, the packet sent

to the SDN controller by the Packet-In message is directly output from the interface by the

Packet-Out message, and the flow table is not applied. Therefore, the obtained statistics do

not include information on such packet. For this, BRO corrects statistics by reading a file

that BRC writes the size of packets output by the Packet-Out message to.

Mutual conversion between the substance concentrations and the actual system values

BRO handles the conversion from the substance concentrations to the actual system values,

and vice versa. Therefore, we consider the convergence values of each substance when

defining the Reactions (15)–(24). For simplicity, here we assume a server that handles one

35

VNF and one SFC request. When λ is injection amount of PKT per unit time and the con-

centrations of VNF , RSRC , RS VNF , MEDIATE , PKT , GRAD , and toserve(VNF ,PKT)

at the execution time step t are V (t), Rs(t), Rv(t), M(t), P (t), G(t), and T (t), Equa-

tions (27)–(33) hold from the chemical kinetics. Note that, the diffusion reaction is not

described here for the reason described later.

dV (t)

dt
= −V (t)Rs(t)c1 + Rv(t)c2 + 2M (t)c5 − V (t)c6 (27)

dRs(t)

dt
= −V (t)Rs(t)c1 + Rv(t)c2 (28)

dRv(t)

dt
= V (t)Rs(t)c1 − Rv(t)c2 − Rv(t)P(t)c3 +M (t)c4 +M (t)c5 (29)

dM (t)

dt
= Rv(t)P(t)c3 −M (t)c4 −M (t)c5 (30)

dP(t)

dt
= −Rv(t)P(t)c3 +M (t)c4 + λ (31)

dG(t)

dt
= V (t)Rs(t)c8 + Rv(t)c9 −G(t)c10 (32)

dT (t)

dt
= M (t)c5 (33)

Further, since the amount of resources in the entire server is constant, when the amount of

resources in the entire server is R(0), Equation (34) always holds.

R(0) = Rs(t) + Rv(t) +M (t) (34)

From the above equations and that dX (t)
dt = 0 is hold when X(t) is in the steady state, the

convergence values of each substance other than toserve(VNF ,PKT) is obtained as in the

Equations (35)–(40). Here, the diffusion reaction can be ignored since the input and output

should be equal in the steady state.

lim
t→∞

V (t) =
2λ

c6
(35)

lim
t→∞

Rs(t) =
c2c6(R(0)c5 − λ)

c5(2λc1 + c2c6)
(36)

lim
t→∞

Rv(t) =
2λc1(R(0)c5 − λ)

c5(2λc1 + c2c6)
(37)

lim
t→∞

M (t) =
λ

c5
(38)

lim
t→∞

P(t) =
(c4 + c5)(2λc1 + c2c6)

2c1c3(R(0)c5 − λ)
(39)

lim
t→∞

G(t) =
2λ(R(0)c5 − λ)(c2c8 + c1c9)

c5c10(2λc1 + c2c6)
(40)

36

Besides, the generation rate of toserve(VNF ,PKT) is as shown in Equation (41).

dT (t)

dt
= λ (41)

From the above equations, it is expected that in the case of λ → R(0)c5 , the VNF cannot

process the packet and the concentration of PKT diverges. Therefore, let λmax = R(0)c5

be the maximum value of λ that can be processed. For the sake of simplicity in implemen-

tation, R(0) and c5 are fixed regardless of tuple spaces or VNFs, and do not change from

the start of the system.

The conversion from din(t) bytes, which is the input data size observed at a certain execution

time step t, to the concentration value of the PKT to be input at the next execution time step

can be expressed by the following Equation (42). In addition, according to the definition of

the substance, the concentration of MEDIATE is converted into a CPU resource allocation

amount L% for the VNF. The conversion can be represented by Equation (43).

PKT =
8din(t)

FmaxT
λmax (42)

L =
min(M (t), R(0))

R(0)
(Lmax − Lmin) + Lmin (43)

In these equations, T s is the length of an execution time step, Fmax bps is the maximum

flow rate that can be processed when CPU resources are allocated to the VNF at maximum,

and Lmax% and Lmin% are the maximum and minimum amounts of CPU resources that can

be allocated to the VNF. For conversion from the remaining data size waiting to be processed

in the VNF to the concentration of PKT to be updated at the next execution time step,

Equation (42) is used as din(t) ← dinside(t). Here, when dinside(t) has a negative value

due to an observation error, it is treated as 0. The values of Fmax, Lmax, and Lmin depend

on the relationship between the flow rate for the VNF and the CPU usage of the VNF. These

values are different for each VNF, and are confirmed experimentally in Subsection 5.6.2.

Exchange of substances between BRTSs

When exchanging the diffusion substances, two buffers are used; the concentration of the

substance received by the BRTS diffusion reaction is added to the first buffer, and the diffu-

sion destination is determined at the beginning of the next execution time step, and is moved

to the second buffer. For VNF , the diffusion destination is determined at random, and for

37

GRAD , the diffusion destination is determined stochastically according to the inverse ratio

of the concentration of GRAD in the connected tuple space. For example, considering the

case where the GRAD concentrations in tuple spaces a and b are 1,000 and 3,000, respec-

tively, GRAD in first buffer is moved to the second buffer of a or b with a probability of

0.75 and 0.25, respectively. According to the concentrations recorded in the second buffer,

the substances are injected into the tuple space at that execution time step.

4.3 Flow Routing

In this subsection, we describe the routing of flow packets in the implementation of the proposed

method.

4.3.1 Realization of Service Function Chaining

We first outline the implementation of SFC using NSH proposed by IETF [18].

NSH is a header added to flow packets to control the flow with an SFC request in the NFV

system. Figure 10 depicts the format of NSH. NSH is composed of three fields: Base Header, Ser-

vice Path Header, and Context Header. Base Header contains the basic information of NSH such

as version, header length, and payload information. Service Path Header contains the identifier of

a flow path and the state of SFC of the flow. Context Header contains the metadata. Figure 11

depicts the format of NSH Service Path Header, which stores information necessary to fulfill SFC

requests. Service Path Header is composed of Service Path Identifier (SPI) and Service Index (SI).

SPI uniquely identifies the flow path by having an ID of Service Function Path (SFP), which is de-

scribed below. SI indicates location information on the path. Therefore, by using the combination

of SPI and SI, the next VNF to be executed to the flow is determined.

Figure 12 depicts an example of the implementation design of SFC using NSH described in

RFC 8300 [18]. Here, Service Function (SF) means a function to be executed on a flow packet.

Service Function Forwarder (SFF) forwards the flow packet to the SF or SFF. Whereas an SFC

request includes a chain of functions, an SFP represents a flow path with the detailed location

information of a server where a required SF exists. This is used to forward the packet to the target

server according to the SFC request. Service Classifier (SC) is located at the entrance of the NFV

system, determines the SFP for the flow, and inserts the NSH into the packet.

38

RFC 8300 Network Service Header (NSH) January 2018

 overlay network; and if an existing overlay topology provides the
 required service path connectivity, that existing overlay may be
 used.

2. Network Service Header

 An NSH is imposed on the original packet/frame. This NSH contains
 service path information and, optionally, metadata that are added to
 a packet or frame and used to create a service plane. Subsequently,
 an outer transport encapsulation is imposed on the NSH, which is used
 for network forwarding.

 A Service Classifier adds the NSH. The NSH is removed by the last
 SFF in the service chain or by an SF that consumes the packet.

2.1. Network Service Header Format

 The NSH is composed of a 4-byte Base Header, a 4-byte Service Path
 Header, and optional Context Headers, as shown in Figure 2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Base Header |
 +-+
 | Service Path Header |
 +-+
 | |
 ˜ Context Header(s) ˜
 | |
 +-+

 Figure 2: Network Service Header

 Base Header: Provides information about the service header and the
 payload protocol.

 Service Path Header: Provides path identification and location
 within a service path.

 Context Header: Carries metadata (i.e., context data) along a
 service path.

Quinn, et al. Standards Track [Page 7]

Figure 10: The format of NSH [18]

RFC 8300 Network Service Header (NSH) January 2018

 The functionality of hierarchical NSH using a Next Protocol value
 of 0x4 (NSH) is outside the scope of this specification. Packets
 with Next Protocol values not supported SHOULD be silently dropped
 by default, although an implementation MAY provide a configuration
 parameter to forward them. Additionally, an implementation not
 explicitly configured for a specific experiment [RFC3692] SHOULD
 silently drop packets with Next Protocol values 0xFE and 0xFF.

2.3. Service Path Header

 Figure 4 shows the format of the Service Path Header:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Service Path Identifier (SPI) | Service Index |
 +-+

 Service Path Identifier (SPI): 24 bits
 Service Index (SI): 8 bits

 Figure 4: NSH Service Path Header

 The meaning of these fields is as follows:

 Service Path Identifier (SPI): Uniquely identifies a Service Function
 Path (SFP). Participating nodes MUST use this identifier for SFP
 selection. The initial Classifier MUST set the appropriate SPI for a
 given classification result.

 Service Index (SI): Provides location within the SFP. The initial
 Classifier for a given SFP SHOULD set the SI to 255; however, the
 control plane MAY configure the initial value of the SI as
 appropriate (i.e., taking into account the length of the SFP). The
 Service Index MUST be decremented by a value of 1 by Service
 Functions or by SFC Proxy nodes after performing required services;
 the new decremented SI value MUST be used in the egress packet’s NSH.
 The initial Classifier MUST send the packet to the first SFF in the
 identified SFP for forwarding along an SFP. If re-classification
 occurs, and that re-classification results in a new SPI, the
 (re-)Classifier is, in effect, the initial Classifier for the
 resultant SPI.

 The SI is used in conjunction with the Service Path Identifier for
 SFP selection and for determining the next SFF/SF in the path. The
 SI is also valuable when troubleshooting or reporting service paths.
 While the TTL provides the primary SFF-based loop prevention for this
 mechanism, SI decrement by SF serves as a limited loop-prevention

Quinn, et al. Standards Track [Page 11]

Figure 11: The format of NSH Service Path Header [18]

IPS 0

FireZall 1FireZall 0

SerYer0 SerYer1

NeWZRUk FlRZ

:¬

FireZall IPS

SFF

IQVeUW NSH

RePRYe NSH
SFF

SC

SFV

Packet
�63,:�0[000064
�6,:��0[FF

�63,:�0[000064
�6,:��0[FE

�63,:�0[000064
�6,:��0[FD

USdaWe NSHFireZall 0 IPS 0

FireZall 1 IPS 0

SFPV
SPI=0[000064

SPI=0[000065

SFC ReTXeVW

Figure 12: Example of implementation design of SFC using NSH

39

In Figure 12, an example where a packet of a flow having {Firewall→ IPS} as an SFC request

arrives at the NFV system is considered. Since the system has two firewalls, Firewall 0 and

Firewall 1, and one IPS, IPS 0, two SFPs of {Firewall 0→ IPS 0} and {Firewall 1→ IPS 0} can

be considered as SFPs for the flow. These candidates are managed by the SC. SC selects an SFP

from the candidates for the flow, and inserts the NSH into the packet of the flow arriving at the

system. When the SF processes a packet, the SF decrements the value of SI by one and forward the

packet to the corresponding SFF. When all SFs to process have been processed, the SFF removes

the NSH from the packet. Otherwise, the SFF forwards the packet to the next SF. In Figure 12,

{Firewall 0→ IPS 0} is selected as SFP for the flow. SC inserts into the packet the NSH in which

0x000064 is set as the SPI value and 0xFF is set as the SI value. The SFF sends the packet to

Firewall 0, Firewall is applied to the packet, and Firewall 0 decrements the SI value of the packet

by one. Then, the packet is forwarded by SFF to IPS 0, IPS is applied to the packet, and IPS 0

decrements the SI value of the packet by one. Finally, the SFF removes the NSH of the packet and

output the packet from the system.

For SFs that do not support NSH, an SFC proxy [31] performs mediation processing. The SFC

proxy is installed between the SF and the SFF, and removes the NSH to packets to be send to SF

and inserts the NSH again to packets which SF has been applied to.

4.3.2 Stochastic Selection of Flow Path

In the proposed method, the path of a packet is determined stochastically for each packet in each

tuple space. However, in NFV, the path of a packet is determined for each flow by centralized

control. In addition, when the path is determined stochastically for each packet, the packet may

loop, and an extra load may be applied to the system. Therefore, we propose stochastic selection

of a flow path for each flow using the proposed method. After the SFP is selected stochastically in

this way, the flow packets are forwarded using the NSH.

SC, SFF, and SF in Subsection 4.3.1 correspond to BRC, which is an SDN controller, SDN

switch, and VNF, respectively. BRO aggregates the GRAD information defined for each server’s

VNF and updates the SFP list and its selection probability. When a packet of a new flow arrives at

the SDN switch, the BRC stochastically selects an SFP to be applied to the flow based on a BRO’s

list of SFPs corresponding to the SFC request and the selection probability. This selection is made

in proportion to the GRAD concentrations corresponding to the VNFs in the SFP. According to

40

the selected SFP, BRC configures SDN switches for packet forwarding and NSH insertion, update,

and removing.

Figure 13 depicts an example of the stochastic selection of flow paths using the proposed

method. In the figure, an example where a packet of a flow having {Firewall→ IPS} as an SFC

request arrives at the NFV system is considered. Since the system has two firewalls, Firewall 0

and Firewall 1, and one IPS, IPS 0, two SFPs of {Firewall 0→ IPS 0} and {Firewall 1→ IPS 0}

can be considered as SFPs for the flow. In this case, the concentrations of GRAD in the tuple

spaces corresponding to Firewall 0 and Firewall 1 are 3,000 and 1,000, respectively.

Therefore, {Firewall 0→ IPS 0} or {Firewall 1→ IPS 0} is selected as SFP with a probability

of 0.75 and 0.25, respectively. According to the selected SFP, configurations for SDN switches

are executed, and packets of the flow packets are forwarded.

Since flow routing is performed for each flow by the above method, Reaction 24 is not defined

in each tuple space.

41

IPS 0

FLUeZaOO 1FLUeZaOO 0

SeUYeU0 SeUYeU1

:¬

SDN SZLWcK
SDN SZLWcK

BRC

VNFV

*5AD:�3,000 *5AD:�1,000

BRO

NeWZoUk FloZ

ConÀgXUe

FLUeZaOO 0 IPS 0

FLUeZaOO 1 IPS 0

SFPV

FLUeZaOO IPS

SFC ReqXeVW

Figure 13: Stochastic determination of flow path with the proposed method

42

5 Experiment Setup

We describe the preparations and preliminary experimental results for experimental evaluations.

5.1 Application Scenario

In this thesis, we consider a scenario of applying VNFs according to SFC requests for video

streaming service, as depicted in Figure 14. This environment consists of VNF servers, clients,

and a media server. SFC requests consists of firewall and IPS. There are three VNF servers in the

network, where one VNF is executed in each server. VNF 0 is for the firewall and VNF 1 and

VNF 2 realize IPS.

The client first sends a packet of a request flow to the media server. When the packet enters the

NFV environment, the system recognizes that a new flow arrives with an SFC request of {Firewall

→ IPS}. Since the system has one firewall, VNF 0, and two IPS, VNF 1 and VNF 2, two SFPs of

{VNF 0→ VNF 1} and {VNF 0→ VNF 2} can be considered for the flow. The system selects

one SFP from the candidates for the flow.

Next, the media server sends a packet of a response flow to the client. The flow is recognized

as a new flow with an SFC request of {Firewall}. For the flow, one SFP of {VNF 0} is considered

as the SFP candidate.

For both directions, after an SFP request for a new flow is accepted to the system, the following

packets of the flow can traverse between the client and the media server.

5.2 Environment of Experiments

Figure 15 depicts the network constructed for the experimental evaluations. The network consists

of three physical servers: a client, a media server, and an NFV server, each connected by 1 Gbps

ethernet. Table 2 shows the specifications of the three physical servers.

We constructed the NFV environment using OPNFV Fraser 6.2 in the NFV server. In Fig-

ure 15, Undercloud corresponds to Undercloud in OPNFV, Controller0 corresponds to a Controller

node in OPNFV, and Compute0, Compute1, and Compute2 correspond to Compute nodes in OP-

NFV. For the virtual switches implemented by OVS, br-admin is used for the admin network,

br-tenant is used for the tenant network, br-storage is used for the storage network, and

br-external is used for the public network. Furthermore, an instance vnf0 realizing VNF 0

43

...

ClieQW

Media¬SeUYeUVNF 0

VNF 2

VNF 1

ClieQW

VNF 0 VNF 1

VNF 0 VNF 2

VNF 0

VNF SeUYeU

VNF SeUYeU

VNF SeUYeU

FiUeZall IPS

FiUeZall

: FiUeZall aV VNF
: IPS aV VNF

SFC ReTXeVWV
ClienW → Media SeUYeU

Media SeUYeU → ClienW

SFPV
ClienW → Media SeUYeU

Media SeUYeU → ClienW

Figure 14: Application scenario

Table 2: Specifications of physical servers

CPU RAM OS Kernel

NFV Server Intel R©Xeon R©E5-2690 0 32 GB CentOS 7.5.1804 3.10.0-862

2.90 GHz, 8 cores

Client Intel R©Xeon R©E3-1290 V2 16 GB Ubuntu 18.04.1 LTS 4.15.0-43

3.70 GHz, 4 cores

Media Server Intel R©Xeon R©E3-1290 V2 16 GB Ubuntu 18.04.1 LTS 4.15.0-43

3.70 GHz, 4 cores

44

OYeUclRXd�CRQWURlleU0

YLUbU0

bU-adPLQ

bU-e[WeUQaO

192.168.122.1/24

192.2.0.99/24

192.168.37.199/24

UQdeUclRXd
192.168.122.167/24

192.168.37.1/24

OYeUclRXd�CRmSXWe0192.0.2.6/24

12.0.0.21/24

192.0.2.12/24
192.0.2.9/32
192.0.2.8/32

11.0.0.28/24

192.168.37.18/24
192.168.37.19/32

12.0.0.28/24
12.0.0.30/32

bU-
e[

�:�LLQX[�BULdge

�:�OSeQ�YSZLWcK

�:�PK\VLcaO�MacKLQe

�:�VLUWXaO�MacKLQe

�:�NIC

11.0.0.31/24

bU-
LQW

bU-
LQW

ClieQW

eQR3

eQS2V0

192.168.37.98/24

192.168.37.103/24

192.0.2.5/24

12.0.0.23/24

11.0.0.22/24

bU-
e[

Media�SeUYeU
eQS2V0

eQR4
192.168.37.99/24

192.168.37.104/24

192.0.2.1/24

192.0.2.10/24

12.0.0.29/24

11.0.0.29/24

TXnnel

172.16.1.10/24
192.168.37.213/24

172.16.1.4/24
192.168.37.210/24

OYeUclRXd�CRmSXWe1

bU-
LQW

bU-
e[

TXnnel

172.16.1.6/24
192.168.37.214/24

172.16.1.7/24
192.168.37.211/24

OYeUclRXd�CRmSXWe2

bU-
LQW

bU-
e[

TXnnel

172.16.1.14/24
192.168.37.215/24

172.16.1.3/24
192.168.37.212/24

YQeW0

YQeW1

YQeW2

YQeW7

YQeW12

YQeW10

YQeW9

YQeW4

YQeW16

YQeW6

YQeW18

YQeW15

YQeW13

YQeW3

YQeW5

YQeW8

YQeW17

YQeW14

YQeW11

bU-
adPLQ

bU-e[WeUQaO

YLUbU0

bU-
WeQaQW

bU-
VWRUage

eWK0

eWK2

eWK1

eWK0

eWK1

eWK2

eWK3

eWK0

eWK1

eWK2

eWK3

eWK0

eWK1

eWK2

eWK3

eWK0

eWK1

eWK2

eWK3

NFV Server

bU-cWOSOaQe

bU-e[-
LQW-SaWcK

bU-e[-
SaWcK

tape633
3457-c7

bU-e[-
SaWcK

WXQ5343
cbebb9b

bU-e[-
LQW-SaWcK

WXQe630
dee3c7f

eWK0WaS5039
9913-e3

eWK0WaS1b8c
748f-0a

bU-e[-
SaWcK

WXQ781b
6af6ade

bU-e[-
LQW-SaWcK

eWK0WaSe25c
60f0-a4

eWK0WaSf756
1dc2-2c

bU-e[-
SaWcK

WXQ49a6
2651932

bU-e[-
LQW-SaWcK

eWK0WaS7baf
6d13-bf

eWK0WaS206b
5759-51

NAT

NAT

NAT

bUWV0

YQf0

bUWV1

YQf1

bUWV2

YQf2

Figure 15: Experimental network configuration

45

exists in Compute0, an instance vnf1 realizing VNF 1 exists in Compute1, and an instance vnf2

realizing VNF 2 exists in Compute2. Each compute node also has instances brts0, brts1, and brts2

for implementing BRTS of the compute node as a VNF. BRTSs realized by brts0, brts1, and brts2

are called BRTS 0, BRTS 1, and BRTS 2, respectively. Table 3 shows the specifications of the

virtual servers.

The service of media server is implemented by NGINX [32] and is provided by HTTP. The

client and the media server are both connected to the public network.

5.3 VNF Implementations

The firewall is implemented by Netfilter [33]. Netfilter is a framework for packet filtering and

packet processing such as NAT in Linux kernel 2.4 or later. In this thesis, IPS is implemented

by combining Netfilter and Snort [34]. Snort is an open source network intrusion detection and

prevention system provided by Cisco Systems, Inc.

Figure 16 depicts packet processing flow in Netfilter. In Netfilter, packet processing is per-

formed by five chains of PREROUTING, FORWARD, INPUT, OUTPUT, and POSTROUTING.

When a packet to which a firewall is to be applied is input from a network interface, after passing

through PREROUTING, FORWARD, and POSTROUTING, the packet is output from a network

interface. When a packet to which IPS is applied is input to a network interface, after passing

through PREROUTING and INPUT, the packet is sent to Snort, which is implemented as a lo-

cal process. The packet to which Snort processing has been applied passes through OUTPUT and

POSTROUTING, and then is output from a network interface. In the setting of Netfilter and Snort,

filtering and alert rules are not set, and only simple forwarding is performed.

5.4 Flow Emulation for Video Streaming Service

We use httperf [16] to generate an HTTP flow imitating a video streaming service. The specific

flow setting is determined based on [35], describing a video streaming service such as YouTube.

On YouTube, the playback bit rate of 1080p video is about 3.60 Mbps, and data transmission is

performed at a higher speed than that. Two types of data transmission mechanisms are adopted

on YouTube. In the latter half of one mechanism, 32 to 128 KB of data is acquired in one round

trip, and the data is transmitted at an average of about 6.13 Mbps. We generate the flows imitating

46

Table 3: Specifications of virtual servers

CPU OS RAM Kernel

Undercloud Intel R©Xeon R©E5-2690 0 CentOS 7.4.1708 8 GB 3.10.0-693

2.90 GHz, 1 core

Controller Intel R©Xeon R©E5-2690 0 CentOS 7.4.1708 16 GB 3.10.0-693

2.90 GHz, 1 core

Computes Intel R©Xeon R©E5-2690 0 CentOS 7.4.1708 8 GB 3.10.0-693

2.90 GHz, 1 core

Instances Intel R©Xeon R©E312xx CentOS 7.7.1908 512 MB 3.10.0-862

2.90 GHz, 1 core

PREROUTING POSTROUTINGRRXWLQJ

INPUT
Local
ProceVV OUTPUT

FORWARD
IPS

FLUeZaOO

SQRUW

Figure 16: Packet processing flow in Netfilter

47

this by placing a 64 KB file on the media server and making 10 requests per connection from the

client. With this setting, when one connection is generated per second, a flow of 5 Mbps will flow,

and a flow of the 1080p video playback bit rate or higher will flow.

In the experiment, a flow from a plurality of clients is imitated by simultaneously generating

a plurality of the above-described connections. Hereinafter, the number of connections generated

per second set by httperf is referred to as connection rate.

5.5 Realization of Flow Routing by OpenFlow

Figure 17 depicts an overview of the flow processing in this experiment. Since VNFs handled in

this experiment do not support NSH by default, br-int plays the role of an SFC proxy. The col-

ors of the arrows indicate the state of each packet of the flow, orange indicates the original packet,

pink indicates the packet encapsulated by NSH, and purple indicates the packet encapsulated by

NSH and GRE. Note that modification of the header is not shown in this figure.

The packets of the flow from the client to the media server are processed as follows.

1. A packet that enter the NFV server from the client are forwarded to br-int of Compute0.

2. br-int of Compute0 inserts proper NSH into the packet.

3. br-int of Compute0 removes the NSH of the packet and then forwards the packet to vnf0.

4. Firewall is applied to the packet at vnf0 and vnf0 forwards the packet to br-int of Com-

pute0.

5. br-int of Compute0 inserts proper NSH into the packet.

6. br-int of Compute0 forwards packets to br-int of Compute1/2 by GRE tunneling.

7. br-int of Compute1/2 removes NSH and forwards packet to vnf1/2.

8. IPS is applied to the packet at vnf1/2 and vnf1/2 forwards the packet to br-int of Com-

pute1/2.

9. br-int of Compute1/2 inserts proper NSH into the packet.

10. br-int of Compute1/2 removes NSH and then forwards the packet to the media server.

48

NFV�SeUYeU
COLeQW

MedLa�SeUYeU

OYeUcORXd�CRPSXWe0

bU-
LQW

bU-
e[

TXQQeO
eWK1

eWK2
bU-e[-
SaWcK

WXQ

bU-e[-
LQW-SaWcK eWK0WaS

NAT

YQf0
YQeWA

YQeWB

bU-
e[WeUQaO

�:�OSeQ�YSZiWch �:�Ph\Vical�MachiQe

�:�ViUWXal�MachiQe�:�NIC

eQR3

eQS2V0

eQS2V0

eQR4

bU-
WeQaQW

YQeWC

YQeWD
OYeUcORXd�CRPSXWe1/2

bU-
LQW

bU-
e[

TXQQeO
eWK1

bU-e[-
SaWcK

WXQ

bU-e[-
LQW-SaWcK eWK0WaS

NAT

YQf1/2eWK2

: EQcaSVXOaWHd PacNHW (NSH)

: EQcaSVXOaWHd PacNHW (NSH + GRE)

: OULJLQaO PacNHW

(a) Flow from Client to Media Server

NFV�SeUYeU
COLeQW

MedLa�SeUYeU

OYeUcORXd�CRPSXWe0

bU-
LQW

bU-
e[

TXQQeO
eWK1

eWK2
bU-e[-
SaWcK

WXQ

bU-e[-
LQW-SaWcK eWK0WaS

NAT

YQf0
YQeWA

YQeWB

bU-
e[WeUQaO

eQR3

eQS2V0

eQS2V0

eQR4

bU-
WeQaQW

YQeWC

YQeWD
OYeUcORXd�CRPSXWe1/2

bU-
LQW

bU-
e[

TXQQeO
eWK1

bU-e[-
SaWcK

WXQ

bU-e[-
LQW-SaWcK eWK0WaS

NAT

YQf1/2eWK2

�:�OSeQ�YSZiWch �:�Ph\Vical�MachiQe

�:�ViUWXal�MachiQe�:�NIC
: EQcaSVXOaWed PacNeW (NSH)

: OUigiQaO PacNeW

(b) Flow from Media Server to Client

Figure 17: Flow routing on the experimental network

49

Besides, the packets of the flow from the media server to the client are processed as follows.

1. A packet that enter the NFV server from the client are forwarded to br-int of Compute0.

2. br-int of Compute0 inserts proper NSH into the packet.

3. br-int of Compute0 removes the NSH of the packet and then forwards the packet to vnf0.

4. Firewall is applied to the packet at vnf0 and vnf0 forwards the packet to br-int of Com-

pute0.

5. br-int of Compute0 inserts proper NSH into the packet.

6. br-int of Compute0 removes NSH and then forwards the packet to the client.

These processes are realized using the OpenFlow protocol.

In the OpenFlow protocol, a flow table is defined in the SDN switch. Zero or more entries can

be defined in one table, and each entry has the following elements.

Priority This indicates the priority in which the entry is referenced, with higher values giving

priority.

Rule This indicates the condition to which the entry is applied, and the judgment is made based

on the contents of the packet header, etc.

Action This indicates the processed performed when the entry is applied, such as header rewrit-

ing, transfer to other tables, and output from interface.

Statistics This records statistics such as the number of applied packets.

In the following description, flow tables are described as shown in Figure 18.

SPI and SI in Subsection 4.3.1 correspond to NSP and NSI, respectively. Then, {VNF 0 →

VNF 1}, {VNF 0 → VNF 2}, and {VNF 0} are made to correspond to NSP values 0, 1, and 2,

respectively. Figures 19 to 24 show the entries in the flow table set for each switch. When the

entries shown here are not applied, the default entries are applied. The forwarding among the

tables is not represented as an action, but is represented by an arrow in these figures. Here, TunID

is the ID used for default tunneling in the OpenStack environment, and SrcPort is the TCP port

50

PrioriW\
Table ID

RXle

AcWion

Figure 18: Example of flow table

priorit\ = 10

table = 0

In Port = eno3
TCP
Src IP Addr = Client's IP Addr
Dst IP Addr = Media SerYer's IP Addr

OXtpXt -> YnetA

priorit\ = 10

TCP
Src IP Addr = Media SerYer's IP Addr
Dst IP Addr = Client's IP Addr

OXtpXt -> YnetA

priorit\ = 5

TCP
Src IP Addr = Client's IP Addr
Dst IP Addr = Media SerYer's IP Addr

Mod Src MAC Addr -> Client's MAC Addr
Mod Dst MAC Addr -> Media SerYer's MAC Addr
OXtpXt -> eno4

priorit\ = 5

TCP
Src IP Addr =¬Media SerYer's IP Addr
Dst IP Addr = Client's IP Addr

Mod Src MAC Addr ->¬Media SerYer's MAC Addr
Mod Dst MAC Addr -> Client's MAC Addr
OXtpXt -> eno3

Figure 19: Flow entries on br-external of the NFV Server

51

priorit\ = 10

table = 0

In Port = eth2
TCP
Src IP Addr = Client's IP Addr
Dst IP Addr = Media SerYer's IP Addr

Output -> br-e[-int-patch

priorit\ = 10

In Port = br-e[-int-patch
TCP
Src IP Addr = Media SerYer's IP Addr
Dst IP Addr = Client's IP Addr

Output -> eth2

priorit\ = 10

In Port =¬br-e[-int-patch
TCP
Src IP Addr = Client's IP Addr
Dst IP Addr = Media SerYer's IP Addr

Output -> eth2

priorit\ = 10

In Port = eth2
TCP
Src IP Addr = Media SerYer's IP Addr
Dst IP Addr = Client's IP Addr

Output ->¬br-e[-int-patch

Figure 20: Flow entries on br-exs of Compute0, Compute1, and Compute2

52

SULRULW\ = 1000
WabOH = 0

IQ PRUW = bU-H[-SaWcK
TCP
SUc IP AddU = COLHQW'V IP AddU
DVW IP AddU = MHdLa SHUYHU'V IP AddU
EQcaS NSH (NSP = 0, NSI = 255)

SULRULW\ = 1000
IQ PRUW = WaS
WcS
SUc IP AddU = MHdLa SHUYHU'V IP AddU
DVW IP AddU = COLHQW'V IP AddU

SULRULW\ = 1000

SULRULW\ = 1000

IQ PRUW = bU-H[-SaWcK
TCP
SUc IP AddU = MHdLa SHUYHU'V IP AddU
DVW IP AddU = COLHQW'V IP AddU

IQ PRUW =¬WaS
WcS
SUc IP AddU = COLHQW'V IP AddU
DVW IP AddU = MHdLa SHUYHU'V IP AddU

EQcaS NSH (NSP = 2, NSI = 255)

EQcaS NSH (NSP = 0, NSI = 254)

EQcaS NSH (NSP = 2, NSI = 254)

SULRULW\ = 10
NSP = 0
NSI = 255

MRd NSI -> 254
DHcaS NSH
MRd DVW MAC AddU -> YQI0'V MAC AddU
OXWSXW -> WaS

SULRULW\ = 10
NSP = 2
NSI = 255

MRd NSI -> 254
DHcaS NSH
MRd DVW MAC AddU -> YQI0'V MAC AddU
OXSXW -> WaS

WabOH = 245

WabOH = 247
SULRULW\ = 10
NSP = 0
NSI = 254

EQcaS GRE
¬ ¬ ¬ (ID = TXQID, DVW IP AddU = CRPSXWH1'V IP AddU)
OXWSXW -> HWK1

SULRULW\ = 10
NSP = 2
NSI = 254

DHcaS NSH
OXWSXW -> HWK2

Figure 21: Flow entries on br-int of Compute0 (static routing)

53

SULRULW\ = 1000
WaEOH = 0

IQ PRUW = EU-H[-SaWFK
TCP
SUF IP AGGU = COLHQW'V IP AGGU
DVW IP AGGU = MHGLa SHUYHU'V IP AGGU
SUF TCP PRUW NXP = SUFPRUW

SULRULW\ = 1000
IQ PRUW = WaS
WFS
SUF IP AGGU = MHGLa SHUYHU'V IP AGGU
DVW IP AGGU = COLHQW'V IP AGGU

SULRULW\ = 1000

SULRULW\ = 1000

IQ PRUW = EU-H[-SaWFK
TCP
SUF IP AGGU = MHGLa SHUYHU'V IP AGGU
DVW IP AGGU = COLHQW'V IP AGGU

IQ PRUW =¬WaS
WFS
SUF IP AGGU = COLHQW'V IP AGGU
DVW IP AGGU = MHGLa SHUYHU'V IP AGGU
SUF TCP PRUW NXP = SUFPRUW

SULRULW\ = 10
NSP = 0
NSI = 255

MRG NSI -> 254
DHFaS NSH
MRG DVW MAC AGGU -> YQI0'V MAC AGGU
OXWSXW -> WaS

SULRULW\ = 10
NSP = 1
NSI = 255

MRG NSI -> 254
DHFaS NSH
MRG DVW MAC AGGU -> YQI0'V MAC AGGU
OXSXW -> WaS

WaEOH = 245

WaEOH = 247
SULRULW\ = 10
NSP = 0
NSI = 254

EQFaS GRE
¬ ¬ ¬ (ID = TXQID, DVW IP AGGU = CRPSXWH1'V IP AGGU)
OXWSXW -> HWK1

SULRULW\ = 10
NSP = 1
NSI = 254

SULRULW\ = 10
NSP = 2
NSI = 255

MRG NSI -> 254
DHFaS NSH
MRG DVW MAC AGGU -> YQI0'V MAC AGGU
OXSXW -> WaS

SULRULW\ = 10
NSP = 2
NSI = 254

DHFaS NSH
OXWSXW -> HWK2

SULRULW\ = 10
WaEOH = 1

EQFaS NSH (NSP = 0, NSI = 255)

SULRULW\ = 10
WaEOH = 2

EQFaS NSH (NSP = 1, NSI = 255)

SULRULW\ = 10
WaEOH = 5

EQFaS NSH (NSP = 2, NSI = 255)

SULRULW\ = 10
WaEOH = 3

EQFaS NSH (NSP = 0, NSI = 254)

SULRULW\ = 10
WaEOH = 4

EQFaS NSH (NSP = 1, NSI = 254)

SULRULW\ = 10
WaEOH = 6

EQFaS NSH (NSP = 2, NSI = 254)

SULRULW\ = 999
IQ PRUW = EU-H[-SaWFK
TCP
SUF IP AGGU = MHGLa SHUYHU'V IP AGGU
DVW IP AGGU = COLHQW'V IP AGGU
SHQG PaFNHW-IQ MHVVaJH WR CRQWUROOHU

SULRULW\ = 1000
IQ PRUW = EU-H[-SaWFK
TCP
SUF IP AGGU = COLHQW'V IP AGGU
DVW IP AGGU = MHGLa SHUYHU'V IP AGGU
SUF TCP PRUW NXP = SUFPRUW

SULRULW\ = 1000
IQ PRUW =¬WaS
WFS
SUF IP AGGU = COLHQW'V IP AGGU
DVW IP AGGU = MHGLa SHUYHU'V IP AGGU
SUF TCP PRUW NXP = SUFPRUW

EQFaS GRE
¬ ¬ ¬ (ID = TXQID, DVW IP AGGU = CRPSXWH2'V IP AGGU)
OXWSXW -> HWK1

Figure 22: Flow entries on br-int of Compute0 (dynamic routing)

54

SULRULW\ = 1000
NSP = 0
NSI = 254

WabOe = 0 WabOe = 246
SULRULW\ = 10
NSP = 0
NSI = 254

EQcaS NSH (NSP = 0, NSI = 253)

SULRULW\ = 1000
IQ PRUW =¬WaS
WcS
SUc IP AddU = COLeQW'V IP AddU
DVW IP AddU = MedLa SeUYeU'V IP AddU

MRd NSI -> 253
DecaS NSH
MRd DVW MAC AddU -> YQI1'V MAC AddU
OXWSXW -> WaS

WabOe = 247
SULRULW\ = 10
NSP = 0
NSI = 253

DecaS NSH
OXWSXW -> bU-e[-SaWcK

Figure 23: Flow entries on br-int of Compute1

SULRULW\ = 1000
NSP = 1
NSI = 254

WabOe = 0 WabOe = 246
SULRULW\ = 10
NSP = 1
NSI = 254

EQcaS NSH (NSP = 1, NSI = 253)

SULRULW\ = 1000
IQ PRUW =¬WaS
WcS
SUc IP AddU = COLeQW'V IP AddU
DVW IP AddU = MedLa SeUYeU'V IP AddU

MRd NSI -> 253
DecaS NSH
MRd DVW MAC AddU -> YQI2'V MAC AddU
OXWSXW -> WaS

WabOe = 247
SULRULW\ = 10
NSP = 1
NSI = 253

DecaS NSH
OXWSXW -> bU-e[-SaWcK

Figure 24: Flow entries on br-int of Compute2

55

number of the client uses. The IP address of the compute node used for tunneling by GRE is that

of the tenant network.

Of the entries shown, entries other than those shown in Figures 21 and 22 are configured

statically for all experiments. Figure 21 shows entries that are statically configured when the SFP

{VNF 0→ VNF 1} is statically selected for all flow packets from the client to the media server

without performing path control. On the other hand, the entries shown in Figure 22 are entries

that are configured when two candidates of SFPs, {VNF 0→ VNF 1} and {VNF 0→ VNF 2},

are stochastically selected for a packet of a flow from the client to the media server by performing

path control. The entries shown in yellow and purple in Figure 22 are dynamically added by BRC

when the SFP is selected by BRC each time a new flow comes in. When a new flow from the

client to the media server enters the system, a Packet-In message is sent to the controller from the

br-int of Compute0. BRC selects SFP, the yellow entry is added when {VNF 0→ VNF 1} is

selected, and the purple entry is added when {VNF 0→ VNF 2} is selected.

5.6 Preliminary Experiment

5.6.1 Correlation of the Length of Execution Time Step and CPU Usage of BRTS

As described in Subsection 4.2.2, this implementation sets the length of execution time step as the

initial value of τ in the τ -leaping method. Therefore, it is expected that the amount of calculation

will vary with the length of execution time step. BRTS is implemented as a VNF, and its CPU

usage is required to be as low as possible. Hence, we determine the optimal execution time step

experimentally.

In this experiment, we set various values as the initial value of τ and observe CPU usage of

BRTS. We execute BRTS on the instance without any connection with other components. In the

tuple space, Reactions (15)–(18) are defined, and each reaction rate constant is 1.0. In addition,

the initial values of the concentrations are set to 1,000 for VNF , 1,000 for RSRC , and 0 for the

others. Then, we perform experiments executing BRTS for 100 seconds with λ = 400. When the

initial value of τ is set to 100 ms, 500 ms, 1 s, 5 s, and 10 s, we observe the CPU usage of the

instance executing BRTS during the experiment using the top command every second, and set

the average value as a result. Each experiment is performed 5 times, and the results are shown in

Figure 25. The figure shows the averages of the results, the minimum results, and the maximum

56

results for each initial value of τ .

From this result, it is understood that the CPU usage rate of the instance executing BRTS

changes depending on the set value of the initial value of τ . When the initial value of τ is small,

the CPU usage increases because the number of executions of the τ -leaping method increases

simply. Additionally, when the initial value of τ is big, the CPU usage also increases because the

number of recursive executions of the τ -leaping method increases, since the number of reactions

increases and the concentration value becomes a large negative value. In below experiments, 1

second, which has the lowest average CPU usage, is set as the length of each execution time step.

5.6.2 Correlation of Flow Rate and CPU Usage of VNF

We determine the constant values for each type of VNF, which are used in Equations (42) and

(43). First, Lmax, which is the maximum value of the CPU resource allocated to the VNF, is set to

90% in order to be able to respond to environmental fluctuations such as rapid fluctuations in flow

rates and reductions in server resources.

It is known that there is a linear relationship between the flow rate processed by VNF and

the CPU usage of VNF [36, 37]. Hence, we determine Fmax and Lmin experimentally, where

Fmax bps is the maximum flow rate that can be processed when maximum CPU resources are

allocated to the VNF and Lmin% is the minimum value of CPU resources allocated to the VNF.

The connections are disconnected in 10 seconds. We execute httperf for 10 seconds with the

settings described in Subsection 5.4 and change the connection rate from 0 to 50, in 1 increments.

In this experiment, only one VNF is applied, and in VNF, firewall or IPS is realized according

to the experiment. In order to carry out the experiment, flow routing through only one VNF is

realized by configuring for switches on the path. According to the scenario described in Subsec-

tion 5.1, when experimenting with firewall, we set up so that packets in both directions between the

client and the media server are forwarded to VNF, and when experimenting with IPS, only packets

going from client to server are forwarded to VNF. Here, operations related to NSH are omitted,

and switches perform only simple forwarding. No filtering or alert rules are set for VNFs.

We observe the CPU usage of the instance realizing VNF during the experiment using the top

command every second. The second to ninth CPU usage values are extracted from the result, and

the averaged value is used as the CPU usage of VNF. Also, in order to observe whether the request

is being processed properly, the number of executed connections and the number of responses are

57

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
P

U
 U

sa
g

e
 (

%
)

Initial Value of τ (ms)

Figure 25: Effect of the initial value of τ on CPU usage of BRTS

58

obtained from the execution result of httperf. The experiment is performed 10 times for each

connection rate.

Figure 26 shows the relationships between the connection rate and the number of responses

per second, and Figure 27 shows the relationships between the number of responses per second

and CPU usage of VNF. For Figure 26, the line for the ideal case with 10 responses per connection

is also plotted. For Figure 27, the result of the linear approximation described later is also plotted.

From Figure 26, when the connection rate increases, the number of responses per second corre-

sponding to the connection rate cannot be obtained for both VNFs. From Figures 26 and 27, this

problem has not occurred at least until the connection rate at which CPU usage of VNF exceeds

80%. Therefore, it is expected that the CPU becomes a bottleneck and the number of responses

per second drops.

Next, values until the CPU is overloaded are extracted, and linear approximation is performed.

For each VNF, extract the result when the connection rate is from 0 to 15, and perform the linear

approximation by the least squares method. The results are shown in Equations (46)-(47) . Here,

yfw and yips indicate the CPU usage (%) and x′indicates the number of responses per second. The

significant figure is two digits. The coefficient of determination of each equation is also shown.

yfw = 0.53x′ + 10, R2 = 0.96 (44)

yips = 0.50x′ + 10, R2 = 0.95 (45)

As shown in Figure 27, the CPU usage varies, so the margin α is set to allow sufficient CPU

resources to be allocated.

yfw = 0.53x′ + 10 + α (46)

yips = 0.50x′ + 10 + α (47)

Figure 27 also plots each approximate line with α = 0 and α = 12 for both equations. Based on

this result, when the margin α is set to 12, the CPU usage is less than the expected value for all

attempts, so this value is set.

Since Equations (46) and (47) represent the number of responses per second, they are con-

verted into equations about to the flow rate. Confirming the total size of packets processed by

VNF when the response is returned correctly in the setting of this experiment from the OVS log,

these are 707,920 bytes for firewall and 17,618 bytes for IPS. Therefore, Equations (48) and (49)

59

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50

N
u
m

b
e
r

o
f
R

e
sp

o
n
se

s
P

e
r

S
e
c.

Connection Rate

Result of Exp.
y = 10x

(a) Firewall

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50

N
u
m

b
e
r

o
f
R

e
sp

o
n
se

s
P

e
r

S
e
c.

Connection Rate

Result of Exp.
y = 10x

(b) IPS

Figure 26: Relationships between the connection and the number of responses per second

60

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

C
P

U
 U

sa
g

e
 (

%
)

Number of Responses Per Sec.

Result of Exp.
y = 0.53x + 10

y = 0.53x + 10 + 12

(a) Firewall

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

C
P

U
 U

sa
g

e
 (

%
)

Number of Responses Per Sec.

Result of Exp.
y = 0.50x + 10

y = 0.50x + 10 + 12

(b) IPS

Figure 27: Relationships between the number of responses per second and CPU usage of VNF

61

for calculating the amount of CPU resource to be allocated to the VNF from the flow rate can be

defined. Here, x indicates a flow rate (Mbps).

yfw = 0.53x′ + 10 + 12

=
0.53× 1024× 1024× 10

707920× 8
x+ 10 + 12

≈ 0.98x+ 10 + 12 (48)

yips = 0.50x′ + 10 + 30

=
0.50× 1024× 1024× 10

17618× 8
x+ 10 + 12

≈ 150x+ 10 + 12 (49)

From these equations, the minimum amount of CPU resources allocated to VNFs in both the

firewall and the IPS Lmin is 22%. Further, since the maximum value of the CPU resource amount

allocated to the VNF is set to 90%, it can be calculated as Fmax,fw ≈ 69 Mbps and Fmax,ips ≈

0.45 Mbps. These constants are used in the following experiments. Note that these constants can

be changed online depending on the status of the server, etc.

5.6.3 Execution Results with Insufficient CPU Resources

When an insufficient value is selected as the CPU resources to be allocated to the VNFs in the

path, an experiment is performed to determine what the execution results of httperf will be

like.

In the scenario shown in Subsection 5.1, we consider the flow is routed statically without using

VNF 2. For each VNF, we use cpulimit with the settings shown in Table 4 and allocate 100%

as the CPU resource allocation amount and 22%, which is the lowest value that could be allocated

in this experiment. Using the flow described in the description in Subsection 5.4, we execute

httperf every 1 second for the connection rate of 1, 5, and 10, respectively. The connections are

set to be disconnected in 1 second. The number of replies per connection and the execution time

for each connection rate obtained from the execution result of httperf are shown in Figures 28

to 30.

First, in the result of Figure 28, the numbers of replies per connection are always 10 for all

connection rates. This indicates that all 10 requests in one connection are correctly processed. The

execution time is all within 1.2 seconds. In httperf, a connection is generated every number

62

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

(a) Connection rate = 1

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

(b) Connection rate = 5

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

(c) Connection rate = 10

Figure 28: httperf performance (no limitations)

63

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

(a) Connection rate = 1

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

(b) Connection rate = 5

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

(c) Connection rate = 10

Figure 29: httperf performance (set limitation to firewall)

64

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

(a) Connection rate = 1

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

(b) Connection rate = 5

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

(c) Connection rate = 10

Figure 30: httperf performance (set limitation to IPS)

65

of seconds obtained by dividing 1 second by the connection rate. Therefore, when the connection

rate is low, the execution time may be significantly less than 1 second. Conversely, when the

connection rate is high, the generation of the connection is performed at the end of the execution

time, so that even when the processing is performed correctly, the execution time may exceed 1

second.

Next, looking at the result of Figure 29, where CPU resources allocated to VNF 0 that realizes

firewall is set to 22%, when the connection rate is 10, the number of replies per connection is

sometimes less than 10. This indicates that the processing for the request is not performed correctly

as a result of frequent packet loss or timeout of the connection due to processing delay. In addition,

when the connection rate is 5 or 10, the execution time of httperf may greatly exceed every 1

second, and the execution time of httperf tends to be longer when the connection rate is higher.

This also indicates that the processing for the request is not performed correctly.

Finally, looking at the result of Figure 30, where CPU resources allocated to VNF 1 that

realizes IPS is set to 22%, the numbers of replies per connection are always 10 for all connection

rates. However, when the connection rate is 10, the execution time of httperf may greatly

exceed 1 second.

From the above results, when sufficient CPU resources are not allocated to the VNF, the num-

ber of replies per connection will be less than 10, or the execution time will take much more than 1

second. In the following experiments, we confirm that these problems do not occur by appropriate

allocation of CPU resources to VNFs using the proposed method.

5.6.4 Waiting Time Between Sending a Flow-Mod Message and a Packet-Out Message in

BRC

As described in Subsection 4.2.4, in implementation of BRC, we insert 20 ms wait between send-

ing a Flow-Mod message and a Packet-Out message. We describe the detail from the results of the

following experiment.

In the scenario shown in Subsection 5.1, we consider a flow is routed dynamically, but the path

using VNF 2 is not selected. Using the flow described in the description in Subsection 5.4, we

execute httperf every 1 second with the connection rate of 10. The amounts of CPU resources

allocated to the VNFs in the path is 100%. Figure 31(a) shows the number of replies per connection

and the execution time from the execution results of httperf. This result indicates that the

66

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Replies Per Connection
Execution Time

(a) httperf performance without wait insertion

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Replies Per Connection
Execution Time

(b) httperf performance with 20 ms wait insertion

Figure 31: Effect of wait insertion between Flow-Mod and Packet-Out messages

67

execution time is sometimes as long as 2 seconds or more even though sufficient CPU resources are

allocated to the VNFs in the path. Investigation revealed that this is due to the delay in modifying

the flow entry in switch.

In the environment of this experiment, when a new flow enters the system, a Packet-In message

is sent from br-int of Compute0 to the BRC. The BRC sends a Flow-Mod message for setting

an appropriate entry to the switch, and then sends the packet that triggered the Packet-In as a

Packet-Out directly to the VNF. The VNF processes and sends the packet back to switch. Here,

when the packet is sent back before the application of the setting of the new entry is completed

in the switch, there is no entry to be applied at that time, and appropriate flow routing is not

performed. The existence of a packet in which there is no entry to be applied is confirmed by

experiments.

Therefore, we insert a certain wait between sending a Flow-Mod message and a Packet-Out

message. The results of a same experiment performed when the wait time is set to 20 ms are

shown in Figure 31(b). At this time, the execution time does not become extremely long, so this

setting is applied to the following experiments.

68

Table 4: CPU usage of VNFs of the experiments in Subsection 5.6.3

Description VNF 0 (Firewall) VNF 1 (IPS) result

No Limitations 100% 100% Figure 28

Set Limitation to Firewall 22% 100% Figure 29

Set Limitation to IPS 100% 22% Figure 30

69

6 Evaluation Results and Discussions

In this section, we describe the details of the experimental evaluations, results, and discussions.

6.1 Scenario 1: Resource Allocation

6.1.1 Evaluation Scenario and Parameter Settings

We consider the scenario shown in Subsection 5.1 except that only VNF 0 and VNF 1 are used

while VNF 2 is not used. Therefore, flows are statically routed between the client and the media

server. The proposed system performs only dynamic resource allocation and does not conduct

diffusion-related reactions.

Table 5 summarizes the settings of experiments. In Exp. A, Exp. B, and Exp. C, httperf

is executed at every second for realizing a constant connection rate. These experiments confirm

that the concentrations of chemical substances converge to an appropriate value for flow rate and

that CPU resources are allocated to VNFs accordingly. We also assess that the flows are properly

processed. In Exp. D, the connection rate changes dynamically at every 50 seconds for confirming

the ability of the proposed method to follow fluctuations.

In tuple spaces for firewall and IPS servers, Reactions (15)–(18) are defined. Each reaction

rate constant is set to 1.0. In addition, the initial values of concentrations are set to 1,000 for VNF ,

1,000 for RSRC , and 0 for the others.

6.1.2 Experimental Results and Discussions

First, we show the results for Exp. A, Exp. B, and Exp. C, where the connection rates are constant.

The references for the results to the figures are summarized in Table 6.

In Figures 32, 36, and 40, plotting transitions of the concentrations of chemical substances in

each tuple space, the concentrations converge in around 5 seconds. Note that since the number

of executed reactions is determined stochastically in the proposed method, the concentrations

fluctuates even after the convergence.

In Figures 33, 37, and 41, plotting the changes of observed statistics, the values fluctuate

significantly while httperf generates connections at a constant rate. This affects directly the

concentrations of the chemical substances injected and updated in each tuple space. However, the

70

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

C
o

n
ce

n
tr

a
tio

n

Elapsed Time (s)

VNF
RSRC

RS_VNF
MEDIATE

PKT

(a) BRTS 0

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

C
o

n
ce

n
tr

a
tio

n

Elapsed Time (s)

VNF
RSRC

RS_VNF
MEDIATE

PKT

(b) BRTS 1

Figure 32: Concentrations of chemical substances for Exp. A

71

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 0 10 20 30 40 50 60 70 80 90 100

F
lo

w
 R

a
te

 (
b
p
s)

Elapsed Time (s)

VNF 0

(a) Flow rate for VNF 0

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 10 20 30 40 50 60 70 80 90 100

F
lo

w
 R

a
te

 (
b
p
s)

Elapsed Time (s)

VNF 1

(b) Flow rate for VNF 1

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 10 20 30 40 50 60 70 80 90 100

R
e
m

a
in

in
g
 D

a
ta

 S
iz

e
W

a
iti

n
g
 t
o
 b

e
 P

ro
ce

ss
e
d
 (

b
yt

e
s)

Elapsed Time (s)

VNF 0
VNF 1

(c) Remaining data size waiting to be processed

Figure 33: Observed statistics for Exp. A

72

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

A
llo

ca
te

d
 C

P
U

 R
e

so
u

rc
e

s
(%

)

Elapsed Time (s)

VNF 0
VNF 1

Figure 34: Allocated CPU resources for Exp. A

73

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

Figure 35: httperf performance for Exp. A

74

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

C
o

n
ce

n
tr

a
tio

n

Elapsed Time (s)

VNF
RSRC

RS_VNF
MEDIATE

PKT

(a) BRTS 0

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

C
o

n
ce

n
tr

a
tio

n

Elapsed Time (s)

VNF
RSRC

RS_VNF
MEDIATE

PKT

(b) BRTS 1

Figure 36: Concentrations of chemical substances for Exp. B

75

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 3x107

 3.5x107

 0 10 20 30 40 50 60 70 80 90 100

F
lo

w
 R

a
te

 (
b
p
s)

Elapsed Time (s)

VNF 0

(a) Flow rate for VNF 0

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 10 20 30 40 50 60 70 80 90 100

F
lo

w
 R

a
te

 (
b
p
s)

Elapsed Time (s)

VNF 1

(b) Flow rate for VNF 1

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60 70 80 90 100

R
e
m

a
in

in
g
 D

a
ta

 S
iz

e
W

a
iti

n
g
 t
o
 b

e
 P

ro
ce

ss
e
d
 (

b
yt

e
s)

Elapsed Time (s)

VNF 0
VNF 1

(c) Remaining data size waiting to be processed

Figure 37: Observed statistics for Exp. B

76

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

A
llo

ca
te

d
 C

P
U

 R
e

so
u

rc
e

s
(%

)

Elapsed Time (s)

VNF 0
VNF 1

Figure 38: Allocated CPU resources for Exp. B

77

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

Figure 39: httperf performance for Exp. B

78

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

C
o

n
ce

n
tr

a
tio

n

Elapsed Time (s)

VNF
RSRC

RS_VNF
MEDIATE

PKT

(a) BRTS 0

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

C
o

n
ce

n
tr

a
tio

n

Elapsed Time (s)

VNF
RSRC

RS_VNF
MEDIATE

PKT

(b) BRTS 1

Figure 40: Concentrations of chemical substances for Exp. C

79

 0

 1x107
 2x107
 3x107
 4x107
 5x107
 6x107
 7x107
 8x107
 9x107
 1x108

 0 10 20 30 40 50 60 70 80 90 100

F
lo

w
 R

a
te

 (
b
p
s)

Elapsed Time (s)

VNF 0

(a) Flow rate for VNF 0

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 1.6x106

 0 10 20 30 40 50 60 70 80 90 100

F
lo

w
 R

a
te

 (
b
p
s)

Elapsed Time (s)

VNF 1

(b) Flow rate for VNF 1

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 10 20 30 40 50 60 70 80 90 100

R
e
m

a
in

in
g
 D

a
ta

 S
iz

e
W

a
iti

n
g
 t
o
 b

e
 P

ro
ce

ss
e
d
 (

b
yt

e
s)

Elapsed Time (s)

VNF 0
VNF 1

(c) Remaining data size waiting to be processed

Figure 41: Observed statistics for Exp. C

80

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

A
llo

ca
te

d
 C

P
U

 R
e

so
u

rc
e

s
(%

)

Elapsed Time (s)

VNF 0
VNF 1

Figure 42: Allocated CPU resources for Exp. C

81

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

Figure 43: httperf performance for Exp. C

82

allocated resources to VNFs remains stable as shown in Figures 34, 38, and 42. Also, referring

to the result for the remaining data size waiting to be processed in VNFs, it sometimes takes

negative values. This is because of the difference in the update timing of the statistics in the

switches. Note that such negative values do not affect the behavior of the proposed system. There

are two possible solutions to this problem: extending the length of the execution time step and

using a moving average of the observed values. Extending the length of the execution time step,

the influence of one error in calculating the flow rate is reduced. As a result, the value is less

up and down. However, the solution has nothing to do with the remaining data size waiting to

be processed in the VNF, so its value does not change. Using a moving average of the observed

values, it takes time for the actual flow information to be correctly recognized by the system. As a

result, the tracking of the increase or decrease in traffic becomes slow. This behavior is the same

when the length of the execution time step is extended. This observation error is not addressed, as

it has no significant effect in this experiment.

In Figures 34, 38, and 42 for allocated CPU resources, it is observed that the concentrations

calculated from the Equations (48) and (49) as the CPU resources for VNFs are almost correctly

allocated after the concentrations have converged.

In Figures 35, 39, and 43, plotting httperf performance, all requests have been processed

for all experiments. The execution time did not greatly exceed 1 second except for a few seconds

after the start of the experiment, where CPU resources are insufficient for the flow rate.

We next discuss the results for Exp. D, in which the connection rate changes dynamically

during the experiment. As shown in Figures 44 and 46, we can observe that the concentrations

converge to appropriate values in short time after the changes in the flow rate. This results in the

efficient allocation of CPU resources to VNFs. Figure 47 shows that all httperf requests were

appropriately processed and the execution time did not significantly exceed 1 second.

From these results, we confirmed that the proposed method can dynamically and adaptively

allocate CPU resources to the VNFs.

83

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

C
o

n
ce

n
tr

a
tio

n

Elapsed Time (s)

VNF
RSRC

RS_VNF
MEDIATE

PKT

(a) BRTS 0

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140

C
o

n
ce

n
tr

a
tio

n

Elapsed Time (s)

VNF
RSRC

RS_VNF
MEDIATE

PKT

(b) BRTS 1

Figure 44: Concentrations of chemical substances for Exp. D

84

 0

 1x107

 2x107

 3x107

 4x107

 5x107

 6x107

 7x107

 0 20 40 60 80 100 120 140

F
lo

w
 R

a
te

 (
b
p
s)

Elapsed Time (s)

VNF 0

(a) Flow rate for VNF 0

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 0 20 40 60 80 100 120 140

F
lo

w
 R

a
te

 (
b
p
s)

Elapsed Time (s)

VNF 1

(b) Flow rate for VNF 1

-2x106
-1.8x106
-1.6x106
-1.4x106
-1.2x106

-1x106
-800000
-600000
-400000
-200000

 0
 200000

 0 20 40 60 80 100 120 140

R
e
m

a
in

in
g
 D

a
ta

 S
iz

e
W

a
iti

n
g
 t
o
 b

e
 P

ro
ce

ss
e
d
 (

b
yt

e
s)

Elapsed Time (s)

VNF 0
VNF 1

(c) Remaining data size waiting to be processed

Figure 45: Observed statistics for Exp. D

85

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

A
llo

ca
te

d
 C

P
U

 R
e

so
u

rc
e

s
(%

)

Elapsed Time (s)

VNF 0
VNF 1

Figure 46: Allocated CPU resources for Exp. D

86

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

Figure 47: httperf performance for Exp. D

87

6.2 Scenario 2: Resource Allocation and Flow Routing

6.2.1 Evaluation Scenario and Parameter Settings

We consider the scenario shown in Subsection 5.1. Therefore, flows are dynamically routed be-

tween the client and the media server. The proposed system performs dynamic resource allocation

and flow routing.

The experiment performed in this subsection is called Exp. E. In Exp. E, httperf is executed

at every second for realizing the constant connection rate for 100 seconds.

For the first 50 seconds, VNF 2 is not available, and BRTS 2 is not connected to other tuple

spaces. Therefore, VNF 1 processes all flows that IPS should be applied to. 50 seconds after the

start of the experiment, VNF 2 becomes available, and BRTS 2 is connected to other tuple spaces.

For simplicity in this implementation, Compute0 executes only one firewall, and Compute1 and

Compute2 execute only one IPS. Additionally, BRTS 2 is connected to other tuple spaces from the

beginning of the experiment, but does not exchange substances. It starts exchange of substances

when 50 seconds have elapsed. The substances are exchanged only between BRTS 1 and BRTS 2.

This experiment confirm that the stochastic flow routing based on the concentrations also works

properly.

In BRTS 0 for firewall, Reactions (15)–(18) are defined. The initial values of the concen-

trations are set to 1,000 for VNF , 1,000 for RSRC , and 0 for the others. In BRTS 1 for IPS,

Reactions (15)–(23) are defined. The initial values of the concentrations are set to 1,000 for VNF ,

1,000 for RSRC , and 0 for the others. In BRTS 2 for IPS, Reactions (15)–(23) are defined. The

initial values of the concentrations are set to 1,000 for VNF and 0 for the others. Additionally,

each reaction rate constant is set to 0.2, for the reason described below.

6.2.2 Experimental Results and Discussion

We show the result for Exp. E. The references for the results to the figures are summarized in

Table 7. Note that the results for VNF 2 and BRTS 2 except Figure 51 are plotted for the post-

connection values only.

In Figure 48, convergence values are the same as Exp. C in the first 50 seconds, when VNF 2

is unavailable and BRTS 2 is not connected. Figure 51 shows that the SFP {VNF 0→ VNF 1} is

selected for all flows from the client to the media server in this period. However, the concentrations

88

Table 5: Parameters for experiments in Subsection 6.1

Exp. ID Connection rate Exp. duration (s)

A 1 100

B 5 100

C 10 100

D 5, 10, 5 150

Table 6: Reference to figures in Subsection 6.1

Exp. ID Concentrations of Observed Allocated httperf

Chemical Substances Statistics CPU Resources Performance

A Figure 32 Figure 33 Figure 34 Figure 35

B Figure 36 Figure 37 Figure 38 Figure 39

C Figure 40 Figure 41 Figure 42 Figure 43

D Figure 44 Figure 45 Figure 46 Figure 47

Table 7: Figures depicting experimental results in Subsection 6.2

Exp. ID Concentrations of Observed Allocated Selection httperf

Chemical Substances Statistics CPU Resources of Path Performance

E Figure 48 Figure 49 Figure 50 Figure 51 Figure 52

89

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

C
o

n
ce

n
tr

a
tio

n

Elapsed Time (s)

VNF
RSRC

RS_VNF
MEDIATE

PKT

(a) BRTS 0

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

C
o

n
ce

n
tr

a
tio

n

Elapsed Time (s)

VNF
RSRC

RS_VNF
MEDIATE

PKT
GRAD

(b) BRTS 1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

C
o

n
ce

n
tr

a
tio

n

Elapsed Time (s)

VNF
RSRC

RS_VNF
MEDIATE

PKT
GRAD

(c) BRTS 2

Figure 48: Concentrations of chemical substances for Exp. E

90

 0

 1x107

 2x107

 3x107

 4x107

 5x107

 6x107

 7x107

 0 10 20 30 40 50 60 70 80 90 100

F
lo

w
 R

a
te

 (
b
p
s)

Elapsed Time (s)

VNF 0

(a) Flow rate for VNF 0

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 1.6x106

 1.8x106

 0 10 20 30 40 50 60 70 80 90 100

F
lo

w
 R

a
te

 (
b
p
s)

Elapsed Time (s)

VNF 1
VNF 2

(b) Flow rate for VNF 1 and VNF 2

-200000

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 0 10 20 30 40 50 60 70 80 90 100

R
e
m

a
in

in
g
 D

a
ta

 S
iz

e
W

a
iti

n
g
 t
o
 b

e
 P

ro
ce

ss
e
d
 (

b
yt

e
s)

Elapsed Time (s)

VNF 0
VNF 1
VNF 2

(c) Remaining data size waiting to be processed

Figure 49: Observed statistics for Exp. E

91

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

A
llo

ca
te

d
 C

P
U

 R
e

so
u

rc
e

s
(%

)

Elapsed Time (s)

VNF 0
VNF 1
VNF 2

Figure 50: Allocated CPU resources for Exp. E

92

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

F
lo

w
s

Elapsed Time (s)

{VNF 0 -> VNF 1}
{VNF 0 -> VNF 2}

Figure 51: Number of flows to which each SFP is selected for flows from the client to the media

server for Exp. E

93

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
u
m

b
e
r

o
f
R

e
p
lie

s
P

e
r

C
o
n
n
e
ct

io
n

E
xe

cu
tio

n
 T

im
e
 (

s)

Elapsed Time (s)

Number of Replies
Per Connection

Execution Time

Execution Time = 1

Figure 52: httperf performance for Exp. E

94

converge in around 20 seconds, while the concentrations converge in around 5 seconds in Exp. C,

whose connection rate of httperf is the same. This is because each reaction rate constant is

changed from 1.0 to 0.2, and the execution speed of each biochemical reaction is reduced. This

change is made to solve the problem that would occur when performing this experiment with

each reaction rate constant set to 1.0. With the reaction rate constants, the calculation in BRTS

does not end within 1 second, which is the length of the execution time step. Then, the length

of the execution time step cannot be maintained for the entire system. This problem occurs, for

example, immediately after the start of the experiment, when the substance concentration takes

a value far apart from the convergence value. Additionally, since many types of reactions have

been defined, the total number of reactions is very large. Then, the recursive calculation process

of BRTS described in Subsection 4.2.2 is executed a lot. As the result, execution time is very long.

As a solution to this problem, in this experiment, each reaction rate constant is changed from 1.0

to 0.2. However, the reaction rate constant is originally a parameter to be determined according to

the transient characteristics and the degree of overshoot. Therefore, an ideal solution is to improve

the performance of the machine realizing BRTS so that the calculation is completed within an

execution time step.

We next discuss the latter half of 50 seconds, when VNF 2 is available and BRTS 2 is con-

nected.

In Figure 48, BRTS 0 has not changed since the first half. In BRTS 1, immediately after

BRTS 2 is connected, the concentration of GRAD decreases and then increases. This decrease

is due to the diffusion of GRAD to BRTS 2. This increase is due to the reaction toward the

convergence value. In BRTS 2, each concentration go to the convergence value after connection

to the system. The convergence values become the same as BRTS 1.

In Figure 51, we can observe that SFP {VNF 0 → VNF 2} is selected for the flow from the

client to the media server little after the connection of BRTS 2. As the experiment progresses, the

SFP using VNF 1 and the SFP using VNF 2 are stochastically selected with the same probabil-

ity. This indicates that the flow routing is properly performed according to the concentrations of

GRAD in each tuple space. As a result, the flow rate for each VNF also changes. It affects the

concentrations in the Figure 48. In the setting of this experiment, each SFP is finally selected with

the same probability, but it is also possible to change this control by changing the reaction rate

constants [12]. For example, in cloud edge computing, it is possible to control to use only VNFs

95

executed in the edge below a certain flow rate, and to use VNFs executed in the cloud above that.

In Figure 50 for allocated CPU resources, it is observed that the resources calculated from the

Equations (48) and (49) as the CPU resources for VNFs are almost correctly allocated after the

concentrations have converged.

In Figure 52, plotting httperf performance, all requests have been processed for all experi-

ments. The execution time did not greatly exceed 1 second except for a few seconds after the start

of the experiment, where CPU resources are insufficient for the flow rate.

From these results, we confirmed that the proposed method can dynamically and adaptively

route the flows.

96

7 Conclusion and Future Work

In this thesis, we implemented a construction method of service space in virtualized network sys-

tem based on biochemically-inspired tuple space model as components on the NFV framework

proposed by ETSI ISG for confirming the applicability and effectiveness of the proposed method

in the actual NFV environment. In detail, we exploited an NFV environment using OPNFV and

implemented the proposed NFV management system as a system of four main components. By ex-

tensive experimental evaluations, we showed that the proposed NFV management system worked

properly with OPNFV for realizing video streaming services, in terms of adaptively allocating

server resources to VNFs in accordance with the amount of traffic. It is also shown that the pro-

posed system can dynamically distribute incoming flows to multiple VNFs for load balancing.

For future work, we plan to propose a method to automatically determine the parameters for

VNFs required to convert between actual values and substance concentrations for avoiding prelim-

inary experiments as in Subsection 5.6.2 in this thesis. It is also necessary to extend the proposed

method to include more factors of the actual network environment, such as the effect of the prop-

agation delays and the link bandwidths of the underlying networks.

97

Acknowledgments

My masterʟs degree studies are supported by many people. I would like to thank them for helping.

First, I would like to express my deepest gratitude to my supervisor, Professor Morito Matsuoka.

He taught my attitude towards research and gave my support and useful comments in various

situations. Additionally, I would like to show my greatest appreciation to Professor Masayuki

Murata. He gave me insightful and incisive advice. Thanks to him, I was able to refine my

research without losing sight of its direction. Furthermore, I would like to express the deepest

appreciation to Professor Go Hasegawa. I was able to write this thesis because he taught me

cordially how to do research. His advice was accurate and encouraging and he has supported my

trial and error patiently. Also, I would like to appreciate to Assistant Professor Yuya Tarutani. He

gave me beneficial comments about my research and life in the laboratory. Moreover, I would like

to thank to students of Matsuoka Laboratory for their support of my research and laboratory life.

Finally, I truly thank my friends and colleagues in Osaka University, for their great encouragement

and support.

98

References

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of

Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communi-

cations Surveys & Tutorials, vol. 17, no. 4, pp. 2347–2376, Fourthquarter 2015.

[2] ETSI, “Network Functions Virtualisation - White Paper1.” available at

https://portal.etsi.org/nfv/nfv white paper.pdf.

[3] K. Ingham and S. Forrest, “A History and Survey of Network Firewalls,” tech. rep., Univer-

sity of New Mexico, Jan. 2002.

[4] M. Finsterbusch, C. Richter, E. Rocha, J.-A. Muller, and K. Hanssgen, “A Survey of

Payload-Based Traffic Classification Approaches,” IEEE Communications Surveys & Tu-

torials, vol. 16, no. 2, pp. 1135–1156, Oct. 2013.

[5] D. Wing, “Network Address Translation: Extending the Internet Address Space,” IEEE In-

ternet Computing, vol. 14, no. 4, pp. 66–70, June 2010.

[6] M. Olsson, S. Rommer, C. Mulligan, S. Sultana, and L. Frid, SAE and the Evolved Packet

Core: Driving the Mobile Broadband Revolution. Academic Press, Aug. 2009.

[7] ETSI, “Network Functions Virtualisation - White Paper2.” available at

https://portal.etsi.org/nfv/nfv white paper2.pdf.

[8] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy, “A Distributed Re-

source Management Architecture that Supports Advance Reservations and Co-allocation,” in

Proceedings of 1999 Seventh International Workshop on Quality of Service, pp. 27–36, May

1999.

[9] M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli, “Spatial Coordination of Pervasive

Services through Chemical-Inspired Tuple Spaces,” ACM Transactions on Autonomous and

Adaptive Systems (TAAS), vol. 6, no. 14, pp. 1–24, June 2011.

[10] G. Hasegawa and M. Murata, “Biochemically-inspired Method for Constructing Service

Space in Virtualized Network System,” in Proceedings of ICIN 2016, Mar. 2016.

99

[11] K. Sakata, “Adaptive and Autonomous Placement Method of Virtualized Network Functions

based on Biochemical Reactions,” Master’s thesis, Osaka University, Feb. 2018.

[12] R. Kurokawa, “Biochemically-inspired, Adaptive, and Autonomous VNF Control for Ser-

vice Function Chaining,” Master’s thesis, Osaka University, Feb. 2019.

[13] ETSI GS NFV 002, “Network Functions Virtuali-

sation (NFV); Architectural Framework.” available at

http://www.etsi.org/deliver/etsi gs/nfv/001 099/002/01.01.01 60

/gs nfv002v010101p.pdf.

[14] ETSI GS NFV 005, “Network Functions Virtualisation (NFV); Ecosys-

tem; Report on SDN Usage in NFV Architectural Framework.” available at

https://www.etsi.org/deliver/etsi gs/NFV-EVE/001 099/005/01.01

.01 60/gs nfv-eve005v010101p.pdf.

[15] “OPNFV: Home.” available at https://www.opnfv.org.

[16] “GitHub - httperf/httperf: The httperf HTTP load generator.” available at

https://github.com/httperf/httperf.

[17] “Home - OpenDaylight.” available at https://www.opendaylight.org.

[18] “Network Service Header (NSH).” available at https://www.rfc-editor.org/rfc

/pdfrfc/rfc8300.txt.pdf.

[19] R. N. Goldberg, Y. B. Tewari, D. Bell, and K. Fazio, “Thermodynamics of Enzyme-Catalyzed

Reactions,” Sience Direct, vol. 20, no 16, pp. 2874–2877, Dec. 2004.

[20] L. Michaelis, M. L. Menten, K. A. Johnson, and R. Goody, “The Original Michaelis Con-

stant: Translation of the 1913 Michaelis-Menten Paper,” Biochemistry, vol. 50, pp. 8264–

8269, Sep. 2011.

[21] R. Mijumbi, J. Serrat, and J.-L. Gorricho, “Network Function Virtualization: State-of-the-art

and Research Challenges,” IEEE Communications Surveys & Tutorials Tutorials, vol. 18, no.

1, pp. 236–262, Sep. 2015.

100

[22] R. Mijumbi, J. Serrat, J.-L. Gorricho, S. Latré, M. Charalambides, and D. Lopez, “Manage-

ment and Orchestration Challenges in Network Function Virtualization,” IEEE Communica-

tions Magazine, vol. 54, no. 1, pp. 98–105, Jan. 2016.

[23] “Home - OpenStack is open source software for creating private and public clouds.” available

at https://www.openstack.org.

[24] S. G. Soriga and M. Barbulescu, “A Comparison of the Performance and Scalability of Xen

and KVM Hypervisors,” in Proceedings of 2013 RoEduNet International Conference 12th

Edition: Networking in Education and Research, Sept. 2013.

[25] “Open vSwitch.” available at http://www.openvswitch.org.

[26] H. Li, Y. Cao, L. Petzold, and D. T. Gillespie, “Algorithms and Software for Stochastic Sim-

ulation of Biochemical Reacting Systems,” Biotechnology Progress, vol. 24, no 1, pp. 56–61,

Feb. 2008.

[27] C. V. Rao and A. Arkin, “Stochastic Chemical Kinetics and the Quasi-steady-state Assump-

tion: Application to the Gillespie Algorithm,” Journal of Chemical Physics, vol. 118, no 11,

pp. 4999–5010, Aug. 2002.

[28] Y. Cao, D. T. Gillespie, and L. R. Petzold, “Avoiding Negative Populations in Explicit Pois-

son Tau-Leaping,” The Journal of Chemical Physics, vol. 123, no 5, 2005.

[29] “CPU limit.” available at http://cpulimit.sourceforge.net.

[30] “OpenFlow Switch Specification.” available at https://www.opennetworking.org

/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf.

[31] “Service Function Chaining (SFC) Architecture.” available at

https://www.rfc-editor.org/rfc/pdfrfc/rfc7665.txt.pdf.

[32] “NGINX — High Performance Load Balancer, Web Server, & Reverse Proxy.” available at

https://www.nginx.com.

[33] “netfilter/iptables project homepage - The netfilter.org project.” available at

https://www.netfilter.org.

101

[34] “Snort - Network Instruction Detection & Prevention System.” available at

https://www.snort.org.

[35] H. Hisamatsu, G. Hasegawa, and M. Murata, “Network Friendly Transmission Control for

Progressive Download over TCP,” Journal of Communications, vol. 7, no. 14, pp. 213–221,

Mar. 2012.

[36] L. Cherkasova and R. Gardner, “Measuring CPU Overhead for I/O Processing in the Xen Vir-

tual Machine Monitor,” in Proceedings of USENIX Annual Technical Conference, pp. 387–

390, Apr. 2005.

[37] Z. Meng, J. Bi, H. Wang, C. Sun, and H. Hu, “CoCo: Compact and Optimized Consolidation

of Modularized Service Function Chains in NFV,” in Proceedings of 2018 IEEE Interna-

tional Conference on Communications (ICC), pp. 1–7, May 2018.

102

