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Preface

Cybersecurity is actively studied because cyberattacks can damage enterprise reputations and cause

enormous financial losses. Multi-layered defenses, which are combinations of various detection

systems to improve detection capabilities, are generally deployed to mitigate diverse and dynamically

changing attacks. Detection systems can be roughly categorized according to two perspectives:

detection targets or input data. The systems can be divided according to detection targets into those

for pre-infection and post-infection detection. The systems can be further divided according to input

data into those for network-based and host-based detection.

In this thesis, we focus on network-based detection systems, because they are effective for both

pre-infection and post-infection detection. Effective network-based detection requires exhaustive

beforehand collection of malicious communications, which has become difficult because attackers

are employing anti-analysis techniques. Specifically, attackers use cloaking to conceal malicious

websites and use environment-aware malware to conceal communications between malware samples

and attackers. In this thesis, we propose systems and a method for overcoming such anti-analysis

techniques.

First, we propose a system for detecting malicious websites without collecting all malicious data.

Compromised websites have similar traits because attackers use search engines to automatically

discover vulnerable websites. We therefore build a classifier by leveraging both malicious and

compromised websites. The proposed system detects 143 more malicious websites employing

anti-analysis techniques than does a conventional system. This system enhances exhaustiveness of

collected malicious websites and improves detection capabilities for network-based pre-infection

detection.

. v .



Next, we propose a system for detecting communications to malicious websites from simple logs

such as proxy logs. We focus on sequences of destination URLs, because some artifacts of malicious

redirections can be extracted from simple logs by considering several nearby URLs. We compare

three approaches for classifying URL sequences: an individual-based approach, a convolutional

neural network (CNN), and a novel event de-noising CNN (EDCNN). Evaluation results show that

only our EDCNN achieves practical classification performance, a true positive rate (TPR) of 99.1%

and a false positive rate of 3.4%. Using detected malicious communications, we can improve

capabilities for network-based pre-infection detection.

Then, we propose a system for efficiently collecting HTTP requests with dynamic malware

analysis. Specifically, our system analyzes a malware sample over a short period, then determines

whether analysis should be continued or suspended. In the proposed system, we apply a recursive

neural network, which has recently exhibited high classification performance in the field of natural

language processing. In an evaluation with 42,856 malware samples, our proposed system collects

94% of novel HTTP requests and reduces analysis time by 82% in comparison with a system that

continues all analyses. We can improve network-based post-infection detection by using the collected

HTTP requests.

We also propose a method for detecting dynamically changing attacks even when some malicious

communications cannot be collected by anti-analysis techniques. Specifically, we investigate how to

improve existing deep neural network-based systems in terms of detecting unknown families, namely

new types of malicious websites or malware samples. We focus on the tendency that some features

are inherent across different families because malicious data include similar code or produce similar

behaviors to exploit vulnerabilities or to cost-effectively achieve a successful attack. Therefore,

we build a classifier that prioritizes family-invariant features. Our evaluation results show that our

method outperforms conventional optimization methods, which optimizes a classifier only so that

it accurately classifies malicious and benign data, by at most 19%, 19%, and 7% in terms of TPR

for malicious websites, Android applications, and PE files, respectively. This method can improve

network-based detection and compensate for degradation caused by anti-analysis techniques.
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Chapter 1

Introduction

1.1 Background

Advancement of information and communication technologies has increased the number of available

Internet-based services. With the growing number of personal computers, Internet of Things (IoT)

devices, and enterprise infrastructures connected to the Internet, malware-infected hosts have caused

more and more critical damage. In 2016, for example, over 200,000 hosts in over 150 countries were

infected with ransomware called WannaCry [23], and IoT malware called Mirai conducted serious

distributed denial of service (DDoS) attacks [5]. In 2018, nearly $500 million in cryptocurrency

was stolen from a cryptocurrency exchange [13]. Since such cyberattacks can disrupt enterprise

reputations and cause enormous financial loss, cybersecurity is actively studied.

Cybersecurity systems must accurately detect malware infections, but delivery campaigns and

malware behaviors are diverse and changing. Delivery campaigns can be roughly divided into

two types: drive-by download attacks that lure victims to malicious websites and exploit browser

or plugin vulnerabilities [34, 86] and social engineering attacks that use email or malicious web

advertisements to make victims install malware themselves [57, 79]. Malware behavior differs

depending on attacker goals, such as data exfiltration [16], file encryption [23], or DDoS attacks [5].

Moreover, delivery campaigns and malware behaviors adapt to evade detection systems. Specifically,

attackers continuously modify their exploited vulnerabilities, malicious website domains, spam email

– 1 –



1.1 Background

Figure 1.1: Multi-layered defense and contributions of this thesis.

text, utilized application programming interfaces (API), and domains for communication by infected

hosts [11, 38, 49].

Multi-layered defenses, which are combinations of various detection systems to improve de-

tection capabilities, are generally deployed to mitigate diverse and dynamically changing attacks

(Fig. 1.1). Detection systems can be roughly categorized according to two perspectives: detection

targets or input data. The systems can be divided according to detection targets into those for pre-

infection and post-infection detection, where pre-infection detection focuses on delivery campaigns

and malware themselves, and post-infection detection focuses on malware behavior after an infec-

tion. The systems can be further divided according to input data into those for network-based and

host-based detection, where network-based detection uses communications monitored on a network

as input data, while host-based detection uses API calls and registry accesses on a host. By combin-

ing different types of detection systems, multi-layered defense becomes robust against diverse and

changing attacks. Even if attackers evade some systems, damage can be prevented when at least one

system can detect a malware infection.

In this thesis, we focus on network-based detection systems, because they are effective for both
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pre-infection and post-infection detection. Host-based detection is not always effective for post-

infection detection, because it may be disabled by malware that terminate processes and services

associated with anti-virus software [1, 45]. In contrast, network-based detection monitors network

communications and is inaccessible from infected hosts, and thus cannot be disabled by malware.

There are three main approaches by which network-based detection detects malicious com-

munications based on URLs, domains, or IP addresses: blacklists [19, 91], regular expression

signatures [77, 135], and machine learning classifiers [25, 122]. These approaches are used for dif-

ferent purposes, depending on their generalization performance and false positive rates. Blacklists

do not produce false positives but cannot detect malicious communications slightly different from

known ones. Signatures detect more malicious communications than do blacklists, but produce

some false positives. Machine learning classifiers have the highest potential for generalization, but

tend to produce the most false positives. Since these approaches detect communications that are

identical or similar to known malicious ones, effective network-based detection requires exhaustive

beforehand collection of malicious communications. For pre-infection detection, a web crawler

called a honeyclient is a typical collection tool. A honeyclient accesses many websites and identifies

malicious ones to collect malicious communications [19, 121]. A typical tool for post-infection

detection is a sandbox, which collects malicious communications by executing malware in a safe

environment [77, 127]. Missed malicious communications can be detected in communication logs

recorded for post-analysis, where we can apply more complicated approaches than are possible in

real-time detection. Post-analysis is more useful for pre-infection detection, because there will be

more missed malicious communications associated with earlier attack stages than those associated

with later stages. We must continuously collect malicious communications in these ways, because

attackers continuously change the URLs, domains, or IP addresses they use for malicious purposes.

The collected malicious communications are applied to network-based detection. As mentioned

above, the detection capabilities of network-based detection depend on the exhaustiveness of col-

lected malicious communications and generalization performance of detection approaches.

Collecting malicious communications is crucial for making network-based detection effective,

but has become difficult because attackers now employ anti-analysis techniques developed for

subverting detection analyses and systems. Specifically, attackers use cloaking [55] to conceal
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malicious websites and use environment-aware malware [54] to conceal communications between

malware and attackers. This thesis proposes systems and a method for overcoming anti-analysis

techniques by two approaches: improving the exhaustiveness of collected malicious communications

and the generalization performance of detection approaches. In the former, we propose systems for

minimizing the negative effects of anti-analysis techniques on malicious communication collection.

In the latter, we propose a method for detecting dynamically changing attacks even when some

malicious communications cannot be collected by anti-analysis techniques. Specifically, we focus

on unknown families, which are new types of malicious websites or malware. To make multi-

layered defense robust, we need component systems that robustly detect malicious communications

without being disturbed by anti-analysis techniques. This thesis therefore considers improvements

to detection capabilities for pre-infection or post-infection network-based detection.

Anti-analysis techniques are not limited to those described above. Attackers commonly use

obfuscation (so-called packing), anti-disassembly, and anti-debugging to disturb reverse engineering,

which is a manual analysis for determining malware functioning [109]. To thwart blacklist-based

detection systems, attackers use domain-flux and fast-flux, which are techniques for rapidly changing

malicious domains and IP addresses [41, 94]. To conceal malicious content in Web-based attacks,

attackers use IP-based cloaking that blocks accesses from pre-defined IP addresses [88]. They also

use malvertising [61] to deliver malware through Web advertisements. There has been recent study

of the threat of adversarial examples, which apply small perturbations to evade machine learning

classifiers [27]. Among these anti-analysis techniques, we focus on cloaking and environment-aware

malware, because overcoming these techniques is promising for improving detection capabilities of

network-based detection, as described below. The following sections describe in detail our research

problems, related work, and the proposed systems and method.

1.2 Cloaking

Attackers have applied drive-by download attacks to distribute malware through the Web. When a

client accesses a landing URL that is the starting point of an attack, it is redirected to an exploit

URL via multiple redirection URLs. Browser or plugin vulnerabilities are exploited at the exploit

– 4 –



Chapter 1. Introduction

URL, infecting the client with malware [86]. To prevent drive-by download attacks, security

researchers and vendors use a honeyclient to access malicious websites and collect malicious data

such as malicious URLs, web content, and redirections [24, 120]. Using the collected data, they

create signatures for anti-virus software and build machine learning classifiers for malicious web

content [19, 25, 113], redirection chains [72, 78, 135], and exploit kits [122].

To defeat these detection systems, attackers conceal malicious data through an anti-analysis

technique called cloaking [55], making it difficult to collect all data from malicious websites.

Specifically, attackers may change the destination URL according to browser fingerprinting such as

IP addresses and client environments (e.g., the family and version of the browser and whether it is

running on an actual operating system (OS) or being emulated as a virtual machine) [51,52]. If the

client environment differs from that of the attacker’s target, the attacker modifies client accesses by

altering server responses from malicious websites.

One approach for detecting malicious websites without being affected by cloaking is aggregating

large-scale user traffic [46,114]. Attackers redirect clients to the same redirection URL from various

landing URLs, then redirect them again to an exploit URL that targets the detected environment.

Geographical diversity and uniform client environments can be used as traits of malicious websites.

However, these systems require logs provided by anti-virus vendors or large ISPs, making them

generally difficult to deploy. From the perspective of deployment, we designed our systems to use

data collected using a honeyclient and proxy.

Another approach is detecting compromised websites. Li et al. [60] detected compromised

JavaScript code that triggers malicious redirections by comparing code with a clean counterpart.

However, this system requires both a clean version and a sample of the compromised JavaScript

code. We consider detecting malicious websites by leveraging only already compromised websites.

In Chapter 2, we propose a system for detecting malicious websites without collecting all

malicious data [100, 101, 104, 105]. Even if we cannot observe some malicious data, such as

exploit code and malware, we can always observe the compromised websites into which attackers

inject redirection code to malicious data. Since attackers use search engines to automatically

discover vulnerable websites, compromised websites have similar traits. For example, attackers

use specific search queries called “search engine dorking” [60,112] to discover vulnerable websites
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built using old versions of content management systems (CMSs). We therefore build a classifier by

leveraging both malicious and compromised websites. Specifically, we convert all websites observed

during an access into a redirection graph whose vertices are URLs and edges are redirections

between two URLs, and classify it with graph mining. To perform this classification, we integrate

similarities between the redirection graph’s subgraphs and redirection subgraphs shared across

malicious, benign, and compromised websites. Evaluating our system with crawling data from

455,860 websites, we find that it achieves a 91.7% true positive rate (TPR) for malicious websites

containing exploit URLs and a low false positive rate (FPR) of 0.1%. Moreover, it detects 143

more malicious websites using anti-analysis (evasion) techniques than a conventional system does.

These detected evasive websites are built by, for example, compromising a vulnerable CMS. This

system enhances exhaustiveness of collected malicious websites and improves detection capabilities

of network-based pre-infection detection.

In Chapter 3, we propose a system for detecting communications with malicious websites from

simple logs such as proxy logs [106,107]. We focus on sequences of destination URLs, because some

artifacts of malicious redirections can be extracted from simple logs by considering several nearby

URLs. Specifically, simple logs contain malicious landing, redirection, and exploit URLs with their

sequential order preserved. We call these URL sequences, and URL sequences including accesses

to malicious websites malicious URL sequences. To find an effective approach for classifying

URL sequences, we compare three approaches: an individual-based approach, a convolutional

neural network (CNN), and a novel event de-noising CNN (EDCNN). Our EDCNN reduces the

negative effects of benign URLs redirected from compromised websites included in malicious

URL sequences. Evaluation results show that only our EDCNN achieved practical classification

performance: a TPR of 99.1%, and FPR of 3.4%. By using detected malicious communications for

creating blacklists, regular expression signatures, and machine learning classifiers, we can improve

detection capabilities of network-based pre-infection detection.
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1.3 Environment-aware Malware

For infected host detection, network-based systems such as malicious communication detection [22,

77] and blacklist-based detection have played an important role. These systems are difficult to

evade because malicious network behavior is definitely observed. For example, attackers coordinate

infected hosts to accomplish their mission by distributing configuration files or sending commands

from command and control (C&C) servers.

To maintain high detection rates in these systems, novel HTTP requests that have not been

collected in previous analyses are collected by executing new malware in a sandbox [8, 127].

However, there are now malware that circumvent HTTP request collection by confirming analysis

environments, Internet connections, or execution dates before disclosing malicious behavior [48,62,

73]. Malware thus do not always disclose their malicious behavior.

To counter environment-aware malware, Kirat et al. proposed an effective analysis system that

runs on actual hardware [54]. However, attackers can still thwart this system, so not all malware are

effectively analyzed [73]. In this way, environment-aware malware decreases efficiency in collecting

HTTP requests even though efficiency of dynamic analysis has already been a problem. Specifically,

long-term analysis of the more than 350 million new malware detected in 2016 [118] is infeasible

in limited amounts of time. Hence, malware is typically analyzed over fixed short periods, such as 5

min [31]. If more characteristic patterns can be identified from collected requests, we can increase

the detection capabilities of network-based detection. Efficient dynamic analysis is thus required to

collect more novel HTTP requests in shorter analysis time.

In Chapter 4, we propose a system for efficiently collecting HTTP requests through dynamic

malware analysis [102, 103]. Specifically, our system analyzes malware over short periods, then

determines whether analysis should be continued or suspended. This determination is made on the

basis of network behavior observed in the short-period analyses. To make accurate determinations,

we focus on the fact that malware communications resemble natural language from the viewpoint

of data structure. We apply recursive neural networks [111], which have recently exhibited high

classification performance in the field of natural language processing. In an evaluation of 42,856

malware samples, our proposed system collects 94% of novel HTTP requests and reduces analysis
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time by 82% in comparison with a system that continues all analyses. Our system improves

efficiency of dynamic malware analysis by suspending analyses of malware that do not disclose

malicious behavior because of the analysis environment. We can improve network-based post-

infection detection by using the collected HTTP requests to create blacklists, regular expression

signatures, and machine learning classifiers.

1.4 Unknown Families

Malicious websites and Android applications are created with attack tools and used to efficiently

accomplish attackers’ objectives. For example, malware is created with toolkits [18] and malicious

websites are created with exploit kits [34]. We define a set of malicious data created with the

same attack tool as a family. When detecting new malicious data, a machine learning classifier

is expected to achieve higher detection capabilities than the blacklists and signatures described in

Section 1.1. Among machine learning algorithms, we focus on deep neural networks (DNNs),

because they have outperformed traditional machine learning algorithms such as support vector

machines (SVMs) [126] and random forest [17], and because researchers and security vendors have

proposed sophisticated DNN-based detection systems [71, 90, 129].

However, attackers are continuously developing new attack tools to evade DNN-based sys-

tems [119]. Unknown families created with new attack tools exhibit unknown malicious behavior,

obfuscation algorithms, and anti-analysis functions [47, 124]. The emergence of unknown families

causes significant changes in the features of malicious data, a phenomenon referred to as concept

drift. Concept drift is known to degrade classification performance of classifiers that assume clas-

sification targets are drawn from the same distribution as the training data, that is, independent and

identically distributed (i.i.d.) random variables [49]. Machine learning techniques for detecting

malicious data implicitly assume i.i.d. variables, because they are designed on the basis of machine

learning for image recognition and natural language processing. Consequently, DNN-based systems

trained using known families have difficulty detecting unknown families [84].

To prevent degraded classification performance under changes in data distributions, a method

for detecting concept drift has been proposed [49]. This method statistically compares training data
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with test data to detect concept drift. If a change is detected, the classifier is retrained using a

new data distribution (known and unknown families in our setting). However, this method requires

retraining of classifiers. Another method has been proposed for extracting invariant features [11].

This method designs invariant features on the basis of changes in malicious data. However, this

method cannot improve existing DNN-based systems in terms of detection of unknown families.

In Chapter 5, we describe how to improve existing DNN-based systems in terms of detecting

unknown families [98, 99]. Unknown families can be quite difficult to detect when their features

completely differ from those of known families. Even so, some features are inherent across families

because malicious data include similar code or produce similar behaviors to exploit vulnerabilities

or to cost-effectively achieve a successful attack. For example, in drive-by download attacks,

applications exploiting browsers or their plugins are limited to Flash, PDF, and Java, and website

redirections are always abused to lure victims to exploit websites [19]. When features inherent

across known families (family-invariant features) are prioritized in classification, unknown families

become easier to detect. Therefore, we aim at building a classifier that prioritizes family-invariant

features. We evaluate whether our methods robustly improve DNN-based systems in terms of

detecting unknown families in three case studies. We select diverse and common targets of detection

systems for cybersecurity and prepared datasets for malicious websites, Android applications, and

portable executable (PE) files. Evaluation results show that our method robustly improves DNN-

based systems without depending on datasets. Specifically, the method outperforms a conventional

optimization method that optimizes a classifier only so that it accurately classifies malicious and

benign data by at most 19%, 19%, and 7% in terms of TPRs for malicious websites, Android

applications, and PE files, respectively. This method can improve network-based detection and

compensate for degradation caused by anti-analysis techniques.
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Chapter 2

Evasive Malicious Website Detection by

Leveraging Redirection Subgraph

Similarities

2.1 Introduction

Attackers have distributed malware through the Web by drive-by download attacks. When a client

accesses a landing URL that is a starting point of attacks, the client is redirected to an exploit URL

via multiple redirection URLs. At the exploit URL, vulnerabilities in browsers and/or their plugins

are exploited, and the client is finally infected with malware [86]. This infected client suffers from

damage, such as sensitive data leakage and illegal money transfer, and/or is integrated into dis-

tributed denial-of-service attacks. To expose more users to threats of drive-by downloads, attackers

compromise benign websites and inject redirection code to malicious websites such as redirection

and exploit URLs. Attackers compromise benign websites and create malicious websites automat-

ically. Since websites built using the old version of CMSs are vulnerable, attackers automatically

discover them with search engines by using specific search queries, typically called “search engine

dorking” [60, 112], and compromise them to turn them into landing URLs. Malicious websites are

automatically created with exploit kits [34].
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To prevent drive-by download attacks, security researchers and vendors analyze malicious data,

e.g., malicious URLs, web content, and redirections. They can create signatures of anti-virus

software and build classifiers on the basis of malicious web content [19, 25, 113], redirection

chains [72, 78, 135], and exploit kits [122]. All the above systems require malicious data to be

collected by accessing malicious websites with a honeyclient, which is a decoy browser [24, 120].

Unfortunately, collecting all malicious data from malicious websites is not easy because attackers

conceal the data with evasion techniques. To increase the exploitation success rate, attackers check

clients by browser fingerprinting and change the destination URL depending on the fingerprint,

e.g., IP address and client environments (the family/version of a browser on a real operating system

(OS)/virtual machine/emulator) [51, 52]. In addition, if a client environment differs from the

environment of attackers’ targets, the attackers thwart the client’s accesses by changing the server

responses of malicious websites, which is called “cloaking” [55]. In other words, collecting all

malicious data requires correct access by the clients of attackers’ targets. Although multiple

accesses to malicious websites by various clients improves the coverage of collected malicious data,

preparing or emulating all the clients (i.e., OSes, browsers, and plugins) is not a realistic solution

due to the requirement of a large amount of computational resources [52].

In this Chapter, we propose a system for detecting malicious websites without collecting all

malicious data. Even if we cannot observe parts of malicious data, e.g., exploit code and malware,

we can always observe compromised websites, into which attackers inject redirection code to

malicious data. Since vulnerable websites are automatically discovered with search engines by

attackers, compromised websites have similar traits. Therefore, we built a classifier by leveraging

not only malicious but also compromised websites. More precisely, we convert all websites observed

at the time of access into a redirection graph, whose vertices are URLs and edges are redirections

between two URLs, and classify it with a graph mining approach. To perform classification, we

integrate similarities between the redirection graph’s subgraphs and redirection subgraphs shared

across malicious, benign, and compromised websites. As a result of evaluating our system with

crawling data of 455,860 websites, we find that it achieves a 91.7% TPR for malicious websites

containing exploit URLs at a low FPR of 0.1%. Moreover, it detects 143 more malicious websites

that use evasion techniques than conventional systems. These detected evasive websites are, for
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Figure 2.1: Redirection graph of a motivating example.

example, built by compromising a vulnerable CMS. These results show that our system successfully

captures redirection subgraphs of not only malicious but also compromised websites.

Our contributions are summarized as follows.

• We propose a system that detects malicious websites by leveraging all websites observed at

the time of access even if all malicious data cannot be collected due to evasion techniques.

• We show that leveraging the redirection subgraphs of benign, compromised, and malicious

websites enhances the classification performance; the benign subgraphs contribute to reducing

false positives such as subgraphs of web advertisements and the compromised and malicious

subgraphs contribute to improving true positives such as subgraphs of compromised CMSs

and exploit kits.

2.2 Motivating Example

We use simplified websites to demonstrate the effectiveness of our approach. Figure 2.1 shows a redi-

rection graph. When a client accesses the URL of a compromised website, i.e., http://a.example/,

the server responds with web content such as Fig. 2.2, and the client additionally requests the web

content of the URLs specified in HTML tags. The iframe tag at line 13 in Fig. 2.2 is injected by

an attacker, and the client is redirected to the next URL, http://redirect.example/, without

being aware of it because this iframe tag is written in an invisible state and is outside the display.
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1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta charset="UTF-8" />
5 <title>Sample Website </title>
6 <script src="js/lib.js" type="text/javascript"></script>
7 </head>
8 <body>
9 <img src="img/header.jpg" width="800px" alt="header" />

10 ... [snipped] ...
11 </body>
12 </html>
13 <iframe src="http://redirect.example/" style="position:absolute;width:0px;left:-99px;

display:none;"></iframe>

Figure 2.2: Iframe injection at http://a.example/.

1 var ua = "";
2 try{
3 new ActiveXObject("dummy");
4 }catch( e ){
5 ua = window.navigator.userAgent.toLowerCase();
6 }
7 if( ua.indexOf("msie 6") != -1 ){
8 location.href = "http://exploit.example/IE6/";
9 }

10 else if( ua.indexOf("msie 8") != -1 ){
11 location.href = "http://exploit.example/IE8/";
12 }

Figure 2.3: Evasion and browser fingerprinting at http://redirect.example/.

When the client accesses the URL specified by the iframe tag, it loads web content that contains

the JavaScript code shown in Fig. 2.3. Lines 2–6 in Fig. 2.3 are evasion code that checks whether the

client is a browser emulator or an actual browser. A browser emulator is usually designed to never

raise exceptions regarding ActiveXObject [24]. However, since the code in Fig. 2.3 intentionally

throws an ActiveXObject error, only browsers with correct exception handlers can execute browser

fingerprinting code at line 5. The code at line 5 stores the UserAgent strings of the client in a vari-

able ua. The variable ua, i.e., navigator.userAgent strings, is used for the following conditional

branches at lines 7 and 10, and the redirection code at line 8 or 11 is executed if the variable contains

“msie 6” or “msie 8” strings, respectively. In other words, Internet Explorer (IE) 6 is redirected

to http://exploit.example/IE6/, and IE8 is redirected to http://exploit.example/IE8/.

However, when clients other than IE6 and IE8 are used, no redirection occurs. Browser emulators

also cannot execute browser fingerprinting code due to exception handling, so no redirection occurs.
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Figure 2.4: System framework.

Therefore, this example illustrates a website where only IE6 and IE8 can access exploit URLs and

collect exploit code.

Conventional systems cannot detect this example for several reasons. A high-interaction honey-

client that uses an actual browser fails to collect exploit code and malware when the browser is not

IE6 or IE8 due to browser fingerprinting. Similarly, a low-interaction honeyclient, i.e., a browser

emulator, also fails to execute redirection code due to evasion code even if it emulates IE6 or IE8.

Consequently, systems detecting malicious websites on the basis of URLs, redirections, and web

content does not work effectively when these honeyclients cannot collect malicious data.

Our system can detect malicious websites that use evasion techniques by utilizing the redi-

rection graphs of all websites observed at the time of access without being limited to those of

malicious websites created with exploit kits. In the above example, we can certainly observe the

redirection of the invisible iframe tag and redirections to benign URLs to which the compromised

website originally refers, i.e., http://a.example/js/lib.js specified by the script tag and

http://a.example/img/header.jpg specified by the img tag in Fig. 2.1. In other words, we can

detect malicious websites by building our classifier with features representing redirection subgraphs

of easily compromised websites even if we fail to observe parts of malicious redirections and web

content due to evasion techniques. As shown in Section 2.5, our system detected 143 more evasive
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malicious websites than the conventional content-based system.

2.3 Proposed System

We describe the design and implementation of our proposed system, which detects malicious

websites on the basis of the redirection graphs of all websites.

2.3.1 System Design

Websites consist of multiple URLs and redirections between them. Their structure is represented

as redirection graphs whose vertices are URLs and edges are redirections. To take advantage

of their structure, we utilize a graph mining approach. One common approach is to perform

classification by leveraging similarities of graphs. More precisely, subgraphs are extracted from

each graph, and the similarities of many pairs of graphs are calculated on the basis of the number

of subgraphs shared by the graphs. This approach leads to high classification accuracy but also

has a drawback: a high computational cost. To achieve both high classification accuracy and low

computational cost, we reduce the computational cost of subgraph extraction and the number of

similarity calculations. In Section 2.3.2, we describe how to reduce the computational cost of

subgraph extraction. Here, we discuss the number of similarity calculations. The classification is

performed on the basis of similarities between test and training data. A large number of training

data improves classification accuracy but results in a large number of similarity calculations, i.e.,

O (N M), where N and M represent the number of training and test data, respectively. Our system

constructs a comparatively small number of templates, which are subgraphs shared across training

data, and performs classification on the basis of similarities between test data and templates. The

number of similarity calculations is reduced to O (M). Note that a graph mining approach also has

another drawback: a large memory requirement. Because a large memory has become easier to

obtain, we focus on only computational cost in this Chapter.

Figure 2.4 illustrates the framework of our system. In the training phase, we collect labeled

redirection graphs (malicious or benign) with the honeyclient [120]. The redirection graphs are

decomposed into their subgraphs. Then, templates are constructed from redirection subgraphs
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shared across them. Their feature vectors are extracted on the basis of the similarities between their

subgraphs and templates. The classifier of random forest is trained with their feature vectors. In the

test phase, we collect unlabeled redirection graphs with the honeyclient. Their feature vectors are

extracted in the same manner as in the training phase and classified using the trained classifier. We

explain details of our system in the next subsection.

2.3.2 Implementation

Subgraph Extraction. We collect web content at each URL and the methods used for redirections

by analyzing websites with a honeyclient. The websites are represented as redirection graphs, i.e.,

directed graphs whose vertices are URLs and edges are redirections. The most important structure

of redirection graphs for detecting malicious websites is the path from landing to exploit URLs.

To reduce the computational cost, we extract only subgraphs that have an important structure, i.e.,

path-shaped subgraphs. Excluding subgraphs that have a branch structure reduces the computational

cost. Let G = (V, E) denote a redirection graph, where V is a set of vertices, and E ⊆ (V × V) is

a set of edges. Edge (vi, vj) represents the redirections from vertex vi to vertex vj . A set of paths,

P, is defined as P = {pi, j |vj ∈ c(vi), vi ∈ V}, where pi, j is a path from vi to vj , and c(vi) is a set of

vertices reachable from vi through edges. We use the information of vertices and edges as a feature

of a subgraph. The feature of a subgraph sg is represented as (m, r), where m is a vector containing

the information of vertices and r is a vector containing the information of redirections. A redirection

graph is decomposed into a set of features of subgraphs extracted from all path-shaped subgraphs.

For the information of vertices, we calculate the maliciousness of web content because exact

matching of URLs and their web content can be easily evaded by changing the characters of URLs

and small pieces of their web content. The maliciousness is calculated with machine learning using

the 22 widely used features in Table 2.1. These features are extracted with the honeyclient [120]. The

features are divided into three types: redirection, HTML, and JavaScript. We extract five redirection

features: HTTP 3xx redirections to different domains (No. 1), redirections to files used for exploit

(Nos. 2–4), and redirection without referer (No. 5). We extract three HTML features: the suspicious

Document Object Model (DOM) position (No. 6), invisible content (No. 7), and exploitable classid
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Table 2.1: Features for calculating maliciousness of web content.
No. Type Feature

1 HTTP 3xx redirections to different domain
2 Redirection to Flash file
3 Redirection Redirection to PDF file
4 Redirection to Java Applet File
5 Redirection without referer
6 Suspicious DOM position
7 HTML Invisible content
8 Exploitable classid
9 # of Element object functions

10 # of String object functions
11 # of Node object functions
12 # of ActiveXObject functions
13 # of Document object functions
14 # of Navigator object functions
15 JavaScript # of object-encoding functions
16 # of Time object functions
17 # of eval functions
18 # of fingerprinting functions
19 # of obfuscated content
20 # of content containing shellcode
21 # of long parameters
22 Entropy

Table 2.2: Methods of redirections.
Type Examples of methods

HTTP 3xx HTTP 301 HTTP 302
HTML tag iframe script link
JavaScript document.write innerHTML

(No. 8). We extract 13 JavaScript features: the number of functions (Nos. 9–18), the number of

suspicious content (Nos. 19–20), the number of long parameters (No. 21), and entropy (No. 22).

Fingerprinting functions are identified by arguments including versions of plugins. Obfuscated

content is identified by Latin-1 code or a comma delimited string whose length is 128 or more.

Content containing shellcode is identified by a string including 128 or more Unicode/non-printable

ASCII characters. We define long parameters as JavaScript functions’ arguments whose lengths

are 350 or more. To calculate maliciousness, we apply random forest [17] as a classifier. We
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Figure 2.5: Example of a subgraph.

train the classifier by using the training data in Section 2.4. For the information of edges, we use

redirection methods and destination domains (external or internal). Table 2.2 shows the three types

of redirection methods: HTTP 3xx, HTML tag, and JavaScript. HTML tag redirections are triggered

by tags for acquiring external sources such as iframe, script, and link. JavaScript redirections

are triggered by DOM modification functions such as document.write and innerHTML.

Figure 2.5 shows an example of a subgraph consisting of three vertices and two edges. The

maliciousness of the first, second, and third vertices is 0.0, 0.4, and 1.0, respectively. The redirection

methods of the first and second edges are script and iframe. The destination domains of the

first and second edge are external and internal. The feature of a subgraph of this example sg is

represented as (m, r), where m = [0.0, 0.4, 1.0], r = [script−external, iframe−internal]. The

information of edges is represented by the hyphenation of the redirection method and the destination

domain. Hereafter, we attach new indexes to features of subgraphs and represent a subgraph feature

set extracted from a redirection graph as SG = {sgi} for convenience.

Template Construction. We split redirection graphs into clusters composed of similar redirection

graphs and construct templates from the clusters. The similarity utilized for clustering is defined

similarly to the Dice index. The Dice index, D, between set A and set B is defined as D =

2× |A∩B|/(|A|+ |B|). If the intersection of two subgraph feature sets is defined on the basis of both

the redirection information and the maliciousness, the amount of difference in the maliciousness

does not properly affect the similarity because the maliciousness is a continuous value. For this

reason, we define the intersection of two subgraph feature sets on the basis of only the redirection

information and use the maliciousness as weighting coefficients.

– 19 –



2.3 Proposed System

The similarity function S(SGi, SG j), given subgraph feature sets SGi and SG j , is defined as

S(SGi, SG j) =
2 ×∑

(mk,ml )∈Λ s(mk,ml)
|SGi | + |SG j |

, (2.1)

s(mk,ml) =
1

1 + α × |mk − ml |2
, (2.2)

Λ = {(mk,ml)|

(mk, rk) ∈ SGi, (ml, rk) ∈ SG j}, (2.3)

where α is a weight coefficient. Here, s(mk,ml) denotes the similarity function given the malicious-

ness mk and ml. If there are multiple subgraph-feature-pair possibilities, we adopt the pair that has

higher similarity than the others. The optimal pair can be quickly found by using the Hungarian

algorithm [75].

This similarity is utilized for clustering. If the maximum similarity between redirection graphs

belonging to one cluster and redirection graphs belonging to another is higher than threshold β, the

two clusters are merged. This process is conducted from when each cluster is composed of one

redirection graph to when no cluster can be merged.

Clustering is computationally expensive because similarities between all pairs of redirection

graphs need to be calculated, i.e., O(n2), where n denotes the number of redirection graphs. We

leverage locality sensitive hashing (LSH) [28] to avoid calculating the similarities of redirection

graphs that have low similarities. Reducing the computational cost of clustering enables us to reduce

computational resources or increase the number of candidate hyperparameters used for optimization.

We encode a redirection graph into a vector by using bag-of-words representation to apply LSH. The

vector contains the number of redirection methods or JavaScript functions/objects. The redirection

methods include HTTP 302, iframe tag, and script tag. JavaScript functions/objects include

documentw.write, innerHTML, setInterval, and ActiveXObject. The hash function is

formulated as h(x) = ⌊ aT x+b
c ⌋, where a is a vector and b is a real number. Here, ⌊x⌋ denotes

the largest integer, which is equal to or less than x. Each element of a is chosen from the normal

distribution whose mean is 0 and variance is σ2. The real number, b, is chosen from the uniform

distribution whose range is [0, c]. The parameters σ2 = 10, c = 1 are selected so that the number of
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websites that have the same hash values is not too small.

We construct templates from the clusters composed of γ or more redirection graphs. The

template, T , is a set of features of subgraphs whose redirection information is shared across all

redirection graphs in the cluster C = {SGi}. Since maliciousness is a continuous value, we use the

average maliciousness as the maliciousness of the template. Template T is formulated as

T = {(mi, ri)|∀SG ∈ C, ∃(mi, ri) ∈ SG}, (2.4)

mi =
1
|C |

∑
m j ∈Mi

mj, (2.5)

Mi = {mj |(mj, ri) ∈ SG j, SG j ∈ C}. (2.6)

Feature Extraction. A high similarity between the features of subgraphs of a redirection graph

and a template indicates that the redirection graph contains the template as its subgraph. In other

words, we can encode the redirection graphs of websites into numerical values by calculating

similarities between features of subgraphs of redirection graphs and templates. We extract a

feature vector x containing similarities between a subgraph feature set SG and templates Ti: x =

[S(SG,T1), ..., S(SG,TN )], where N is the number of templates.

Classification. These feature vectors are classified by using supervised machine learning. We use

random forest [17], which can classify a large amount of data accurately and quickly. We use a

randomForest package in R [87]. Note that the classification algorithm is not limited to random

forest; other algorithms of supervised machine learning can be applied.

2.4 Experimental Setup

Our proposed system is designed to detect not only malicious redirection graphs containing exploit

URLs but also evasive malicious redirection graphs, which do NOT contain all malicious data. We

evaluate the detection performance of our system using these redirection graphs. Here, we describe

the experimental setup for evaluation.
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Table 2.3: Features of the redirection-based system.
No. Feature

1 # of different domains
2 Path length
3 # of HTTP 3xx redirections
4 # of different domain HTTP 3xx redirections
5 # of consecutive HTTP 3xx redirections
6 # of consecutive different domain HTTP 3xx redirections
7 # of consecutive short redirections
8 Median of redirection duration
9 Average of redirection duration

10 Minimum of redirection duration
11 Maximum of redirection duration

2.4.1 Conventional Systems for Comparison

We evaluate the effectiveness of our system by comparing it with conventional systems. Some

conventional systems detect malicious websites by matching redirection or exploit URLs [122,135].

These systems suffer from false negatives when targeted URLs are concealed by evasion techniques.

Other conventional systems using statistical features [19, 25, 72] are assumed to be more robust

against evasion techniques because their targets are not limited to specific URLs. For this reason,

we compare our system with conventional systems that use statistical features. Note that we cannot

compare our system with conventional systems that leverage large-scale user traffic [46,114] because

our system is supposed to use web content and redirections collected with a honeyclient.

We compare our system with the content-based system, the redirection-based system, and the

combination of these systems. The content-based system extracts widely used features listed in

Table 2.1 such as the conventional system [19] and classifies them by using random forest. If one or

more pieces of web content in a redirection graph are detected, the redirection graph is classified as

malicious. If no piece of web content is detected, the redirection graph is classified as benign.

The redirection-based system extracts features from paths between landing URLs and final

destinations of redirections and classifies them by using random forest. Table 2.3 shows a list of

features that have been proposed for the conventional system [72]. More precisely, the features are

the number of different domains (No. 1), path length (No. 2), HTTP 3xx redirections (Nos. 3–6),
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and redirection duration (Nos. 7–11). Short redirections are defined as redirections that occur in

no more than one second. If one or more paths in a redirection graph are detected, the redirection

graph is classified as malicious. If no path is detected, the redirection graph is classified as benign.

The combination of the content-based and redirection-based systems (combination system for

short) classifies a redirection graph as malicious if it is detected by the content-based or redirection-

based system. A redirection graph is classified as benign if it is detected by neither system.

2.4.2 Ground Truth

We collect the redirection graphs used for the evaluation by accessing websites listed on public

blacklists [67, 128] or a list of popular websites [4] by using the low-interaction honeyclient [120].

Some websites listed on public blacklists no longer contain malicious web content, and websites

listed on the popular-website list can be compromised and forced to engage in attacks. Since we need

ground truth of redirection graphs, we access websites by using low-interaction and high-interaction

honeyclients [3] almost at the same time. The high-interaction honeyclient detect exploit URLs on

the basis of system behavior such as unintended process creation and file/registry accesses. We label

redirection graphs detected by the high-interaction honeyclient as malicious and redirection graphs

listed on the popular-website list and not detected as benign. We do not use the redirection graphs

listed on public blacklists but not detected because they might not be detected due to the discrepancy

between the targeted environment of exploit and the environment of the high-interaction honeyclient.

Since redirection graphs are all websites observed at the time of access, malicious redirection graphs

contained compromised and malicious websites. Note that the malicious redirection graphs do not

necessarily contain exploit URLs due to evasion techniques even if the high-interaction honeyclient

access exploit URLs. We use malicious redirection graphs that do not contain exploit URLs as

evasive malicious redirection graphs.

Conventional systems require labeled web content or paths. For the content-based system, we

label web content as malicious if it is collected from destinations of malicious redirections and

domains of corresponding URLs are different from those of landing URLs. We label the web

content of benign redirection graphs as benign. For the redirection-based system, we label paths
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Table 2.4: Dataset.
Label Number Period

Training Malicious 2,170 Jan.–Apr. 2016
Benign 199,982 Aug. 2016

1st Test Malicious 365 May–Sep. 2016
Benign 249,958 Aug. 2016

2nd Test Evasive 3,385 Jan.–Sep. 2016

including exploit URLs as malicious and paths of benign websites as benign.

2.4.3 Dataset

We use one training dataset and two test datasets for our evaluation as shown in Table 2.4. The

training dataset consists of 2,170 malicious redirection graphs collected from Jan.–Apr. 2016

and 199,982 benign redirection graphs collected in Aug. 2016. We confirm that each malicious

redirection graph in the training dataset contains at least one malicious redirection. Note that we

can collect malicious redirection graphs because their targeted environment and the environment of

the low-interaction honeyclient are identical or evasion techniques are not used. The benign training

dataset should be collected during the same period as the malicious dataset. However, we have

not collected benign redirection graphs during that period; hence, we use benign redirection graphs

collected in Aug. 2016 as a training dataset. Note that the collection period is not assumed to affect

the evaluation results because the redirection graphs of benign websites are not subject to change.

We use the first test dataset to evaluate the detection performance with malicious redirection

graphs containing exploit URLs from a large number of benign redirection graphs. It consists of

365 malicious redirection graphs collected from May–Sep. 2016 and 249,958 benign redirection

graphs collected in Aug. 2016. We use the second test dataset to evaluate the detection performance

with evasive malicious redirection graphs. It consists of 3,385 evasive malicious redirection graphs

collected from Jan.–Sep. 2016. This dataset does not overlap with the training data collected in the

period Jan.–Apr. 2016.
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2.4.4 Hyperparameter Optimization

The hyperparameters are a weight coefficient, α, of similarity, threshold β for clustering, and

threshold γ for template construction. In addition to them, we optimize the training dataset. The

prevalence of new exploit kits or updates to exploit kits changes the redirection subgraphs of

malicious websites. Therefore, malicious redirection graphs detected in the past do not always

contribute to improving the classification performance. We optimize the percentage θ of malicious

redirection graphs that we use for training. The number of malicious redirection graphs is limited,

but we can collect a large number of benign redirection graphs. We optimize the ratio η of malicious

to benign redirection graphs.

We further split the training dataset into a prior-training dataset and a validation dataset. The

prior-training dataset includes 90% of the training dataset selected from the oldest data and is used

for training a classifier The validation dataset includes 10% of the training dataset selected from the

newest data and is used for evaluating the classification performance. We select the hyperparameters

that had the highest classification performance. To evaluate the performance, we use the f-measure

defined as:

f-measure =
2 × precision × recall

precision + recall
,

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

where TP, FN, TN, and FP denote the number of true positives, false negatives, true negatives, and

false positives, respectively. The best hyperparameters are α = 1, β = 0.4, γ = 2, θ = 50, and

η = 1 : 10. The hyperparameters of random forest, i.e., the number of decision trees and the number

of features for each decision tree, are optimized by using the tuneRF function of the randomForest

package in R [87] when a classifier is trained.

If a small difference in the hyperparameters of our system results in a large difference in its

classification performance, it makes our system difficult to deploy because the hyperparameters

need to be carefully optimized. To determine whether they are difficult or not to optimize, we
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Figure 2.6: F-measure of different hyperparameters.

Table 2.5: Hyperparametes and their orders.
Order α β γ Order α β γ

1 1 0.4 10 15 1 0.8 2
2 10 0.8 10 16 10 0.6 2
3 100 0.8 10 17 10 0.6 5
4 1 0.8 10 18 1 0.6 5
5 10 0.8 5 19 1 0.4 5
6 100 0.4 5 20 10 0.4 2
7 100 0.6 5 21 10 0.4 5
8 100 0.6 10 22 10 0.8 2
9 100 0.8 5 23 100 0.8 2

10 10 0.6 10 24 1 0.6 2
11 100 0.4 10 25 100 0.4 2
12 10 0.4 10 26 100 0.6 2
13 1 0.8 5 27 1 0.4 2
14 1 0.6 10

investigate classification performance with different system-specific hyperparameters, i.e., α, β, and

γ. We select α from 1, 10, and 100, β from 0.4, 0.6, and 0.8, and γ from 2, 5, and 10. The classifier

is trained by using the prior-training dataset and calculate the f-measure on the validation dataset.

Figure 2.6 shows the f-measure of every hyperparameter. The hyperparameters are arranged in

the ascending order of f-measures. The hyperparameters and their orders are listed in Table 2.5.
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Figure 2.7: Calculation time of clustering. Error bars represent standard deviation.

Since our system achieves high f-measures with several hyperparameters, we can find with simple

optimization methods such as a grid search.

Our system leverages LSH to reduce the computational cost of clustering. We evaluate the

effectiveness of LSH by comparing the calculation times with clustering without LSH (baseline).

Figure 2.7 shows the average and standard deviation of calculation time. If the number of data is

the same, the calculation time differs depending on the hyperparameters. This result shows that

LSH drastically speeds up clustering. Note that we select hyperparameters of LSH so that similar

redirection graphs have the same hash value with high probability. Such hyperparameters cannot

achieve optimal clustering speed but suppress degradation of classification performance caused by

inaccurate clustering results.

2.5 Experimental Results

We now report the experimental results. In Section 2.5.1, we show the results of the first test

dataset (see Section 2.4.3 for more detail) including malicious redirection graphs containing exploit

URLs. We compare our system with conventional systems in terms of classification performance,

degradation in classification performance over time, and calculation time. We further investigate

constructed templates, false positives, and false negatives to obtain a better understanding of our
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Table 2.6: Classification performance with malicious redirection graphs containing exploit URLs.
System Proposed Content Redirect Comb.

TPR (recall) 0.9057 0.8465 0.2564 0.8876
FPR 0.0007 0.0022 0.0028 0.0041

Precision 0.6631 0.0385 0.1388 0.2401
F-measure 0.7657 0.5300 0.1801 0.3780

AUC 0.9938 0.9664 0.6408 0.9774
TPR (FPR=0.1%) 0.9171 0.7726 0.2256 0.7726

system. Lastly, we present a case study of server-side cloaking to show the effectiveness of our

system. In Section 2.5.2, we show the results of the second dataset including evasive malicious

redirection graphs. To avoid duplicate evaluation, we focus on the detection capability of evasive

malicious redirection graphs in this subsection. Specifically, we show classification performance,

false negatives, and a case study of an evasive malicious website. The prototype version of our

system is installed on an Ubuntu server with four 12-core CPUs and 128-GB RAM.

2.5.1 Detecting Malicious Websites with Exploit URLs

We report the evaluation results of the first test dataset including malicious redirection graphs

containing exploit URLs in terms of classification performance, degradation in classification per-

formance over time, and calculation time. We also show analysis results of constructed templates,

false positives, false negatives, and a redirection graph of server-side cloaking.

Classification Performance. We evaluate our system by using widely used metrics: TPR (also

known as recall), FPR, precision, f-measure, area under the receiver operating characteristic curve

(AUC), and TPR at a fixed FPR of 0.1%. As shown in Table 2.6, our system outperforms all

conventional systems for all metrics. These results show that leveraging the redirection graphs of

all websites contributes to improving the classification performance.

Classification Performance Degradation Over Time. The prevalence of new exploit kits and

updates to exploit kits degrades the classification performance. Therefore, we evaluate the perfor-

mance degradation over time. Figure 2.9 shows the TPR of malicious redirection graphs collected

for the first, second, and third or following month of the test dataset. The TPRs of our system and
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Table 2.7: Statistics of templates
Malicious Benign Compromised

# of templates 167 246 54
Order Highest 1 10 7

of Lowest 454 467 458
importance Average 111.7 293.1 343.0

Figure 2.8: Redirection subgraphs of templates.

Figure 2.9: True positive rate degradation over time.

the redirection-based system become smaller for the second month of the test dataset than for the

first month. The TPRs of the content-based and combination systems become smaller for the third

or following months of the test dataset than for the first and second months. The degradation of the

combination system is similar to that of the content-based system because the content-based system

has a dominant role in the classification of the combination system. The degradation of our system is
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Table 2.8: Calculation time for one website (sec).
System Proposed Content Redirection Comb.

Feature extraction 0.1251 0.0033 0.0073 0.0106
Classification 0.0005 0.0003 0.0002 0.0004

steeper than those of conventional systems because our system utilizes more types of websites. That

is, our system is focused on malicious, benign, and compromised websites, and a change in structure

of any one of them degrades classification performance. Specifically, classification performance of

our system degrades because features of compromised websites change between the first and second

months of the test dataset. The training data includes a large number of compromised websites

constructed by using WordPress, which is a CMS. Similarly, the number of compromised websites

constructed with WordPress in the test dataset is high in the first month but low in the second month.

The number of such compromised websites in the third or following months of the test dataset is

higher than that in the second month. This is why the proposed system has a higher TPR than the

conventional systems in the third or following months of the test dataset.

Calculation Time. To detect malicious websites, we must analyze a large number of websites. To

evaluate the capability of large-scale analysis, we evaluate the calculation time of feature extraction

and classification. Table 2.8 shows that our system requires a 35 times longer calculation time than

the content-based system. However, our system finishes the feature extraction and classification

of one redirection graph in less than 0.13 seconds. The calculation time of feature extraction and

classification is shorter than that of the download and execution of web content. Therefore, our

system can classify a large number of redirection graphs collected by using a honeyclient.

Template Analysis. We analyze the templates of our system to elucidate the improvement in

classification performance. Table 2.7 shows the number of templates and order of the importance

calculated with the randomForest package for each label of template. The labels of templates

are those of redirection graphs from which templates are constructed: malicious, benign, and

malicious and benign (compromised for short). The importance represents the level of contribution

of each template to classification. More than half the templates are constructed from only benign

websites. This is because benign redirection graphs outnumbered malicious ones. However,
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malicious templates tended to have a higher importance than benign and compromised templates.

Some benign and compromised templates also have the highest importance.

One malicious template that has a high importance contains redirection subgraphs relevant to the

Angler Exploit Kit as shown in Fig. 2.8(a). The iframe tag redirecting to the exploit URL of a dif-

ferent domain is injected at the landing URL. The malicious web content at http://mal.example/

exploits a use-after-free vulnerability (CVE-2014-4130) and also contains redirection to other ma-

licious web content such as Flash (CVE-2015-0313). Another malicious template that has a high

importance contains redirection subgraphs relevant to an exploit kit and compromised website.

Since it contains all websites related to drive-by download attacks, it is a large template composed

of many redirection subgraphs.

One compromised template that has a high importance contains redirection subgraphs relevant to

a CMS as shown in Fig. 2.8(b). Websites created with a CMS tend to be targeted and compromised

by attackers. For this reason, redirection subgraphs relevant to the same CMS are included in

malicious and benign redirection graphs. The landing URL includes some HTML tags redirecting

to Cascading Style Sheets, image, and JavaScript code. These redirections are included in the

template of the CMS. The landing URL also includes a script tag redirecting to an analysis service

because many websites’ administrators use it.

One benign template that has a high importance contains redirection subgraphs relevant to an

advertisement. If websites use the same advertisement service, they have the same redirection

subgraph for obtaining advertisement content. This is why a template relevant to the advertisement

is constructed. We omit illustrating the template because it contains too many URLs to be depicted

in a limited amount of space.

By using these templates, our system can classify redirection graphs on the basis of the structural

similarities to exploit kits, CMSs, and advertisements. If the content-based system wrongly classified

advertisement content as malicious, our system classified its redirection graphs as benign by referring

to other web content and redirections relevant to the advertisement. In addition, if the content-based

system could not detect malicious web content, our system detected its redirection graphs by taking

the compromised CMSs into account.

As shown in the aforementioned examples, effective templates are essential to achieve high
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Figure 2.10: F-measure and the number of templates on different hyperparameters.

Figure 2.11: Distribution of size of templates on different hyperparameters.

classification performance. We investigate classification performance on the basis of different

templates. Specifically, we investigate the number of templates, distribution of template sizes, and

f-measure with different hyperparameters. We use the number of redirection subgraphs consisting

of a template as the size of a template. When the number of templates is small, our system has

a low f-measure as shown in Fig. 2.10. This is because coverage of redirection subgraphs is not
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Figure 2.12: Redirection graph of a website launching server-side cloaking.

sufficient to classify redirection graphs accurately. Figure 2.11 shows the distribution of template

sizes with different hyperparameters. The hyperparameters are arranged in the ascending order of

f-measures. When the f-measure is high, large templates tend to be constructed and variance of

the distribution tends to be high. When the f-measure is low, most templates are small. This is

because small templates are similar to many redirection graphs and unable to extract discriminative

features. To achieve a high classification performance, various differently sized templates need to

be constructed.

False Positives and False Negatives. We identifies two main cases of false positives with manual

inspection. The first is websites created with a CMS for electronic commerce sites. They contains

multistage redirections to JavaScript code. Similarly, malicious redirection graphs have multistage

redirections to malicious JavaScript code. This structural similarity causes the false positives. The

second case is websites created with a CMS and slightly modified by their administrators. Some

redirections for advertisement or analysis services are injected to landing URLs. The redirection

graphs of these websites are similar to malicious redirection graphs created by compromising CMSs.

Note that our system accurately classifies redirection graphs of plain or customized CMS websites

as benign.

We identifies one main case of false negatives. On the websites of false negatives, benign

JavaScript code that is the destination of redirections from landing URLs is compromised. However,

in most malicious redirection graphs, the web content of landing URLs is compromised. The

difference in redirection graphs causes false negatives.

Case Study of Server-side Cloaking. We describe a website for which redirection subgraphs of
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Table 2.9: Number of TP and TPR at fixed FPR of 0.1%.
System Proposed Content Redirection Comb.
# of TP 821 678 71 669

TPR 0.243 0.200 0.021 0.206

compromised websites need to be captured for detection. The redirection from the landing URL to

the exploit URL is triggered by an injected iframe tag as shown in Fig. 2.12. The status code of the

HTTP response from the exploit URL is 200, but its body is empty. This website is speculated to be

an attempt of server-side cloaking, which detects security vendors or researchers on web servers and

conceals malicious web content from them. The exploit URL is created with Rig Exploit Kit, and

most attempts to obtain malicious web content are unsuccessful. The content-based system could

definitely not detect this website due to the lack of malicious web content.

Our system detects the website by utilizing the redirection graph of all of the websites. The

compromised website is created with a CMS that is sometimes compromised by attackers. Moreover,

it has a redirection to a different domain with a iframe tag. The same redirection is frequently

used on malicious redirection graphs. Our system detects this website by capturing both traits of

the compromised website and the malicious redirection.

2.5.2 Detecting Evasive Malicious Websites

We report the evaluation results of the second dataset including evasive malicious redirection

graphs. To avoid duplicate evaluation, we focus on the detection capability and show classification

performance, false negatives, and a case study of an evasive malicious website.

Classification Performance. Table 2.9 shows the number of TP and TPR at a fixed FPR of 0.1%.

FPR is fixed using the test dataset of malicious redirection graphs containing exploit URLs. Our

system detects 143 more evasive malicious redirection graphs than the content-based system. On

the evasive malicious websites detected by our system, the evasion code prevents the low-interaction

honeyclient from accessing exploit URLs at redirection URLs. The redirection graph and evasion

code are more precisely illustrated as a case study. The content-based system cannot detect some

malicious web content at redirection URLs. This is why our system detects more evasive malicious
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Figure 2.13: Redirection graph of a false negative.

Figure 2.14: Redirection graph of an evasive malicious website.

redirection graphs.

False Negatives. We identifies one main case of false negatives as shown in Fig. 2.13. On

these websites, the evasion code is used at landing URLs, i.e., http://a.example/ in Fig. 2.13.

Therefore, the low-interaction honeyclient is not redirected to malicious URLs but only to benign

URLs, i.e., http://a.example/script.js and http://a.example/logo.jpg in Fig. 2.13.

The redirection graphs of these websites are the same as those of benign websites. On benign

websites, a client is typically redirected to some benign URLs to obtain scripts or images when it

accesses a landing URL. As a result, benign redirection graphs are shallow and have many branches.

For this reason, our system cannot detect websites where the evasion code is used at landing URLs.

Note that we do not find any websites containing malicious redirections after manually inspecting

100 false negatives.

Case Study of Evasive Malicious Website. We describe the evasive malicious website shown in

Fig. 2.14. This website (redirection URL) is pointed to by the iframe tag injected at the landing

URL. Figure 2.15 shows the evasion code created with the Angler Exploit Kit. A different value

is assigned to flag depending on the error when the ActiveXObject of “Anti-virus” is loaded at

line 3. If the error occurs, true is assigned, and vice versa at lines 4 and 6. Subsequent malicious
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1 var flag;
2 try {
3 var a = new ActiveXObject("Anti-Virus");
4 flag = true;
5 }catch( e ){
6 flag = false;
7 }

Figure 2.15: Evasion code at http://mal.example/redirect.js.

code is executed only if it is true. Since the high-interaction honeyclient has no anti-virus software

installed, it raises the exception. However, the low-interaction honeyclient does not raise any

exception. By leveraging this difference, the evasive malicious website prevents the low-interaction

honeyclient from accessing the exploit URL.

The compromised website is also created with a CMS sometimes compromised by attackers.

Similar to the website launching server-side cloaking, our system can detect it by utilizing the

redirection graph of all of the websites.

2.6 Limitations

Our system requires redirection subgraphs widely shared across malicious websites to distinguish

malicious redirection graphs from benign ones. Therefore, our system does not detect malicious

redirection graphs that has subgraphs different from those of typical malicious websites (as discussed

in Section 2.5.1) or malicious redirection graphs that contain evasion code used at landing URLs

(as discussed in Section 2.5.2). This is a general limitation from which all machine-learning-based

systems suffer. To detect uncommon malicious redirection graphs, the number of malicious training

data must be increased. To detect malicious redirection graphs that contain evasion code used at

landing URLs, systems that detect injected code on compromised websites [60,112] can be utilized

complementarily. We can analyze a relatively small number of websites detected by these systems

with various clients and detect malicious websites using collected malicious redirection graphs by

using our system.

Another limitation is the degradation in classification performance over time. Conventional

systems also have this limitation, but the degradation of our system is steeper than those of the
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conventional systems as discussed in Section 2.5.1. Our system is based on redirection subgraphs of

many websites such as benign, compromised, and malicious websites. Change in the structure of any

one of them degrades the classification performance of our system. The advantage of our system is

to achieve high classification performance if training and test data are similar. The evaluation results

show our system achieves the highest classification performance on the first month of test data. To

maintain high classification performance, the classifier should be retrained every month by using

data labeled by high-interaction honeyclients. High-interaction honeyclients are not suitable for

large-scale analysis due to their slow processing speed but are useful for labeling a limited number

of websites.

2.7 Related Work

2.7.1 Malicious Website Detection

Many systems have been proposed from different perspectives for detecting malicious websites

launching drive-by download attacks. Here, we describe conventional systems focuses on large-

scale user traffic, system behavior, and web content and redirections.

Large-scale User Traffic. One approach for detecting malicious websites is aggregating large-scale

user traffic [46, 114]. Attackers redirect clients to the same redirection URL from landing URLs

and then redirect them to the exploit URLs targeting their environment. Geographical diversity and

uniform client environments can be used as traits of malicious websites. However, these systems

require logs provided by anti-virus vendors or large ISPs, and these logs are generally difficult to

obtain. From the perspective of deployment, we design our system to use data collected with a

honeyclient.

System Behavior. Decoy client systems using actual browsers have been proposed to detect exploit

accurately by monitoring unintended process creation and file/registry accesses [3, 42, 65]. These

systems are known as high-interaction honeyclients. They have the limitations of a slow processing

speed due to the use of actual browsers and the limited coverage of collected malicious data due to

browser fingerprinting as discussed in Sections 2.1 and 2.2. For this reason, they are not suitable for
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large-scale analysis.

Web Content and Redirections. Systems in this category are designed for large-scale analysis.

They collect web content or redirections by using browser emulators and classify them by using

machine learning. Browser emulators developed for light-weight collection are known as low-

interaction honeyclients. Malicious web content has distinctive features to exploit known CVE-ID

(Common Vulnerabilities and Exposures identification) or trigger malicious redirections. Some

systems are focused on JavaScript code and HTML tags [19,25,113]. Other systems are focused on

multistage redirections such as the difference in domains and duration of redirections [72], URLs

shared across malicious websites [135], sequences of URLs [61], and URLs/HTTP headers and

redirections between them [122]. These systems are focused on malicious URLs, web content, or

redirections, but our system is focused on the redirection graphs of all websites, i.e., malicious/benign

web content and malicious/benign redirections.

2.7.2 Compromised Website Detection

Detecting compromised websites is another approach to preventing damage caused by drive-by

download attacks. Soska and Christin [112] detect websites that will become malicious in the

future by focusing on web content that is not generated by users, such as vulnerable CMSs. Li et

al. [60] detect compromised JavaScript code that triggers malicious redirections by comparing it with

its clean counterpart. These systems require a clean version of compromised websites or JavaScript

code. Our system detects compromised websites by leveraging only already compromised websites

and totally benign websites.

2.7.3 Classification of Graphs

Many researchers have studied different approaches for classifying graph-structured data such as

protein or medicine.

Graph Kernels. One approach is to design a graph kernel that is a function to calculate similarities

between graphs and classify graphs with machine learning algorithms based on kernel methods such

as support vector machine [117]. The random walk kernel [33] is based on the co-occurrence of
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sequences of labels on vertices or edges in random walks. The shortest-path kernel [15] is based on

the co-occurrence of the length of shortest-paths between pairs of vertices. The graphlet kernel [97]

is based on the co-occurrence of subgraphs that have k vertices. The Weishfeiler-Lehman graph

kernel [96] is based on the co-occurrence of multilabels that are created by iteratively integrating a

vertex’s and its neighbors’ labels. The deep graph kernel [131] is designed to extend the above graph

kernels by leveraging latent representations of sub-structures. The deep graph kernel is defined by

considering similarities between sub-structures as well as co-occurrence of sub-structures. These

methods effectively calculate similarities between graphs on the basis of their sub-structures, but

counting the occurrence of a large number of sub-structures is computationally expensive. Our

system reduces computational cost by calculating similarities between a redirection graph and a

small number of templates.

Convolution on Graphs. Since deep neural networks (DNNs) have achieved outstanding clas-

sification performance in image recognition and natural language processing, some studies have

applied DNNs to classification of graphs. Duvenaud et al. [30] have proposed a convolutional

neural network (CNN) that iteratively convolutes vectors representing a vertex and its neighbors and

calculates the summation of convoluted vectors as a representation of a whole graph. Li et al. [59]

conduct similar convolutions with the gated recurrent units. Dai et al. [26] designed an architecture

of neural networks on the basis of graphical model inference procedures. Niepert et al. [82] apply

conventional CNNs by arranging vertices in the order of certain criteria such as centrality. These

methods have difficulty extracting features of differently sized redirection subgraphs such as exploit

kits, compromised websites, and advertisements because the number of iterations of convolutions

must be determined before training. Our system extracts features of differently sized redirection

subgraphs by leveraging differently sized templates.

2.8 Summary

We propose a system for detecting malicious websites on the basis of the redirection graphs of all

websites even when some malicious web content is concealed. We extract redirection subgraphs

shared across malicious, benign, and compromised websites as templates and classified websites
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using feature vectors containing similarities between their features of subgraphs and the templates.

We find that templates contained redirection subgraphs of exploit kits, compromised websites, and

advertiser websites. These templates enable our system to identify malicious websites by capturing

redirection subgraphs of compromised websites as well as those of malicious websites. As a result

of evaluating our system with crawling data of 455,860 websites, we find that it achieves a 91.7%

true positive rate for malicious websites containing exploit URLs at a low false positive rate of

0.1%. Moreover, our system detects 143 more evasive malicious websites than the conventional

content-based system.
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Event De-noising Convolutional Neural

Network for Detecting Malicious URL

Sequences from Proxy Logs

3.1 Introduction

Attackers have increased the number of infected hosts on enterprise networks by using drive-by

download attacks despite the efforts of many security researchers and vendors. This type of attack

infects a client with malware by exploiting the vulnerabilities of a browser and its plugins through

the Web. Attackers lure unsuspecting users of compromised popular websites (landing URLs) and

redirect them via redirection URLs to exploit URLs. At exploit URLs, exploit code is executed to

force users to download and execute malware samples from malware distribution URLs. In this

Chapter, we define a group of such URLs related to a drive-by download attack as a malicious

website. Because some users ignore security warnings and software updates, attacks need to be

detected and filtered at a network level [132].

To filter the accesses from users to malicious websites, methods for creating blacklists of URLs

and domains have been proposed [6, 66]. However, it has become even more difficult to list

malicious websites on blacklists before users access them. This is because malicious domains are
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used only for a short period, and honeyclients, which are decoy client systems, can obtain exploit

code only if their environment (a type of browser and its plugins) matches the targeted environment

of attackers [61]. Therefore, detection of users who have already accessed malicious websites by

analyzing communication logs on the network has started to be researched.

For communication log analysis, operators of enterprise networks record simplified logs, such

as proxy logs [77] because they cannot feasibly record all web content. Simplified logs contain

minimal information such as timestamps and URLs but not web content or HTTP headers. For this

reason, we cannot focus on conventional features such as malicious content [19] and redirection

chains [114] to detect malicious websites in typical enterprise networks. To make matters worse,

simplified logs contain communications automatically sent by software other than browsers such

as an OS or anti-virus software. These communications make classification difficult because their

destination URLs are similar to malicious URLs with random strings and long query parameters.

These negative effects on classification can be reduced by eliminating these communications from

simplified logs, but some of their fully qualified domain names (FQDNs) are known as disposable

domains that contain automatically generated random strings. To identify disposable domains, we

must collect domains generated by the same software for six days [21]. In other words, disposable

domains of software are difficult to identify right after it is installed. Therefore, we must detect

accesses to malicious websites from simplified logs that contain communications sent by software

other than browsers.

To tackle these problems, we propose a system for detecting malicious URL sequences from

simplified logs by focusing on two points. The first point is that some artifacts of malicious

redirections can be extracted from simplified logs by considering several nearby URLs. Specifically,

simplified logs contain malicious URLs (i.e., landing URLs, redirection URLs, and exploit URLs),

and their sequential order is preserved. In this Chapter, we refer to the sequences of destination URLs

as URL sequences and the URL sequences including accesses to malicious websites as malicious

URL sequences. We extract features of malicious redirections from URL sequences to detect

accesses to malicious websites. The second point is that features for classifying communications

sent by software other than browsers have not been well-designed. Since disposable domains are

difficult to classify on the basis of domain-based features as mentioned above, we propose new
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features by analyzing their URL paths or queries.

The drawback of machine learning is that it requires many training data. For example, accurately

classifying URL sequences requires many training data that include accesses to multiple websites.

Malicious URL sequences might include accesses to not only malicious websites but also benign

websites accessed in a short period. Even if the malicious URL sequences include accesses to

different benign websites, the classifier must detect these URL sequences. To train such a classifier,

URL sequences including accesses to a large variety of combinations of websites are needed. By

collecting a large number of URL sequences, the coverage of combinations is enhanced, but our

system becomes difficult to deploy. To enhance the coverage of combinations with a moderate

number of URL sequences, we also propose a data augmentation to classify URL sequences. Since

effective data to enhance classification performance differ depending on the classification approach,

we generate data suitable for the proposed classification approach.

We use a simple approach and our proposed approach for focusing on malicious redirection.

For our approach, we also propose suitable data augmentation. We first describe classification

approaches then explain data augmentation.

Convolutional Neural Network. The first approach extracts features of malicious redirection

in a simple manner. This approach is based on the similarity between the relation of URLs in

URL sequences and the relationships among words in sentences. Specifically, a URL sequence

includes many pairs of URLs linked by redirections, i.e., source and destination of redirections, and

a sentence includes many pairs of words that are syntactically dependent. Because convolutional

neural networks (CNNs) achieve high classification accuracy in natural language processing [43],

we applied a CNN to URL sequence classification.

Event De-noising CNN. The second approach extracts features of malicious redirections by using

a method we developed for this purpose. This approach is based on the fact that malicious URL

sequences include not only malicious URLs related to drive-by download attacks but also benign

URLs redirected from landing URLs (e.g., image URLs, JavaScript library URLs, and advertisement

URLs) and benign URLs accessed by software other than browsers. To reduce the negative effects of

benign URLs, we developed an event de-noising CNN (EDCNN), which is an extension of the CNN
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architecture. It reduces the effect of benign URLs that negatively affect classification performance

such as noise in a URL sequence (generally, a sequence of discrete events). More precisely, we

extended the architecture to extract features from two URLs in the vicinity rather than from several

nearby URLs in the sequence. This structure enables the same features to be extracted from the same

combination of two malicious URLs, even if some benign URLs are inserted between the malicious

URLs, i.e., the EDCNN robustly extracts features of malicious redirections. As a result, the EDCNN

is expected to more accurately classify URL sequences on the basis of malicious redirections.

In addition, we propose a new data augmentation suitable for the EDCNN. The EDCNN is

expected to propagate features of malicious URLs and ignore those of benign URLs. When training

the classifier of the EDCNN, benign URLs in malicious URL sequences have little impact because

they are ignored. On the other hand, malicious URLs largely affect training of the classifier.

Specifically, positional relationships of malicious URLs need to be diverse for robustly extracting

features of malicious redirections by the classifier. Therefore, we diversify them by generating

new URL sequences including accesses to randomly selected websites. Including different benign

websites in malicious URL sequences makes positional relationships of malicious URLs different.

Any benign website can be included in malicious URL sequences because it is ignored by the

EDCNN.

We empirically discuss the classification performance and capability of capturing malicious

redirections with data collected over seven months. In summary, we make three contributions.

• To the best of our knowledge, we are the first to focus on URL sequence classification and

propose a system for detecting malicious URL sequences.

• We identified 13 effective features for classifying URLs accessed by software other than

browsers.

• We show that our EDCNN with the 13 identified features and data augmentation achieves

practical classification performance by detecting malicious redirections even if some benign

URLs exist between their URLs.
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Figure 3.1: Data formats.

3.2 Data Formats

To give a better understanding of our system, we explain the definitions of data relevant to our

system: redirection chains, simplified logs, and URL sequences.

Redirection Chain. Attackers redirect a user’s client from a landing URL to an exploit URL via

redirection URLs. When a client accesses an exploit URL, code that exploits the vulnerabilities of

a browser and its plugins is executed. The code execution forces the client to download and install

malware from a malware distribution URL [114]. The relationships of these URLs are shown in

Fig. 3.1(a), in which vertexes are URLs and edges are redirections. This tree-shaped architecture

is called a redirection chain. The redirection chain of malicious websites has a distinct structural

feature, i.e., multistage redirections. We define a malicious URL as a URL along a path from a

landing URL to a malware distribution URL and a benign URL as a non-malicious URL.

Simplified Log. Operators of enterprise networks typically record simplified logs, which are lists

of information regarding communications such as timestamps, source IP addresses, HTTP methods,

and destination URLs as shown in Fig. 3.1(b). They are recorded in the order of communication

occurrence. Simplified logs do not show the source and destination of a redirection but do contain

malicious URLs (i.e., landing URLs, redirection URLs, and exploit URLs) and preserve their

sequential order.

URL Sequence. Our system extracts URL sequences from simplified logs. A URL sequence is a list

of URLs selected from a simplified log on the basis of certain criteria. Figure 3.1(c) shows a URL
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Figure 3.2: Overview of proposed system.

sequence extracted by selecting the first five URLs from the simplified log shown in Fig. 3.1(b). We

define a malicious URL sequence as a URL sequence that contains at least one malicious URL and

a benign URL sequence as a URL sequence that contains only benign URLs.

3.3 System Design

We now present our proposed system for detecting malicious URL sequences. We first describe our

system design in this Section and give details of our system in Section 3.4. Figure 3.2 shows an

overview of our system.

Our system receives simplified logs as input and detects malicious URL sequences. Since a

large number of accesses to different websites are recorded in a simplified log, we extract parts of

simplified logs as URL sequences and classify them. Specifically, we extract a URL sequence so

that URLs related to a malicious redirection are included in the same URL sequence.

To classify URL sequences, one possible approach is treating URLs as text and applying methods

that are based on natural language processing. However, attackers can easily evade this approach by

manipulating characters in URLs. In contrast, methods for detecting malicious URLs are focused

on IP addresses corresponding to the domain and the hierarchical structure of the domain [6, 19].

Attackers have trouble registering domains and IP addresses that are securely operated and so tend

to register domains and IP addresses that are loosely operated. Therefore, some IP-address ranges
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and top level domains are occasionally used for malicious purposes, whereas others are rarely used

for such purposes. On the basis of this insight, heuristically designed features are extracted to detect

malicious URLs and make it difficult for attackers to evade detection. For this reason, our system

extracts these features from URLs and classifies them.

In the training phase, large numbers of malicious and benign URL sequences are required as

training data to accurately classify sequences. However, it is generally difficult to collect simplified

logs that include accesses to many malicious websites. Instead, we collect malicious URL sequences

by recording accesses to known malicious websites with a honeyclient. Benign URL sequences are

extracted from proxy logs. In addition, we generate URL sequences that contain malicious URLs

that have diverse positional relationships for training the EDCNN. Then feature vectors are extracted

from these URL sequences, and a classifier is trained. In the classification phase, URL sequences

are extracted from proxy logs. Then feature vectors are extracted from them and are classified by

the classifier. Note that HTTPS traffic can be analyzed with a man-in-the-middle proxy deployed in

modern enterprise networks.

3.4 Proposed System

We describe components of our proposed system in detail.

3.4.1 URL Sequence Extraction

We extract URL sequences so that URLs related to a malicious redirection are included in the same

URL sequence as shown in Fig. 3.3. First, simplified logs are divided on the basis of source IP

addresses ( 1O). Divided simplified logs contain accesses from each source IP address. After that, the

logs are split between URLs that have intervals longer than a threshold ( 2O). By setting a threshold

longer than intervals of malicious redirections, we can obtain desired URL sequences.

3.4.2 Feature Extraction

We use two types of features designed from different viewpoints to achieve high classification

performance. Note that our system is not limited to these two features. Any feature can be added or
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Figure 3.3: URL sequence extraction.

Table 3.1: Historic domain-based features.
No. RHIP Features No. RHDN Features

1 # BGP Prefixes (FQDN) 19 # FQDNs
2 # BGP Prefixes (3LD) 20 Mean (Lengths)
3 # BGP Prefixes (2LD) 21 SD (Lengths)
4 # Countries (FQDN) 22 Mean (1-gram)
5 # Countries (3LD) 23 Median (1-gram)
6 # Countries (2LD) 24 SD (1-gram)
7 # IP addresses (3LD) 25 Mean (2-grams)
8 # IP addresses (2LD) 26 Median (2-grams)
9 # Organizations (FQDN) 27 SD (2-grams)

10 # ASN (FQDN) 28 Mean (3-grams)
11 # ASN (3LD) 29 Median (3-grams)
12 # ASN (2LD) 30 SD (3-grams)
13 # Registries (FQDN) 31 # TLDs
14 # Registries (3LD) 32 Ratio of .com
15 # Registries (2LD) 33 Mean (TLD)
16 # Dates (FQDN) 34 Median (TLD)
17 # Dates (3LD) 35 SD (TLD)
18 # Dates (2LD)

removed easily.

Historic Domain-Based Features. Historic domain-based features are categorized into two ap-

proaches. One is a correspondence-based approach [6], which requires correspondence between

domains and IP addresses, between IP addresses and autonomous systems (ASs), and so on. The
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other is a behavior-based approach [7, 14], which requires large-cache DNS logs or authoritative

DNS logs. However, these DNS logs are generally difficult to obtain. Therefore, from the per-

spective of ease of deployment, we take the correspondence-based approach. Specifically, we first

extract the domain part from each input URL and then extract our historic domain-based features.

As with Notos [6], our historic domain-based features come in two types: related historic IP ad-

dresses (RHIP) and related historic domain names (RHDN). A RHIP is a union of all resolved IP

addresses for each fully qualified domain name (FQDN), its third-level domain (3LD) part, and its

second-level domain (2LD) part in the past. We extract 18 RHIP features, Nos. 1–18 in Tab. 3.1:

the numbers of the RHIP’s Border Gateway Protocol (BGP) prefixes, countries, organizations, AS

numbers (ASNs), and registries; allocated dates for the FQDN, 3LD, and 2LD; and the numbers

of RHIPs for the 3LD and 2LD. On the other hand, a RHDN is a union of domains resolved to IP

addresses in the same ASN of the past IP addresses of each FQDN. We extract 17 RHDN features,

Nos. 19–35 in Tab. 3.1: the number, mean length, and standard deviation (SD) of the length of the

RHDN’s FQDNs. We also consider the occurrence frequency of n-grams of the RHDN’s FQDNs:

the means, medians, and SDs of 1-gram, 2-grams, and 3-grams. Moreover, we focus on the top-level

domain (TLD) of the RHDN’s FQDNs: the number of TLDs; ratio of the .com TLDs; and mean,

median, and SD of the occurrence frequency of the TLDs in an RHDN.

Momentary URL-based Features. To detect malicious URLs of drive-by download attacks, many

momentary URL-based features have been proposed [19]. We selected two feature types in Tab. 3.2

that are not covered by historic domain-based features. The first is the length of a part of a URL

(Nos. 1–3): the length of the file name, URL, and path. The second is the presence of a malicious or

benign trace in a URL (Nos. 4–8): the presence of a known malicious domain, a known malicious

pattern in a URL or file name, a subdomain, and an IP address.

We further add new features for classifying URLs automatically accessed by software other

than browsers such as an OS and anti-virus software. These URLs are difficult to identify on the

basis of domain-based features [21]. We designed features by focusing on URL paths and queries.

Manual analysis revealed distinct features of URLs accessed by software other than browsers: their

filenames do not have file extensions, their TLDs are popular, hierarchies of their paths are very
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Table 3.2: Momentary URL-based features.
No. Features Origin

1 Length of file name
2 Length of URL
3 Length of path
4 Presence of known malicious domain [19]
5 Presence of known malicious pattern in file name
6 Presence of known malicious pattern in URL
7 Presence of subdomain
8 Presence of IP address
9 Presence of .html or .php extensions

10 Presence of .js extension
11 Presence of .pdf or .swf extensions
12 Alexa rank of TLD
13 Depth of URL hierarchy
14 # of queries Proposed
15 # of “-” in queries
16 # of “_” in queries
17 # of symbols except “-” and “_” in queries
18 Ratio of upper-case letters in queries
19 Ratio of lower-case letters in queries
20 Ratio of numerical digits in queries
21 Ratio of symbols in queries

deep, and characters used in their queries differ depending on software. In terms of file extension, we

use the presence of content types frequently used by drive-by download attacks because this feature

has more information than the presence of file extension (Nos. 9–11). Specifically, .html or .php

extensions are used in compromised or redirection URLs, a .js extension is used in redirection

or exploit URLs, and .pdf or .swf extensions are used in exploit URLs. To rank TLDs in terms

of popularity, we use the Alexa rank of TLDs: the highest Alexa [4] rank among domains with a

certain TLD (No. 12). From URL paths, we extract the depth of URL paths (No. 13). Regarding

queries, we extract the number of queries, the number of hyphens “-”, the number of underscores

“_”, the number of other symbols, ratio of upper-case letters, ratio of lower-case letters, ratio of

numerical digits, and ratio of symbols (Nos. 14–21).
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Figure 3.4: Data augmentation for benign URL sequence.

Figure 3.5: Data augmentation for malicious URL sequence.

3.4.3 Data Augmentation

We accelerate training of the EDCNN by generating new URL sequences that include accesses

to different websites. A large variety of positional relationships of malicious URLs improves the

detection capability of the EDCNN classifier. We also generate new benign URL sequences to

shorten the period of collecting proxy logs for training data. However, generated URL sequences

might degrade classification performance if the positional relationships of malicious URLs in them

are totally different from those in proxy logs. To improve classification performance with data

augmentation, we generate URL sequences similar to those extracted from proxy logs in terms of

the number of included websites and intervals of accesses.

We make groups of accesses automatically redirected from the same URL by using referers to

identify accesses to a website. Referers related to search engines are not used because they are not
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automatic redirections. A new benign URL sequence is generated by replacing groups of accesses

in a URL sequence containing multiple groups with those in other URL sequences as shown in

Fig. 3.4. The intervals between the first accesses of every group and intervals between accesses of

the same group are preserved. A new malicious URL sequence is generated by replacing one group

in a generated benign URL sequence with one from a malicious URL sequence as shown in Fig. 3.5.

A generated malicious URL sequence contains one group of accesses related to malicious websites

because a host rarely accesses multiple compromised websites within a short period. Note that a

referer is recorded while collecting training data but does not need to be recorded in the classification

phase.

3.4.4 Classification

We classify URL sequences using a CNN or our EDCNN and compare them to determine which is

more effective.

Notations. We describe the notations used in this Chapter. We define a URL sequence as x = {xi}Ii=1,

where xi ∈ RK denotes the feature vector of the i-th URL, K denotes the number of features, and

I denotes the number of URLs. The classification result of the URL sequence x is defined as

y ∈ {0, 1}. A classification result of 0 represents benign and 1 represents malicious.

A neural network is composed of multiple layers that gradually extract higher level representa-

tions. We define the input and output of the l-th layer as hl−1 and hl, respectively. In the case that

hl is three-dimensional data containing Il rows, Jl columns, and Kl channels, we use Kl@Il × Jl

to represent its size, and hl
i, j,k

to represent its value at the i-th row, j-th column, and k-th channel.

For example, xi is also represented as three-dimensional data with a size of K@1 × 1 by stacking

features along the channel axis. A URL sequence x is represented as three-dimensional data h1 with

a size of K@I × 1 by stacking xi along the row axis. The value of the k-th feature in the i-th URL is

represented as h1
i,1,k . Note that the number of columns of h1 is 1 because no variable is stacked along

the column axis. These representations are used to input a URL sequence into a neural network. In

the case that hl is the vector of size Il, we define the i-th value in the vector as hli . We also define the

filter weight of the convolution layer for calculating the c-th channel of hl as wlc . The size of the
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Figure 3.6: Architecture of CNN.

filter weight containing Nl rows and Ml columns is represented as Nl × Ml and the value at the n-th

row and m-th column as wlcn,m. Similarly, we use Nl × Ml to represent the window size of pooling to

calculate hl. The weight matrix of the fully connected layer for calculating hl is represented as wl,

and the weight between hl−1
i and hlj is represented as wli j .

Convolutional Neural Network. Figure 3.6 shows the architecture of the CNN applied to our

system. Convolution and pooling are repeated two times to convolute four malicious URLs that

are expected to be included in malicious URL sequences. This CNN has eight layers: one input

layer, two convolution layers, one max pooling layer, one spatial pyramid pooling (SPP) layer, two

fully connected layers, and one output layer. The convolution, max pooling and SPP layers take

three-dimensional data as input and output different three-dimensional data. The fully connected

and output layers take vectors as input and output other vectors.

Input layer: The input layer arranges our features extracted from URLs to input them into the

CNN. As described above, the output of this layer h1 is represented as the three-dimensional data of

K@I × 1. Each feature is normalized so that its average becomes 0 and its variance becomes 1.

Convolution layers: The convolution layers calculate the value of the outputs from those in the re-

ceptive field: a small part of input. The output is calculated as hl
i,1,c = ReLU

(∑Nl

n=0
∑Kl−1

k=1 w
lc
n,1,khl−1

i+n,1,k

)
.

If hl−1
i+n,1,k is outside the previous layer, we set hl−1

i+n,1,k = 0. We expect the redirections between

malicious URLs to be extracted in the convolution layers.

Max pooling layer: The max pooling layer outputs the maximum value in the receptive field.
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The output is calculated as hl
i,1,k = max0≤n≤Nl

(hl−1
i+n,1,k). We expect the max pooling layer to make

classification robust against the position of malicious URLs.

Spatial pyramid pooling layer: The SPP layer outputs the fixed length of a vector, receiving an

arbitrary size of inputs [39]. In this layer, inputs are divided into 1, 4, ... square areas. Then, the

maximum value in each area is selected with respect to each channel. If the number of columns

of the input is 1, the input is divided only in the row direction. When the input is divided into 1

and 4 areas, the SPP layer outputs 5Kl−1@1 × 1 from Kl−1@Il−1 × Jl−1, (Jl−1 ≥ 2), and outputs

3Kl−1@1 × 1 from Kl−1@Il−1 × 1. Note that K@1 × 1 can be calculated as the vector of length

K . We expect the SPP layer to propagate information related to malicious redirection and its rough

position.

Fully connected layers: The fully connected layers output integrated information considering

all values of the previous layer. The output is calculated as hlj = ReLU
(∑

i wi jhl−1
i

)
. We expect the

fully connected layers to integrate the information of malicious redirections scattered in the previous

layer.

Output layer: The output layer outputs the probability of each class. The dimension of the output

vector is the number of classes. The output is calculated as hlj =
e
z j∑

i e
zi , where zj =

∑
i wi jhl−1

i . All

outputs are non-negative, and the summation of outputs is 1. Therefore, the output represents the

probability of its corresponding class. The classification result is determined as y = argmaxihli .

The weights of every layer are optimized by backpropagation to minimize classification error.

The algorithm we use for this optimization is AdaDelta [134], which automatically adapts the

learning rate to reduce training time.

Event De-noising Convolutional Neural Network. We develop the EDCNN, which reduces the

negative effect of benign URLs in a malicious URL sequence. Specifically, two URLs that are

close in sequential order are convoluted at the convolution layers. To implement such a convolution

in one layer, we must carry out complicated matrix multiplication. This results in a decrease in

the training and classification speed. To tackle this problem, we introduce an allocation layer,

which arranges values of the input for the intended convolution. Specifically, it arranges values to

be convoluted side-by-side, and a conventional convolution layer is applied to its output. In this
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Figure 3.7: Architecture of EDCNN.

way, the intended convolution is implemented using only simple matrix multiplication and carried

out without sacrificing training and classification speed. Figure 3.7 shows the architecture of the

EDCNN. It has ten layers: one input layer, two allocation layers, two convolution layers, one max

pooling layer, one SPP layer, two fully connected layers, and one output layer. We explain the

allocation layer and layers that we modified: convolution and max pooling layers.

Allocation layers: To convolute two URLs that are close in sequential order in the convolution

layer, we arrange values of the input so that the i-th and i + 1-th values, i-th and i + 2-th values, ...,

and i and i + Nl-th values are adjacent. The output is calculated as

hl2i, j,k =


hl−1
i,1,k (i + j ≤ Il−1)

0 (otherwise)
(3.1)

hl2i+1, j,k =


hl−1
i+j,1,k (i + j ≤ Il−1)

0 (otherwise),
(3.2)

where i ∈ {a ∈ Z|1 ≤ a ≤ Il−1} and j ∈ {a ∈ Z|1 ≤ a ≤ Nl}.

Convolution layers: The convolution layers convolute the adjacent values arranged in the

allocation layers. The output is calculated as hli, j,c = ReLU
(∑1

h=0
∑Kl−1

k=1 w
c
h,1,khl−1

2i+h, j,k

)
. The

receptive field is moved by two in the row direction.

Max pooling layer: The values of the inputs in the same column are the convolution of candidates

of malicious redirections. One of them may be the convolution of actual malicious redirection. Thus,

it is reasonable to select one value from them. The output is calculated as hl
i,1,k = max1≤ j≤Jl−1(hl−1

i, j,k
).
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The weights are optimized by backpropagation to minimize classification error. Errors in the

allocation layers are propagated backward to the previous layer through connections. Propagated

errors are summed in the previous layer.

3.5 Evaluation

We evaluate the effectiveness of our URL sequence extraction and classification. We first explain

the data collection and then report the evaluation results.

3.5.1 Data Collection

We collect two types of logs for our evaluation: proxy logs and honeyclient logs.

Proxy Log. For a typical simplified log, we use proxy logs for evaluation. We collect proxy logs

from 26th Oct. to 25th Dec. 2016 from a university’s network with the users ’consent. Source

IP addresses are anonymized while recording the proxy log, but the same anonymized numbers are

assigned to the same source IP address. Accesses to 824,950 URLs are collected in the proxy log.

Honeyclient Log. We use honeyclient logs to collect accesses to malicious websites. We collect

honeyclient logs by accessing public blacklists [68, 128] with the honeyclient [3] from 26th May to

25th Dec. 2016. We use them if attacks are detected by the honeyclient. Accesses to 105,528 URLs

are collected in the honeyclient logs.

3.5.2 Evaluation of URL Sequence Extraction

We evaluate whether our system can extract URL sequences adequate for classification.

Threshold Setting. Before extracting URL sequences, the threshold for splitting proxy logs must

be decided. To make sure that URLs related to a malicious redirection are included in the same

URL sequence, we set the threshold larger than intervals of accesses included in malicious URL

sequences. Figure 3.8 shows the cumulative distribution function (CDF) of intervals of accesses in

malicious URL sequences. Most intervals are shorter than 20 seconds, but we use 60 seconds as the

threshold since it is sufficiently longer than most intervals.
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Figure 3.8: CDF of intervals of accesses.

Figure 3.9: Distribution of the number of groups included in a URL sequence.

Analysis of URL Sequence. We analyze the extracted URL sequences to evaluate whether they

are adequate for classification. URL sequences are difficult to classify accurately if they contain

accesses related to multiple websites. We investigate the number of websites included in a URL

sequence. We make groups of accesses automatically redirected from a URL in the same manner as

data augmentation. The numbers of groups in the extracted URL sequences are shown in Fig. 3.9.

Because most URL sequences include only one group, the extracted URL sequences are speculated

to be adequate for classification.
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Table 3.3: Dataset. DA represents data generated with the data augmentation.
Label Number Number (DA) Period

Malicious 3,224 - 26th May 2016 – 25th Nov. 2016
Training Benign 5,061 6,641 26th Oct. 2016 – 25th Nov. 2016

Replaced 2,153 11,154 -
Malicious 462 - 26th Nov. 2016 – 25th Dec. 2016

Test Benign 7,044 - 26th Nov. 2016 – 25th Dec. 2016
Replaced 3,050 - -

3.5.3 Evaluation of Classification

We evaluate the classification performance. We describe the dataset and hyperparameter optimiza-

tion and then show the evaluation results for classification performance and calculation time.

Dataset for Classification. We use URL sequences extracted from the proxy log to evaluate

classification performance for sequences containing accesses to only benign websites. This is

because anti-virus software is installed onto all hosts in the network where the proxy log is collected,

but infection is not detected while collecting the proxy log. We use URL sequences extracted from

the honeyclient logs to evaluate classification performance for those containing accesses to only

malicious websites. To evaluate classification performance for URL sequences containing accesses

to benign and malicious websites, we generate URL sequences by using the proxy log and honeyclient

logs. The validity of evaluation depends on the similarity between URL sequences generated for

evaluation and those when users access malicious websites. We generate URL sequences by

replacing one group of accesses in a benign URL sequence with one from a randomly selected

malicious URL sequence as shown in Fig. 3.5. The generated URL sequences are not expected to

greatly differ from those of users’ accesses to malicious websites for two reasons: 1) we can randomly

select malicious groups of accesses because benign and malicious URLs have little relation, and 2)

only one group of accesses in a URL sequence is replaced.

We use data collected before 25th Nov. 2016 as training data and data collected after as test

data. No URL sequences between training and test data overlaps. In total, 28,621 URL sequences

are used for training data and 10,556 for test data, as shown in Tab. 3.3. We define URL sequences

extracted from the proxy log as benign URL sequences, URL sequences from honeyclient logs as

– 58 –



Chapter 3. Event De-noising Convolutional Neural Network

Table 3.4: Selected hyperparameters.
Hyperparameter CNN EDCNN
# of channels in 1st convolution layer 100 100
# of channels in 2nd convolution layer 100 100
# of rows in receptive field for convolution 3 3
# of neurons in fully connected layers 1000 1000

malicious URL sequences (M), and URL sequences generated using the proxy log and honeyclient

logs as replaced URL sequences (R). Since replaced URL sequences include accesses to malicious

websites, they should be detected by our system.

Conventional Approach. Malicious websites have been typically detected with a network IDS by

individually classifying destination URLs. If one or more URLs are detected, the corresponding

website is considered malicious [19]. We compare our approach with such a conventional individual-

based approach. In this individual approach, URLs in a sequence are individually classified, and

the URL sequence is classified as malicious if at least one URL is classified as such. Let xi denote

the feature vector of the i-th URL and f (xi) ∈ {1, 0} denote the classification results of that URL.

A classification result of 1 represents malicious, and 0 represents benign. The classification result

y of the URL sequence x = {x1, ..., xI } is defined as y = max1≤i≤I { f (xi)}. We use random forest

as the classifier. Random forest builds multiple decision tree classifiers that use parts of features.

Its classification result is determined by a majority vote of classification results of decision tree

classifiers.

Hyperparameter Optimization. Before training the classifier, we have to select its hyperparame-

ters. The hyperparameters for the individual-based approach are the ratio of features used for each

decision tree and the number of decision trees. They are optimized by using the tuneRF function

of the randomForest package in R [44] when a classifier is trained. The hyperparameters for the

CNN and EDCNN are the numbers of channels in convolution layers, rows in the receptive field for

convolution, and neurons in fully connected layers. The hyperparameters are selected on the basis

of a preliminary cross-validation as shown in Tab. 3.4.

Classification Performance. We now describe the evaluation results for classification performance
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Table 3.5: Classification performance.
Classifier TPR (M) TPR (R) FPR
Individual (HD) 47.5% 57.1% 9.0%
Individual (MUC) 88.3% 90.7% 6.9%
Individual (MUP) 53.4% 68.8% 13.2%
Individual (HD+MUC) 38.4% 43.1% 2.2%
Individual (HD+MUP) 27.5% 31.6% 2.9%
Individual (MUC+MUP) 56.6% 69.2% 11.1%
Individual (HD+MUC+MUP) 91.1% 91.8% 3.9%
CNN 98.5% 90.0% 7.3%
EDCNN (without DA) 97.0% 87.6% 3.1%
EDCNN (with DA) 99.1% 95.0% 3.4%

of unknown malicious URL sequences. We evaluate classification performance with two widely

used indexes: TPR and FPR. These indexes are defined by using the numbers of the following

URL sequences: TPs, which are correctly classified malicious URL sequences by the classifier;

FNs, which are wrongly classified malicious URL sequences; TNs, which are correctly classified

benign URL sequences; and FPs, which are wrongly classified benign URL sequences. Each index

is defined as follows: TPR = TPs/(TPs + FNs), FPR = FPs/(FPs + T Ns).

We compare classification performances of three approaches: individual, CNN, and EDCNN.

We also evaluate the effectiveness of features: historic domain-based features (HD), momentary

URL-based features proposed in the conventional system (MUC), and momentary URL-based

features proposed in our system (MUP). For this purpose, we train the individual approach by using

all combinations of HD, MUC, and MUP. Note that the CNN and the EDCNN are trained by using all

features. We further evaluate the effectiveness of data augmentation for the EDCNN by comparing

the classification performances of the EDCNN with and without data augmentation.

Table 3.5 shows TPR and FPR of the classifiers. Results for the individual approach show

that each type of features differently affects classification performance. HD is assumed to lower

FPR because FPRs are low when HD, HD+MUC, or HD+MUP are used. MUC is assumed to

increase TPR because TPRs are high when MUC, HD+MUC, or MUC+MUP are used. A clear

tendency is not observed regarding MUP, but MUP is assumed to compliment HD and MUC

because the classification performance with HD+MUC+MUP is higher than that with HD+MUC.
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Table 3.6: Top 10 features of high importance.
No. Type Origin Features

1 Domain [6] # Countries (3LD)
2 URL Proposed Alexa rank of TLD
3 Domain [6] # IP addresses (3LD)
4 Domain [6] SD (Lengths)
5 URL [19] Presence of subdomain
6 Domain [6] # Dates (2LD)
7 URL Proposed Ratio of capital English letters in queries
8 Domain [6] Ratio of .com
9 URL [19] Length of URL

10 Domain [6] # BGP Prefixes (2LD)

The classifiers based on relationships of URLs, i.e., CNN and EDCNN, achieve high TPR for

URL sequences containing one group of accesses but comparatively low TPR for URL sequences

containing multiple groups of accesses. This is because features of malicious redirections are

difficult to extract from sequences that include accesses to multiple websites. Even under this

condition, classification performance of the EDCNN is improved by using data augmentation. Out

of the ten classifiers, the EDCNN with data augmentation achieves the most practical classification

performance, i.e., high TPR and acceptable FPR.

To determine the contributions of the proposed features, we calculate the importance of the

features which represents how much each feature contributes to classification. Importance is

calculated with the importance function in the randomForest package of R [44]. The top 10

features of high importance are shown in Tab. 3.6, and all types of features are in the top 10. It

also shows that the reason classification performance improves by adding our proposed features to

conventional ones is that our features enable a classifier to execute classification on the basis of more

distinctive features.

To better understand the classifiers, we compare the individual-based approach using all features,

CNN, and EDCNN with data augmentation. Specifically, we analyze classification performance on

different numbers of groups of accesses and URLs. TPRs and FPRs for different numbers of groups

of accesses are shown in Fig. 3.10. When the number of groups is the same, the classifiers have

similar FPRs but different TPRs. When the number of groups is small, the EDCNN and the CNN
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Figure 3.10: TPR and FPR for different numbers of groups of accesses.

Figure 3.11: TPR and FPR for different numbers of URLs.

have high TPRs, but the individual-based approach has a low TRP. When the number of groups is

large, the EDCNN and individual-based approach have high TPRs, but the CNN has a low TPR.

Only the EDCNN can maintain high TPR regardless of the number of groups. TPRs and FPRs

for different numbers of URLs are shown in Fig. 3.11. When the number of URLs is the same,

the classifiers have similar FPRs but different TPRs. When the number of URLs is less than 300,

the EDCNN has the highest TRP, and the CNN and individual-based approach have similar TRPs.

When the number of URLs is 300 or more, the EDCNN and individual-based approach have similar

TRPs that are higher than that for the CNN. These results show the EDCNN outperforms the CNN
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Table 3.7: Calculation time.
Feature Extraction (sec./seq.) Classifier Training (hours) Classification (sec./seq.)
Domain 0.350 Individual 0.02 0.002

URL 0.007 CNN 47.19 0.086
Proposed 0.003 EDCNN 52.49 0.096

and the individual-based approach regardless of the number of groups and URLs in URL sequences.

Calculation Time. The maximum size of proxy logs to which our system can be applied depends

on the calculation time of feature extraction and classification. Furthermore, a classifier needs to

be periodically retrained to continuously maintain high classification performance even if features

of benign and malicious sequences change over time. The calculation time of training needs to

be shorter than a period when a classifier maintains high classification performance. Therefore,

we evaluate the calculation time of feature extraction, training, and classification. Table 3.7 lists

the calculation times of a prototype version of our system. Our prototype is implemented using

two different machines. Momentary URL-based features were extracted and training/classification

is conducted by using a Ubuntu server with four 12-core CPUs and 128-GB RAM, and historic

domain-based features are extracted with a Hadoop cluster composed of 2 master servers with a

16-core CPU and 128-GB RAM and 16 slave servers with a 16-core CPU and 64-GB RAM. The

individual-based approach is implemented by using the randomForest package of R, and the CNN

and EDCNN are implemented by using Chainer [123]. The total calculation time of feature extraction

and classification is about 0.5 seconds per sequence. The prototype system could inspect 189,473

URL sequences a day with the EDCNN. The calculation times of the CNN and EDCNN training

are longer than that of the individual-based approach. In the evaluation, the CNN and EDCNN

achieve high classification performance using data collected for one month. In other words, they

maintained high classification performance for at last one month. The calculation times of training

the CNN and EDCNN are sufficiently shorter than one month when their classifiers maintained high

classification performance.

3.5.4 Threats to Validity

We further analyze evaluation results to confirm the validity of our evaluation.
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Figure 3.12: Convolution and pooling of (a) CNN and (b) EDCNN.

URL Sequences Detected only with EDCNN. We confirm that the structure of the EDCNN

improves classification performance by analyzing URL sequences detected only with the EDCNN.

In these sequences, URLs related to malicious websites are split into several parts and have about five

benign URLs between them. The convolution and pooling of the EDCNN are assumed to enable

the EDCNN to detect these URL sequences. Figure 3.12 shows an example of convolution and

pooling with the CNN and the EDCNN. URLs/neurons illustrated with solid lines are those utilized

for calculating the output of the neuron in the second convolution layer. Other URLs/neurons are

illustrated with broken lines. Many benign URLs are utilized for calculation in the CNN because all

neurons in the receptive field are convoluted. This means that the CNN must learn features of not

only malicious URLs but also benign URLs between them. In the EDCNN, malicious URLs and

two benign URLs are utilized for calculation. This means that the EDCNN can ignore some benign

URLs between malicious ones. This is why the EDCNN could detect malicious URL sequences if

about five benign URLs are located between malicious URLs.
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Effect of Data Augmentation. We investigate the effect of data augmentation by evaluating

classification performance of the CNN with data augmentation. The results are TPR(M) = 96.7%,

TPR(R) = 88.5%, and FPR = 5.1%. The classification performance of the CNN is not improved

by data augmentation. The difference in the effect of data augmentation is assumed to derive from

the difference in the convolution and pooling. As discussed above, all neurons in the receptive field

are convoluted in the CNN. Not only malicious URLs but also benign URLs affect classification

results. When new URL sequences are generated, all groups of accesses are randomly selected.

Consequently, some generated URL sequences are assumed to contain combinations of benign

groups dissimilar to combinations in the original benign URL sequences. Although malicious and

benign groups of accesses have little relation, benign groups of accesses are related to each other.

For example, users are likely to access websites on similar topics in a short period. Therefore, some

generated URL sequences contain strange sequences of benign URLs, and the CNN learns them.

This is why the classification performance of the CNN is not improved by data augmentation. To

improve classification performance of the CNN with data augmentation, we must generate new URL

sequences by considering what type of benign groups are likely to be included in the same URL

sequences. However, this is much more difficult because we need to simulate users’ interests and

browsing patterns. Note that our data augmentation does not affect the classification results of the

individual-based approach because it does not change any feature vectors of individual URLs. This

is why we do not evaluate the classification performance of the individual-based approach with the

data augmentation.

False Positives and False Negatives. We investigate FPs and FNs of the EDCNN to confirm that

they are not critical. FPs occur if URL sequences successively include some URLs slightly similar

to compromised or malicious ones. These URLs are falsely detected as malicious redirections.

In addition, FPs still occur if some apparently benign URLs are located between URLs similar to

compromised or malicious ones because of the EDCNN’s advantage that it ignores some URLs.

FNs occur if 10 – 20 benign URLs are located between malicious URLs. The EDCNN can not

convolute these malicious URLs because they are not in the same receptive field of convolution.
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3.6 Discussion

In the evaluation of classification, we should ideally evaluate whether our proposed system can

detect malicious URL sequences extracted from the proxy log because such detection is the main

purpose of our system. However, infection is not detected while collecting the proxy log. Thus,

we cannot evaluate whether our system can detect malicious URL sequences by using the proxy

log. From the analysis in Section 3.5.2, we find that most URL sequences extracted from the proxy

log contain one group of accesses. Similarly, a URL sequence extracted from a honeyclient log

contains one group of accesses because URLs automatically redirected from a landing URL are

recorded in a honeyclient log. On the basis of these facts, we can adequately evaluate classification

performance in a serious situation by using URL sequences extracted from honeyclient logs. To

evaluate classification performance for URL sequences containing accesses to benign and malicious

websites, we carefully generate URL sequences by using the proxy log and honeyclient logs without

degrading the validity of evaluation.

The FPR of our system might sound high. However, our system can be utilized as a lightweight

filter due to its fast calculation time. It quickly reduces the number of URLs precisely analyzed with

honeyclients [3,65] or a web-content-based system [24]. The honeyclient [3] would take 37 days to

analyze all URLs collected over 30 days in Section 3.5, so the honeyclient cannot analyze all URLs

within the duration of collection. The honeyclient would take eight days to analyze URLs in URL

sequences detected with our system. Since the duration of analysis is sufficiently shorter than the

duration of collection, the FPR of our system is low enough to be practical.

Our system cannot detect malicious redirections if source and destination of malicious redirec-

tions are included in different URL sequences by setting their intervals to more than 60 seconds.

However, users leave Web pages within 10 – 20 seconds while browsing the web [81]. If attackers

increase intervals between the source and destination of malicious redirections, attacks have more

difficulty succeeding because the possibility that users will leave the pages is increased. Therefore,

our system is difficult for attackers to evade.
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3.7 Related Work

3.7.1 Malicious Website Detection

Two types of honeyclients have been developed to crawl and detect malicious websites. High-

interaction honeyclients use real vulnerable browsers and detect malicious websites by monitoring

events in the kernel layer [3,65]. Low-interaction honeyclients use browser emulators and detect ma-

licious websites by using the signature of web content and various heuristics [24]. Researchers also

focused on web content and redirections. Prophiler [19] detects suspicious websites using HTML-,

JavaScript-, and URL-based features as a lightweight filter for malicious websites. Stringhini et al.

proposed a method of detecting malicious websites by aggregating different redirection chains of

the same landing URLs obtained from a large number of users [114]. However, the above methods

store and analyze an enormous amount of web content. Our system can use only URL sequences to

detect malicious URLs that should be further examined.

Other studies have focused on the domain or URLs of malicious websites. Antonakakis et al.

proposed Notos, which is focused on historic usage of domains and their corresponding IP addresses

to detect unevaluated malicious domains [6]. Ma et al. used the lexical structure of phishing website

URLs to detect malicious websites [66]. Our system is focused on a wider area than domains or

single phishing URLs, i.e., we use URL sequences and the latest learning approaches on the basis

of the inherent characteristics of the drive-by download attacks.

3.7.2 Deep Neural Network

Deep neural networks have been successfully applied in many areas, and CNNs have been applied

to sequential data such as natural language matching [43]. In this Chapter, we applied a CNN to

URL sequences. Benign URLs exist between malicious URLs in a URL sequence. Such benign

URLs have a negative effect on URL sequence classification. Therefore, we develop the EDCNN to

reduce the negative effect of benign URLs, making it the first CNN designed for security.

A recurrent neural network (RNN) is another class of neural network that has recurrent structures.

In the field of computer security, Shin et al. used an RNN to recognize the functions in binaries [108].
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We apply a CNN to malicious URL detection because its structure can be flexibly modified on the

basis of the characteristics of URL sequences unlike that of a RNN.

3.8 Summary

We propose a system for detecting malicious URL sequences by using the information recorded in

proxy logs. Our proposed system is based on three key ideas: focusing on sequences of URLs that

include artifacts of malicious redirections, designing new features related to software other than

browsers, and generating new training data with data augmentation. We compare three approaches

for classification of URL sequences: an individual-based approach, convolutional neural network

(CNN), and our event de-noising CNN (EDCNN). We develop the EDCNN to reduce the negative

effects of benign URLs included in malicious URL sequences. Specifically, we extend the architec-

ture of a CNN to extract features from two URLs in the vicinity. Only our EDCNN with our proposed

features and data augmentation achieves a practical classification performance: a true positive rate

of 99.1%, and a false positive rate of 3.4%. Further analysis shows that the EDCNN outperforms

the individual-based approach and the CNN regardless of the number of groups of accesses and the

number of URLs.
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Chapter 4

Efficient Dynamic Malware Analysis for

Collecting HTTP Requests using Deep

Learning

4.1 Introduction

Malware authors or attackers always try to evade detection methods to increase the number of

malware-infected hosts on the Internet. The detection methods are broadly divided into three

types: static feature-, host-, and network-based. Static feature-based methods, such as general

anti-virus engines, are easily evaded by changing malware samples’ code structure with packing

techniques [133]. Host-based methods, such as API call mining [93], are evaded by blending

malicious API calls into legitimate system processes with API hooking or dynamic link library

(DLL) injection [32].

This arms race regarding static feature-based and host-based methods increases the importance

of network-based methods such as malicious communication detection [22, 77] and blacklist-based

detection. These methods are difficult to evade because malicious network behavior is definitely

observed. For example, attackers need to coordinate infected hosts to accomplish their mission by

distributing configuration files or sending commands from C&C servers. Network-based methods
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detect communications sent from infected hosts on the basis of characteristic patterns in HTTP or

HTTPS requests collected with dynamic malware analysis. Note that we consider both HTTP and

HTTPS requests but hereafter refer to both as “HTTP requests” for simplicity.

Since attackers modify a part of a program of malware samples or produce totally new ones,

patterns of malicious HTTP requests change continuously over time. As a result, the detection

rate of network-based methods gradually degrades. To maintain a high detection rate, novel HTTP

requests, which have not been collected in past analyses, are collected by analyzing new malware

samples typically for a fixed short period such as five minutes [31]. Ideally, all malware samples

should be analyzed for a long period to collect more novel HTTP requests. If more characteristic

patterns are identified by using collected requests, they increase the detection rate and make it even

more difficult for attackers to evade network-based methods. However, more than 350 million new

malware samples were detected in 2016 [118], and analyzing all new malware samples for a long

period is obviously infeasible in a limited amount of time. Efficient dynamic analysis is thus required

to collect more novel HTTP requests in a shorter analysis time.

The efficiency of dynamic analysis can be enhanced by prioritizing analyses of malware samples

that send novel HTTP requests. Identifying such malware samples before analyzing them is difficult

because malware samples are obfuscated with packing techniques [133]. Therefore, we propose

a system that analyzes a malware sample for a short period and then determines whether the

analysis should be continued or suspended. Our system leverages only network behavior, i.e.,

communications, for determination because host behavior might be concealed with API hooking or

DLL injection [32].

As determination methods, there are two possible approaches referring to conventional signature-

based detection leveraged by anti-virus engines and API call mining. One is based on the presence

of a certain communication, and the other is based on network behavior modeling. For the first

approach, the presence of novel HTTP requests is assumed to be an adequate criterion. Specifically,

an analysis is continued if one or more novel HTTP requests are collected in the short-period analysis.

This approach is based on the intuition that such malware samples are likely to continuously send

other novel requests. However, some malware samples stop their malicious activities due to failed

communications with C&C servers. After that point, they no longer communicate with any hosts.
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Furthermore, the same malware sample might send different HTTP requests after a certain point

of time if the secondary malware samples, which are downloaded by the original one, behave

differently. In this case, an accurate determination cannot be made on the basis of communications

sent in the short-period analysis. From these two points, the accurate determination is difficult to

make on the basis of the first approach.

In the second approach based on network behavior modeling, we determine whether the analysis

should be continued or suspended on the basis of network behavior in the short-period analysis.

However, it is difficult to accurately predict whether novel HTTP requests will be collected by con-

tinuing the analysis. This is because this prediction requires information about attackers’ attempts,

such as attacks launched by malware samples, or infrastructure, such as the configuration of C&C

servers. Inspired by the method optimizing the approximate loss function [89], we tackle this prob-

lem by relaxing the condition where the analysis is continued. Specifically, our system predicts the

probability that a malware sample will send HTTP requests not collected in the short-period analy-

sis and continues the analysis if the probability is high. Such prediction can be made by modeling

continuous malicious activities such as secondary malware downloads and communications with

C&C servers. Our system can collect many HTTP requests, which are expected to include not only

ones previously collected in the past analyses but also many novel ones.

To make an accurate prediction, we focus on the fact that malware communications resemble

natural language from the viewpoint of data structure. Natural language has a recursive structure;

a phrase, e.g., noun phrase, consists of several words, and a sentence consists of several phrases.

Similarly, malware communications have a recursive structure. A malicious activity, e.g., secondary

malware downloads and communications with C&C servers, consists of several communications,

e.g., DNS queries and HTTP requests. Functions of malware samples, e.g., information leakage and

attack to other hosts, consist of several malicious activities. To capture such a recursive structure

in malware communications, methods for natural language processing (NLP) are expected to be

effective.

Many methods have been proposed for NLP: recursive neural network (RNN) [111], long

short-term memory [116], and combination of word2vec and a convolutional neural network [53].

All methods can be applied to our proposed system, but we evaluated our system with a method
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expected to achieve high classification performance. In natural language, words comprising a

phrase are adjacent to each other, but in malware communications, communications consisting

of a malicious activity are not necessarily adjacent. For example, a communication for testing

Internet connection can be sent between communications with a C&C server when a malware

sample sends communications for periodically testing Internet connection. This makes classification

difficult because methods for NLP prioritize closer words. However, the RNN [111] is expected

to be unaffected by this challenge. The RNN performs classification on the basis of inferred

recursive structure: a tree-structured neural network. If we construct tree-structured neural networks

considering the recursive structure of malware communications, the RNN can accurately classify

malware communications. Therefore, we apply the RNN to our proposed system and empirically

discuss its efficiency at collecting novel HTTP requests using 42,856 malware samples collected

over six months.

The main contributions of this Chapter are as follows.

• We propose a system that identifies malware samples whose analyses should be continued on

the basis of the network behavior in their short-period analyses. In our evaluation, we show

that our system can efficiently collect novel HTTP requests in a limited amount of time by

keeping the number of malware samples that are analyzed for long period to a minimum.

• To the best of our knowledge, we are the first to apply the RNN to malware communication

analysis and to show that it can effectively capture the characteristics of malware communi-

cations.

4.2 Recursive Neural Network

The RNN is a tree-structured neural network. It is used for parsing natural language sentences [110]

and sentiment analysis [111] in the field of NLP. Our proposed system uses the recursive neural

tensor network (RNTN) [111], which improves on the performance of the RNN by using a tensor.

The tensor enables the RNTN to calculate high-order composition of input features. The RNTN
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Figure 4.1: Recursive neural tensor network.

is a tree-structured network similar to the RNN, as shown in Fig. 4.1. When the input sequence

x1, x2, x3, ... is given, these inputs are assigned to leaf nodes in sequence.

Each node has an n-dimensional feature vector and a label. The feature vectors of parent nodes

are calculated using the feature vectors of their child nodes. For example, the feature vector of p1 is

calculated using the feature vectors x1 and x2:

p1 = f
©­­«

x1

x2


T

V [1:n]
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x1

x2

 +W

x1

x2


ª®®¬ , (4.1)

where V [1:n] ∈ R2n×2n×n and W ∈ Rn×2n. The label lx1 , which is the label of node x1, is calculated

as

lx1 = softmax(Wsx1), (4.2)

where Ws ∈ Rd×n and d is the number of labels. Tensor V and matrices W and Ws are commonly

used in all nodes. The objective with this method is to estimate these variables. The extension of

backpropagation on the basis of the prediction error of labels is applied to this process.

The feature vectors of parent nodes have two characteristics. The first is that they are calculated

on the basis of the sequence of words. The second is that they represent the semantics of phrases.
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This enables phrases to be found that have similar meanings by finding similar feature vectors. In

other words, the RNN can infer the same semantics of phrases composed of different words.

4.3 Proposed System

In this section, we first discuss the design of our proposed system and then describe its implemen-

tation.

4.3.1 System Design

To improve the efficiency of dynamic analysis, systems based on static features [80] and host

behavior [12] have been proposed. However, no system based on network behavior has been

proposed, but similar systems have, e.g., malware detection or classification systems based on

network behavior. In system design, even if no system has been proposed for the same purpose,

referring to systems proposed for a similar purpose is beneficial. The similar systems are divided into

network-signature-based [22, 77], correlation-based [36, 37] and statistics-based [74, 76] systems.

Network-signature-based systems detect bots by signature matching. Correlation-based systems

detect botnets on the basis of the correlation of network behavior such as communications with

C&C servers and attacks by infected hosts. Nevertheless, it is assumed with these systems that

network behavior is collected over a long period. In particular, with network-signature-based

systems, the probability of signature matching decreases as the period of network-behavior collection

shortens. Analogously, with correlation-based systems, the number of communications with C&C

servers and attacks decreases. Therefore, it is difficult to determine whether dynamic analysis

should be continued by using these systems. On the other hand, statistics-based systems extract

statistical features from not only communications with C&C servers and attacks but also other

communications and classify them with machine learning. For this reason, such systems are more

suitable for classification based on a short period of network-behavior collection than other systems.

Therefore, we apply machine learning to our proposed system.

The conventional statistics-based system [74,76] extracts statistical features such as the number

of communications for each application protocol and n-grams of network events. The effectiveness
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Figure 4.2: Overview of proposed system.

of these features also depends on the number of communications sent in the short-period analysis. If

only a few communications are sent, the features will not be meaningful. To overcome this problem,

we focus on the change in communication purposes. For example, a malware sample accesses a

popular web page for testing the Internet connection, receives the command from the attacker, and

then conducts a secondary attack. To this end, we use the sequence of communications to model

malicious activities and apply the RNN to our proposed system.

Figure 4.2 shows the overview of our proposed system. In the training phase, our system receives

pairs of malware communications and a label as input. Malware communications are collected by

analyzing malware samples for a short period. The label indicates whether the analysis should be

continued or suspended. In the end of the training phase, our system outputs the trained classifier of

the RNN. In the test phase, our system receives new malware communications as input and outputs

the determination of whether the analysis should be continued or suspended. The communications

are collected by analyzing new malware samples for a short period. In both phases, a feature

vector is extracted from each communication, and the neural network is constructed on the basis

of communication purposes. The feature vectors and neural network are used for training and

classification. We describe details of these components in the following subsections.
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Table 4.1: List of features.
Type No. Feature Reference

1 Protocol [74, 76]
2 Elapsed time [58]
3 Interval [58]

General 4 Existence of [58]
the identical communication

5 Data size of request [74]
6 Data size of response [74]
7 Port number [19, 74]
8 TLD rank [19]

Hostname 9 Presence of “ip” in FQDN [19,66]
10 Presence of IP address [19, 66]
11 Presence of subdomain [19]
12 HTTP method [77]
13 Status code [74]
14 Presence of .exe in filename [77]

HTTP 15 Presence of .zip in filename [77]
16 Depth of file path [77]
17 # of query parameters [77]
18 User agent [58, 77]

4.3.2 Feature Extraction

The first step involves extracting features from communications collected with dynamic analysis. To

achieve high classification performance, we must extract features representing a part of malicious

activities, e.g., Internet connection tests, updates, and command reception. To this end, we extract

7 general features, 4 hostname-based features, and 7 HTTP-based features, totaling 18 features as

shown in Table 4.1. We design these features by referring to not only the statistics-based systems [74,

76] but also the network-signature-based system [77], malicious URL detection systems [19, 66],

and malware download detection system [58].

General features are the protocol, elapsed time, interval, existence of the identical communica-

tion, data size of request, data size of response, and port number (Nos. 1–7). The elapsed time is the

difference between the analysis start time and the time when the target communication is sent. The

interval is the difference between the time when the last and the target communications are sent. We

set 1 for the existence of the identical communication if the identical communications have already
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been collected in the analysis and 0 if they have not. Hostname-based features include the top level

domain (TLD) rank, presence of “ip” in the fully qualified domain name (FQDN), presence of IP

address, and presence of subdomain (Nos. 8–11). We use the highest Alexa1 rank among domains

with a certain TLD as the TLD rank. HTTP-based features include the HTTP method, status code,

presence of .exe in filename, presence of .zip in filename, depth of file path, number of query

parameters, and use agent (Nos. 12–18).

We vectorize categorical features by using one-hot encoding; we create a vector whose dimension

is the number of categories and whose component corresponding to the vectorized category is 1 and

other components are 0. Categorical features are protocols, HTTP methods, status codes, and user

agent. Protocols are categorized into DNS, HTTP, HTTPS, other known protocols, and unknown

ones. The HTTP methods are categorized into three types: GET, POST, and others. Status codes

are divided into six groups on the basis of their 100 placement. For example, the first group includes

100, 101, and 102, and the second group includes 200, 201, 202, etc. The user agents are divided

into three types: Mozzilla, unset, and others.

4.3.3 Neural Network Construction

To capture the malicious activities, we focus on the change in communication purposes. We

construct a neural network in which communications related to the same purpose compose the

same subtrees. We consider the relationship between the same communication purposes and the

relationship between different communication purposes. The initial situation is that each node is

composed of one communication. We select a set of nodes depending on the below three criteria

and create their parent nodes. The selected nodes are removed from the selection candidates, and

their top node is added to the candidates. We repeat this process to construct a tree-structured

neural network. The first and second criteria are the relationships between the same communication

purposes. The third criterion is the relationship between different communications purposes.

Hostname. Malware samples successively send communications related to a hostname, i.e., FQDN

or IP address, to accomplish a purpose such as Internet connection tests, updates, and command

1https://www.alexa.com/topsites
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reception. For example, a malware sample sends a DNS query to obtain the IP address of a FQDN

and then sends a HTTP request to communicate with a C&C server. We combine all communications

related to the same hostname. If the number of communications is more than two, we combine

communications on the basis of time ordering because they are successively sent to accomplish the

same purpose. Specifically, we combine the two earliest communications and make their parent

node. Then we combine the parent node and the earliest communications next to the combined ones.

This process is repeated until all communications related to a certain hostname are combined.

Identical URL Path and URL Query Parameters. If communications with C&C servers fail,

malware samples frequently attempt to communicate with backup or alternative C&C servers. If the

communication purpose with the backup servers is the same as that with the original C&C server, the

path and query of these communications are assumed to be identical. Occasionally, malware samples

change the URL query value. Therefore, if the path and query parameters of two communications

are identical, they are supposed to be of the same purpose. However, communications that have

different purposes can have the same general path such as /index.php. We thus take into account

communications that have one or more query parameters. If the path and query parameters of the

descendant nodes of A and that of the descendant nodes of B are identical, we combine nodes A and

B.

Time Difference of Communications. After nodes are combined on the basis of the first and

second criteria, candidate nodes have several descendant nodes. That is to say, communications are

divided into several groups of communications. If the two communication groups have dependency,

one group is sent subsequently to the other group. In other words, periods when communication

groups are sent do not overlap. Hence, the communication groups, whose periods do not overlap, are

supposed to have different purposes. Therefore, we combine two communication groups that have

the closest periods. Let the set of times when communications of group A are sent be TA = {tAi}

and let that of group B be TB = {tBj}. The difference in periods of groups is calculated as

d =
∑

i

∑
j |tAi − tBj |. This process is repeated until all communications become the descendant

nodes of one node. In this manner, the tree-structured neural network is constructed.
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4.3.4 Training and Classification

Since we obtain only the label of malware samples for training, we set the training labels to only the

root nodes. After the training, the feature vectors of root nodes are calculated in accordance with

(4.1). Finally, classification results are determined in accordance with (4.2).

4.4 Experimental Setup

We evaluate our proposed system in terms of efficiency for collecting novel HTTP requests. Here,

we describe the experimental setup.

4.4.1 Dataset of Malware Samples

We conduct the evaluation with a dataset composed of malware samples collected from VirusTotal2

in Jul.–Dec. 2017. We collect the malware samples that have different SHA1 hashes and that are

detected by at least one anti-virus engine. We use AVClass [95] to refine our dataset by eliminating

samples falsely detected by anti-virus engines. AVClass identifies the family name of a malware

sample if several anti-virus engines label it with virtually the same family name. AVClass further

identified potentially unwanted programs (PUPs) on the basis of certain keywords in labels output

by anti-virus engines. We use malware samples that are identified by their family names and are not

identified as PUPs by AVClass. Finally, we collected 42,856 unique malware samples.

We analyze all malware samples for 30 minutes with a safe dynamic analysis system called

BotnetWatcher [8] to estimate when the determination should be made. Although we should ideally

analyze them for a longer time, we selected 30 minutes as a sufficiently long time. Figure 4.3

shows the cumulative distribution function (CDF) of time when the last HTTP request was sent.

On the basis of the data in Fig. 4.3, most malware samples stop sending HTTP requests within five

minutes, and we can collect most HTTP requests in 30 minutes. In addition, Fig. 4.3 shows that it

is appropriate that determination be made five minutes after analysis starts. Hence, we select five

minutes as the determination time. We label a malware sample as suspension if all HTTP requests,

2https://www.virustotal.com/
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Figure 4.3: CDF of time when the last HTTP request was sent.

Table 4.2: Dataset.
Suspension Continuation Period

Training 24,988 1,003 Jul.–Oct. 2017
Test 16,335 530 Nov.–Dec. 2017

which are collected in the last 25 minutes of its analysis, are collected in the first 5 minutes. On the

other hand, we label a malware sample as continuation if all HTTP requests, which are collected in

the last 25 minutes of its analysis, are NOT collected in the first 5 minutes.

In our evaluation, we use malware samples collected during Jul.–Oct. 2017 as training data and

those collected during Nov.–Dec. 2017 as test data as shown in Table 4.2. As mentioned above,

many more samples are labeled as suspension than continuation because many malware samples

stop sending HTTP requests within five minutes. Note that we analyze all malware samples for 30

minutes for labeling, but we use communications sent in the first 5 minutes of analyses for training

and classification. The average number of communications in the first 5 minutes was 98.7.

4.4.2 Conventional Systems for Comparison

We compare our proposed system with two naive systems, the unknown request-base system, and

two behavior-based systems.
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One naive system, which we call the continuation system, continues all analyses. The other,

which we call the suspension system, suspends all analyses. The unknown request-based system

continues the analysis if one or more HTTP requests not included in the reference set of the requests

are collected in the short-period analysis. We use the set of HTTP requests collected in analyses of

training data as the reference set.

The behavior-based systems make a determination on the basis of network behavior in the short-

period analysis. Note that our proposed system also belongs to this type of system. Our system makes

a determination on the basis of a sequence of feature vectors representing communications, but other

types of features vectors can be leveraged for determination. One behavior-based system, which we

call the overall system, leverages feature vectors representing all communications sent in the short-

period analysis. The overall system extracts feature vectors used in the statistics-based method [76]:

the number of application protocols, the number of communications related to a certain domains,

etc. The other behavior-based system, which we call the individual system, leverages feature vectors

representing individual communications. The individual system extracts feature vectors used in our

proposed system, classifies them individually, and makes a determination by integrating individual

classification results of all communications sent in the short-period analysis. Specifically, if one or

more communications are classified as continuation, the analysis is continued. If no communication

is classified as continuation, the analysis is suspended. Random forest [17] is utilized as the machine

learning algorithm for these classifications because it performs nonlinear classification with high

accuracy.

4.4.3 Hyperparameter Optimization

We split training data into prior-training and validation data to optimize hyperparameters of the

RNN. We select the combination of parameters that have the highest F-measure (see Section 4.5

for definition). For optimization, we conduct grid search by changing the batch size, initialization

interval of adagrad, and learning rate. A batch size is selected from 50, 100, and 500, an initialization

interval from 1, 10, and 100, and a learning rate from 0.01, 0.001, and 0.0001. We set the number

of iterations for training as 100. The best combination of parameters was 100 for the batchsize, 100
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for the initialization interval, and 0.001 for the learning rate.

The hyperparameters of random forest for conventional systems, i.e., the number of decision

trees and the number of features for each decision tree, are optimized by using the tuneRF function

of the randomForest package in R [87] when a classifier is trained. For the individual system, the

number of decision trees is 473 and that of features for each decision tree is 20. For the overall

system, the number of decision trees is 91 and that of features for each decision tree is 2.

4.5 Experimental Results

We now report the experimental results. In Section 4.5.1, we show the results of the evaluation

on classification. We compare our system with two other behavior-based systems in terms of

classification performance. We further investigate the effectiveness and limitations of the RNN

for classification by analyzing the classifier in detail. In Section 4.5.2, we show the results of the

evaluation on HTTP request collection. We compare our system with all conventional systems in

terms of collection efficiency and calculation time. In Section 4.5.3, we report the network behavior

of malware samples from which novel HTTP requests are successfully collected on the basis of our

system but not collected on the basis of the unknown request-based system. These case studies show

the effectiveness of our system for HTTP request collection.

4.5.1 Evaluation on Classification

We evaluate the classification performance of our system by comparing it with those of the overall

and individual systems. We further analyze the classifier of the RNN in terms of the contribution

of features, important behavior for classification, and false positives/negatives. In this subsection,

malware samples whose analysis should be continued and suspended are referred to as positive and

negative samples, respectively.

Classification Performance. We evaluate classification performance by using widely used metrics:

TPR, FPR, accuracy, area under the receiver operating characteristics (ROC) curve (AUC), precision,

and F-measure. Note that TPR is also known as recall. A malware sample is classified as positive if

– 82 –



Chapter 4. Efficient Dynamic Malware Analysis

Table 4.3: Classification performance.
System TPR (Recall) FPR Accuracy AUC Precision F-measure
Overall 0.350 0.047 0.933 0.769 0.199 0.253

Individual 0.794 0.064 0.932 0.932 0.288 0.423
Proposed 0.755 0.016 0.977 0.945 0.623 0.683

Figure 4.4: ROC curve.

the prediction probability is higher than a commonly used threshold, i.e., 0.5, in the training phase

and evaluation of classification performance.

Table 4.3 shows the classification performance of each system. Our system outperforms con-

ventional systems for most metrics. It is noteworthy that only our system achieves a high TPR and

a low FPR. This results in our system having a high F-measure, which is defined by the number of

true positives and false positives. Figure 4.4 shows the ROC curve from 0.0 to 0.1 FPR. Considering

our dataset includes a small number of malware samples labeled continuation, i.e., positive samples,

the classification performance at low FPRs is important. For example, to improve the collection

rate (see Section 4.5.2 for the definition) at a TPR of 1.0, the FPR must be lower than 0.023. We

select a sufficiently wide range of FPRs for Fig. 4.4. Our system stably achieved a higher TPR than

conventional systems in this range of FPRs. Specifically, the TPRs of the overall, individual, and

proposed system at an FPR of 0.01 are 0.06, 0.454, and 0.738, respectively. The TPRs at an FPR of
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Table 4.4: Contribution of features.
Order Type Feature Improvement

1 General Elapsed time 0.068
2 General Data size of request 0.010
3 General Existence of the identical comm. 0.006
4 Hostname Presence of “ip” in FQDN 0.006
5 Hostname Presence of subdomain 0.005
6 HTTP Depth of file path 0.004
7 General Data size of response 0.003
8 General Protocol 0.003
9 Hostname TLD rank 0.003

10 HTTP Status code 0.003

0.05 are 0.366, 0.745, and 0.817. The TPRs at an FPR of 0.10 of FPR are 0.582, 0.817, and 0.847.

Not only Table 4.3 but also Fig. 4.4 shows that only our system achieves a high TPR and low FPR.

Contribution of Features. To understand how the classification is conducted, the contribution of

each feature to classification is informative. We evaluate how much each feature improves accuracy

of the RNN. Specifically, we evaluate the accuracy of the RNN using all features and using all but

one of features. We then calculate their difference. Table 4.4 shows the ten most contributed features

based on accuracy improvement. All types of features contributed to the classification, but general

features contribute the most among the three feature types. These results show that application

protocols other than HTTP or HTTPS are also important for classification.

Important Behavior for Classification. To more clearly identify the reason the RNN achieves the

highest classification performance, we analyze important network behavior for classification. Since

a small number of malware samples is labeled as continuation in our dataset, these samples need

to be accurately detected to achieve high classification performance. For this reason, we analyze

network behavior of malware samples classified as continuation. To this end, we take advantage

of the fact that the RNN can output prediction probability of every node as well as the root node.

Note that the RNN classifies malware samples as continuation if the prediction probability of the

root node is larger than 0.5. We identify nodes satisfying the following three conditions and analyze

communications that are descendants of the nodes.

– 84 –



Chapter 4. Efficient Dynamic Malware Analysis

Figure 4.5: Network behavior and predicted probabilities. Predicted probability is written in each
node.

1. The prediction probabilities of all descendants are lower than 0.5.

2. The prediction probabilities of all ancestors are larger than 0.5.

3. The prediction probability of the node is much larger than those of its children.

One important behavior is a pair of a DNS query and HTTP request in the latter half of the

short-period analysis as shown in Fig. 4.5(a). These communications are related to a FQDN with

which the malware sample has not communicated before. The malware samples from which novel

HTTP requests are collected by continuing their analyses successively send communications related

to several FQDNs to accomplish different purposes such as Internet connection tests, updates, and

command reception. On the other hand, the malware samples that stop activities in the middle of

their analyses send communications related to only a few FQDNs right after starting their analyses

or repeatedly send communications related to a FQDN. The RNN is supposed to learn that the

behavior of starting to send communications related to a new FQDN in the latter half of the analysis

indicates continuation of malicious activities.

Another important behavior is a few DNS queries right after starting the analysis as shown in

Fig. 4.5(b). These DNS queries are related to different FQDNs and are properly resolved. Since this

malware sample sent a DNS query and HTTP request related to a different FQDN after five minutes,

it is supposed to test the Internet connection with DNS and sleep a certain period of time to conceal

malicious activities. On the other hand, the malware samples that stop activities in the middle of
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their analyses send a DNS query and HTTP request right after starting their analyses. The RNN is

supposed to learn that a few successfully resolved DNS queries indicate continuation of malicious

activities and are likely to be followed by other malicious activities after a certain period of time.

False Positives and False Negatives. We analyze false positives and negatives to understand

limitations of the RNN. The false positives, i.e., malware samples falsely classified as continuation,

send many DNS queries and HTTP requests in the latter half of the short-period analysis. As

mentioned above, this behavior is similar to that of malware samples from which novel HTTP

requests are collected by continuing their analyses. This is why false positives occur. The false

negatives, i.e., malware samples falsely classified as suspension, send a few HTTP requests right

after starting the analyses and slept about five minutes. As mentioned above, this behavior is similar

to that of malware samples that stop activities in the middle of their analyses. This is why false

negatives occur. These examples show that the RNN cannot accurately classify all malware samples.

However, the RNN achieves high classification performance by learning common network behavior.

4.5.2 Evaluation on HTTP Request Collection

We compare our system with all conventional systems in terms of collection efficiency and calculation

time.

Collection Efficiency. We evaluate efficiency for collecting novel HTTP requests, which are not

collected in the analyses of training data. Table 4.5 shows the number of novel HTTP requests,

analysis time, and collection rate, i.e., the number of novel HTTP requests per minute. The analysis

time is the summation of time for which malware samples are analyzed. A malware sample is

analyzed for 5 minutes if the analysis is suspended. On the other hand, a malware sample is

analyzed for 30 minutes if the analysis is continued. The analysis time does not include the time

of activating the dynamic analysis system [8] and for feature extraction and classification. Since

the continuation system continued all analyses, its analysis time is 30 × 17, 302 = 505, 950. The

analysis time of the suspension system is 5 × 17, 302 = 84, 325 because it suspends all analyses. As

a reference, we also show the collection efficiency of the classifier whose accuracy is 1.0 (oracle in

Table 4.5). We further calculate the ratio of collected HTTP requests and time reduction compared
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Table 4.5: HTTP request collection efficiency.
System Number Ratio Time (min.) Reduction Collection rate

Suspension 14,467 77% 84,325 83% 0.172
Continuation 18,676 100% 505,950 0% 0.037

Unknown request 18,550 99% 332,650 34% 0.056
Overall 14,467 77% 84,325 83% 0.172

Individual 14,467 77% 84,325 83% 0.172
Proposed 17,534 94% 94,100 82% 0.186
Oracle 18,676 100% 99,150 80% 0.188

Figure 4.6: HTTP request collection efficiency with different thresholds.

with the continuation system. In this evaluation, we optimize the threshold of prediction probability

above which malware samples are classified as continuation because the best threshold in terms of

classification performance is different from that in terms of collection efficiency. Specifically, we

select the best threshold in terms of collection rate.

The unknown request-based system collects most novel HTTP requests but does not sufficiently

reduce analysis time. The overall and individual system can not improve the collection rate by

determination due to the low classification performance. Consequently, their best collection rate

is the same as that of the suspension system. Our system can improve the collection rate by

determination and thus collects a large number of novel HTTP requests in a short analysis time. Our

system has a higher collection rate than the conventional systems.

To precisely understand the collection efficiency of behavior-based systems, we investigate the
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Table 4.6: Calculation time (sec./sample).
System Feature extraction Classification
Overall 0.0007 0.00001

Individual 0.0008 0.00006
Proposed 0.6730 0.00387

number of novel HTTP requests, analysis time, and collection rate with different thresholds as

shown in Fig. 4.6. When a higher threshold is used, both the number of novel HTTP requests

and analysis time increase because more malware samples are classified as continuation. To draw

Fig. 4.6, we analyzes all malware samples for 30 minutes beforehand. If a malware sample is

classified as suspension, we use the first 5 minutes of its analysis. On the other hand, if a malware

sample is classified as continuation, we use 30 minutes of its analysis. We calculate the number of

novel HTTP requests, analysis time, and collection rate with different thresholds and plot them in

Fig. 4.6. Since our system achieves higher classification performance, it collects more novel HTTP

requests in the same analysis time than other systems and successfully increases the collection rate

by determination. The overall and individual systems can not sufficiently increase the number of

novel HTTP requests even with longer analysis time. This results in the decrease in the collection

rate.

Calculation Time. Considering deployment, calculation time must be much shorter than the

analysis period. Hence, we investigate calculation time for feature extraction and classification

as shown in Table 4.6. More precisely, the calculation time is the time of executing programs

for feature extraction and classification per sample in the test phase. Our proposed system take

more time than the conventional systems, but the calculation time is much shorter than that when a

malware sample is analyzed. Specifically, a malware sample is analyzed for 5 minutes if a malware

sample is classified as suspension and analyzed for 30 minutes if a malware sample is classified as

continuation. Therefore, our proposed system can be deployed for efficient dynamic analysis.
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4.5.3 Case Study

We confirm the effectiveness of our system by analyzing the network behavior of malware samples

from which novel HTTP requests are successfully collected on the basis of our system but not

collected on the basis of the unknown request-based system. These malware samples did not send

novel HTTP requests for the first 5 minutes. This is why the unknown request-based system does

not collect novel HTTP requests. The network behavior shown here is simplified due to space

limitations.

Different Behavior of Secondary Malware. Our proposed system collects novel HTTP requests

from a malware sample whose secondary malware sample behaves differently than in the past

analysis, as shown in Table 4.7. This malware sent communications related to example1.com at

first and downloaded an executable, which is supposed to be a secondary malware sample. Next,

it sent communications related to example2.com. Since one of their URLs included config,

the malware sample is supposed to obtain the configuration of its secondary malware sample.

Communications for obtaining the configuration are typical for malware samples that continue to

send communications, as with the behavior shown in Fig. 4.5(a). Since the RNN properly learns

such behavior, this malware sample is classified as continuation. Then, the secondary malware

sample successively sends a DNS query and HTTP request related to another FQDN. Since the

training dataset included a malware sample that performed the same malicious activities as the

analyzed one, the HTTP requests to example1.com and example2.com are already collected.

However, subsequent HTTP requests are novel because their secondary malware samples or their

configurations are periodically changed by attackers depending on their purpose.

DGA. The next example is a malware sample using the domain-name generation algorithm (DGA)

as shown in Table 4.8. This malware sample sends many DNS queries related to randomly generated

FQDNs using DGA and then sends HTTP requests to properly resolved FQDNs. The actual strings

of randomx in Table 4.8 are randomly generated by concatenating some words. Attackers use DGA

to evade blocking based on blacklists of FQDNs by generating different FQDNs at different times and

using a few of them. Malware samples leveraging DGA typically continue to send communications.

Therefore, the RNN learns such behavior and classifies this malware sample as continuation.
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Table 4.7: Network behavior of a malware sample whose secondary malware sample behaves
differently.

Time Protocol FQDN or URL Novel
0’05 DNS example1.com
0’06 HTTP http://example1.com/malware.exe
0’20 DNS example2.com
0’30 HTTP http://example2.com/config
5’20 DNS example3.com
5’40 HTTP http://example3.com/?sid=xxx ✓

Table 4.8: Network behavior of a malware sample using DGA.
Time Protocol FQDN or URL Novel
0’20 DNS random1.com
0’30 HTTP http://random1.com/
3’35 DNS random2.com
3’40 DNS random3.com
6’40 DNS random4.com
6’45 HTTP http://random4.com/ ✓

Properly resolved FQDNs differ depending on the time of the analysis, and random4.com is used at

the time of the analysis for the first time. Therefore, our system collects novel HTTP requests from

this malware sample.

Long Sleep. The last example is a malware sample that sleeps a long time after sending a few

DNS queries, as shown in Table 4.9. This malware sample sends a DNS query and HTTP request

related to another FQDN about 25 minutes after sending the DNS query related to example2.com.

This malware sample is supposed to test the Internet connection right after starting the analysis and

sleep a long time to conceal malicious activities. For this reason, the unknown request-based system

cannot continue the analysis. However, as shown in Fig. 4.5(b), the behavior of this malware sample

is common for malware samples that continue to send communications. Based on this behavior, the

RNN classifies this malware sample as continuation, and our proposed system successfully collects

a novel HTTP request.
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Table 4.9: Network behavior of a malware sample that sleeps a long time.
Time Protocol FQDN or URL Novel
0’02 DNS example1.com
0’03 DNS example2.com

25’02 DNS example3.com
25’03 HTTP http://example3.com/e?xxx ✓

4.6 Discussion

We discuss our focus, the validity of the evaluation, and the limitation of our system in this section.

Our Focus. Our system would not be able to increase collection efficiency if malware samples

belonging to the same family were input. Hence, the selection of input malware samples is also

important to increase efficiency. However, suitable samples can be selected by simply selecting

diverse malware families. For this reason, we consider how to increase collection efficiency after

malware samples are selected.

Validity of Evaluation. We propose a system for efficiently collecting novel HTTP requests to

enhance detection performance of the network-based methods such as malicious communication

detection [22, 77] and blacklist-based detection. In Section 4.5, we show that our proposed system

efficiently collects novel HTTP requests, but we do not investigate whether it enhances detection

performance. Since the effect of our system differs depending on the methods, we cannot conduct a

uniform evaluation. However, we show in case studies that our system collects novel HTTP requests

useful for detection.

In terms of maintaining classification performance, the classifier of the RNN needs to be

retrained periodically. Considering the computational cost of retraining, the RNN should keep

classification performance high for a long period. In our evaluation, we use test data collected

for two months, which is a reasonable interval for retraining, and show that our system achieves

high classification performance for two months. Hence, our system is expected to maintain high

classification performance by retraining at most every two months.

Limitation. If malware samples sleep a long time after dynamic analysis starts, our proposed

system cannot be applied. In this case, we have two options. One is continuing analysis until
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malware samples send communications. The other is suspending analysis. Both decrease efficiency

or exhaustiveness. However, the percentage of these malware samples is reported to be only

5.39% [10]. In our evaluation, we can not apply our proposed system only to 0.4% of malware

samples. Therefore, the efficiency of our system is not significantly decreased by these malware

samples.

4.7 Related Work

4.7.1 Analysis, Detection, and Countermeasure

The methods for analysis, detection, and countermeasure have been extensively studied from the

following viewpoints.

Static feature: One of the main methods used by modern anti-virus software is signature-based

scanning. Griffin et al. proposed a string signature generation system countering variants of malware

families to reduce signature database size [35]. However, almost all recent malware samples are

obfuscated by the packer, and their characteristic strings are enfolded. Therefore, malware samples

should be unpacked before they are applied to signature-based methods [69, 92, 125, 130].

Host behavior: On an infected host, the analysis of system call or API call events is useful to

detect malware samples [56, 70, 115]. However, there are now malware samples that circumvent or

interfere with monitoring such host-based events on the analysis environment, i.e., malware sandbox.

To counter sandbox-aware malware, Kirat et al. proposed an efficient analysis system running on

actual hardware [54].

Network behavior: The communications initiated by malware, e.g., C&C, are useful to build

countermeasures such as blacklisting and network-based signature generation [77, 85].

4.7.2 Appropriate Sample Selection to Avoid Full Analysis

Bayer et al. proposed a technique that avoids analyzing the same polymorphic programs and reduces

the amount of time required for analyzing malware samples [12]. To detect polymorphic malware

samples, it analyzes them for a short time and finds the most behaviorally similar sample. It
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can successfully avoid the full analysis of about 25.3% of malware samples. Neugschwandtner

et al. proposed a system leveraging both the behavioral clustering of Bayer et al. [12] and static

feature-based clustering that selects the malware sample, which is most likely to yield relevant

information (e.g., C&C communication), without actually running it [80]. We infer that analyzing

malware samples generated by the same toolkit, e.g., polymorphic malware samples, and controlled

by different attackers are also important for collecting informative communication because those

malware samples may access different malicious sites. In our study, however, the time reduction of

analysis is superior, although we do not eliminate polymorphic malware samples, e.g., our proposed

system avoids the full analysis of 98% of malware samples and reduces analysis time by 82%.

4.8 Summary

We propose a system for efficiently collecting novel HTTP requests with dynamic malware analysis.

Specifically, we analyze a malware sample for a short period and then determine whether its analysis

should be continued or suspended. Our system identifies malware samples whose analyses should be

continued on the basis of the network behavior in their short-period analyses. To make an accurate

prediction, we focus on the fact that malware communications resemble those of natural language

from the viewpoint of data structure. For this reason, we apply the recursive neural network to our

proposed system. In the evaluation with 42,856 malware samples, our proposed system collects

94% of novel HTTP requests and reduces analysis time by 82% in comparison with the system that

continues all analyses. We further find that our system effectively collects novel HTTP requests

from a malware sample whose secondary malware sample behaves differently, a malware sample

that uses a domain generation algorithm, and a malware sample that sleeps for a long period.
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Detecting Unknown Families by

Prioritizing Family-Invariant Features

5.1 Introduction

Malicious data such as malicious websites and malicious Android applications are created with

attack tools and used to efficiently accomplish attackers’ malicious objectives. For example, malware

samples are created with toolkits [18] and malicious websites are created with exploit kits [34]. We

define a set of malicious data created with the same attack tool as a family in this Chapter. To prevent

damage caused by malicious data, researchers and security vendors have proposed sophisticated

detection systems that classify malicious and benign data, i.e., binary classification, with DNNs [71,

90, 129]. These DNNs are well-designed to extract high-order semantic features (representations)

from malicious data through their multiple layers. Since the extracted representations are highly

effective for classification, DNN-based systems have outperformed conventional systems based on

traditional machine learning (ML) such as SVM [126] and random forest [17].

At the same time, attackers continuously develop new attack tools to evade DNN-based sys-

tems [119]. Unknown families, which are malicious data created with new attack tools, have

malicious behavior, obfuscation algorithms, and anti-analysis functions different from known

ones [47, 124]. The emergence of unknown families causes significant changes in features of
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malicious data, i.e., concept drift. Concept drift is known to degrade classification performance

of classifiers that assume a classification target is drawn from the same distribution as the training

data, i.e., i.i.d. random variables [49]. DNNs for detecting malicious data implicitly assume i.i.d.

variables because they are designed on the basis of DNNs for image recognition and natural language

processing, which assume i.i.d. variables. Consequently, DNN-based systems trained using known

families have difficulty detecting unknown families [84].

In this Chapter, we study how to improve existing DNN-based systems in terms of detection

of unknown families. If features of unknown families completely differ from those of known

families, unknown families are quite difficult to detect. In fact, some features are inherent across

different families because malicious data include similar code or produce similar behavior to exploit

vulnerabilities or cost-effectively achieve a successful attack. For example, in drive-by download

attacks, applications exploiting browsers or their plugins are limited to Flash, PDF, and Java, and

redirections of websites are always abused to lure victims to exploit websites [19]. If features inherent

across known families (family-invariant features) are prioritized in classification, unknown families

become easier to detect. Therefore, we aim at building a classifier that prioritizes family-invariant

features.

A naive approach is to apply feature selection to DNN-based systems. Feature selection is

commonly used for traditional-ML-based systems that accept feature vectors as input. Elements

of feature vectors are semantic features, e.g., features representing obfuscation and malicious com-

munication. In the process of feature selection, elements effective for classification are selected

and input to classifiers. Similarly, we can select elements representing family-invariant features

and input them to DNNs. However, this approach is not applicable to some DNN-based systems

because they accept raw data, e.g., opcode sequence and dex bytecode, as input [71, 129]. Since

elements of raw data are not semantic features but code fragments included everywhere in both

malicious and benign data, we cannot determine whether each element represents a family-invariant

feature or not. For this reason, we cannot apply feature selection to those DNN-based systems.

To propose a method applicable to all DNNs, we focus on representations extracted through multi-

ple layers. If representations consist of family-invariant features, the classification results become

based on family-invariant features. Therefore, we optimize representations so that they consist of
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family-invariant features in addition to training for classification of malicious and benign data.

We propose two optimization methods that can be applied to all DNN-based systems’ training

and improve them in terms of detection of unknown families. Our methods are designed to solve a

problem in cyber security by modifying an optimization method studied in domain adaptation [2].

One is FirOptall, which optimizes representations so that they consist of features inherent across

all known families. FirOpt stands for Family-invariant representation Optimization. For optimizing

representations (so-called representation learning), we use an additional neural network (NN) that

accepts representations as input and classifies known families. The NN can easily classify known

families if representations include features specific to each known family. In other words, if

representations consist of features inherent across all known families, the NN cannot accurately

classify known families. Therefore, FirOptall optimizes representations so that the NN cannot

accurately classify known families on the basis of the representations. As a result, FirOptall builds

a classifier that prioritizes features always used in attacks without depending on families, e.g.,

malicious redirections used in drive-by download attacks.

The other method is FirOptpart, which improves robustness of FirOptall. That is, FirOptpart

is effective without depending on datasets and NN architectures. FirOptall may be ineffective

when the number of features inherent across all known families is small. In this case, the optimized

representations consist of a small number of features, and thus a classifier based on the representations

cannot accurately classify malicious and benign data. FirOptpart relaxes the constraint of FirOptall on

representation learning. Specifically, it includes features inherent across a part of known families in

representations because such features may be effective for unknown family detection. For example,

Flash is abused by a part of known families, but a feature regarding Flash is effective if an unknown

family abuses Flash for exploitation. Since features inherent across all known families are expected

to be more effective than those inherent across a part of known families, FirOptpart more highly

prioritizes features inherent across a larger number of known families. Optimized representations

have sufficient features to accurately classify malicious and benign data, and thus FirOptpart robustly

improves DNN-based systems in terms of detection of unknown families.

We evaluate whether our methods robustly improve DNN-based systems in terms of detection

of unknown families with three case studies. We select diverse and common targets of detection
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Table 5.1: Example of communications to malicious websites.
Family URL (host) URL (path) URL (query string) Content-type
Rig top.[snipped].org / ?ct=kul[snipped] Flash
Neutrino neopyrali[snipped].com /street/[snipped].swf (n/a) Flash
Magnitude 2fcdg7ef8.[snipped].gdn /[snipped]8275b280 ?win[snipped] Flash

systems for cyber security and prepared three datasets: malicious websites, malicious Android

applications, and malicious PE files. For NN architectures, we use fully connected NNs and a

recurrent NN (RNN) to evaluate applicability for both non-structured and structured data. Our

evaluation results show that FirOptpart robustly improves DNN-based systems without depending

on datasets and NN architectures. Specifically, FirOptpart outperforms a conventional optimization

method, which optimizes an NN only so that it accurately classifies malicious and benign data, by

at most 19%, 19%, and 7% in terms of TPRs for malicious websites, Android applications, and PE

files, respectively.

Our contributions are summarized as follows:

• We propose an optimization method FirOptpart that can improve existing DNN-based systems

in terms of detection of unknown families without depending on datasets and NN architectures.

• Our evaluation using three datasets of cyber security and two NN architectures shows that

not only features inherent across all known families but also those inherent across a part of

known families are necessary to robustly detect unknown families.

5.2 Motivating Example

We use examples of communications to illustrate the effectiveness of our methods. Table 5.1 shows

URLs and content-type of communications to malicious websites of three families. These malicious

websites are constructed with exploit kits (e.g., Rig, Neutrino, and Magnitude) for drive-by download

attacks. The structures of their URLs greatly differ. For example, the URLs of Rig and Magnitude

have query strings, but the URL of Neutrino does not. The lengths of domains and depths of URL

paths also differ. On the other hand, some features are inherent across all families. Communications

of all families have the same identifier of the content-type.
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Figure 5.1: (a) Comparison between conventional and proposed methods. Families A and B are
known, and family C is unknown. (b) Comparison between FirOptall and FirOptpart.

Figure 5.1(a) illustrates the difference between a conventional method and our proposed methods.

We consider a situation in which families A and B are created with previously developed exploit

kits, and family C is created with a newly developed one. In other words, families A and B are

known, and family C is unknown. The conventional method optimizes the decision boundary so that

it can distinguish between malicious and benign data. When features differ depending on families

as shown in Table 5.1, distributions of families do not overlap. As a result, unknown family C

is difficult to detect using known families (i.e., families A and B) and benign data as shown in

Fig. 5.1(a).

The situation we are considering is called concept drift. More precisely, concept drift is the

situation in which a distribution of data changes over time. In Fig. 5.1(a), the distribution of

malicious data changes from A and B to A, B, and C. To prevent a classifier from degrading

classification performance under concept drift, a method has been proposed for detecting change

in a distribution [49]. If change is statistically detected, a classifier is retrained by using a new

distribution of data (known and unknown families in our setting). Our methods are aimed at

improving detection of unknown families without detecting concept drift and retraining classifiers.

Our methods optimize representations so that they consist of family-invariant features. In

Fig. 5.1(a), our optimization changes distributions of families A, B, and C from bottom ones to

upper ones. If representations are optimized to consist of features inherent across families A and B,

the distributions of families A’s and B’s representations become similar. These features are likely to

be included in unknown family C as features inherent across all families in Table 5.1. In this case,

the distribution of family C’s representations becomes similar to those of families A and B as shown
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in Fig. 5.1(a). A classifier based on such representations is expected to accurately detect unknown

family C even if it is trained by using known families A and B and benign data.

Next, we clarify the difference between our methods: FirOptall and FirOptpart. FirOptall only

prioritizes features inherent across all known families as shown in Fig. 5.1(b). If the identifier

of the content-type is only the feature inherent across all families, FirOptall builds a classifier that

prioritizes only the identifier of the content-type. In this case, it cannot accurately classify malicious

and benign websites because some benign websites also use Flash. Consequently, it is unable

to detect both known and unknown families. Meanwhile, FirOptpart prioritizes features inherent

across a part of known families as well as features inherent across all known families as shown in

Fig. 5.1(b). FirOptpart builds a classifier that prioritizes not only the identifier of the content-type

but also the presence of query strings and length of domains. The classifier is based on sufficient

features to classify malicious and benign websites, and thus it can detect unknown families. Note

that FirOptpart more highly prioritizes features inherent across a larger number of known families

as shown in Fig. 5.1(b). This prevents a classifier from over-fitting features inherent across a small

number of known families, and FirOptpart differs from the conventional method on this point.

5.3 Family-invariant Representation Optimization

5.3.1 Notations

We use a dataset D = {(xi, yi, zi)}Ni=1 for building a classifier, where xi is an input, yi ∈ R2 is a class

label, and zi ∈ RNz is a family label. A benign class label is denoted as yi = [1, 0], and a malicious

one is denoted as yi = [0, 1]. The family labels are one-hot vectors and attached only to malicious

data, and Nz denotes the number of known families. Note that training data includes only known

families as malicious data.

A multilayer NN is denoted as a function F. When x is input to an NN F, the predicted class

label is denoted as ŷ = F(x; θF ), where θF is parameters of the NN. An NN can be considered by

dividing it into two parts: lower layers F0 and higher layers F1. In this case, the predicted class

label is denoted as ŷ = F1(F0(x; θF0); θF1). The activations at an intermediate layer are called a
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Figure 5.2: (a) Overview of neural network used in our proposed methods. (b) Family confusion
loss.

representation and denoted as h. For example, a representation h = F0(x; θF0) denotes the activations

when x is propagated through F0. For convenience, we use F(x; θF ) and F(x) interchangeably in

this Chapter.

5.3.2 FirOptall

We use an NN that consists of a shared network and two heads, as shown in Fig. 5.2(a). This NN is

designed by referring to that of domain adaptation [2]. The shared network outputs a representation,

i.e., h = Fs(x), one head predicts a class label, i.e., ŷ = Fc(h), and the other head predicts a family

label, i.e., ẑ = Ff (h). Ff is an additional NN for representation learning. In the training phase,

the whole NN, i.e., Fs, Fc, and Ff , is optimized using benign data and malicious data (i.e., known

families) in terms of classification of class labels and representation learning. In the test phase, Fs

and Fc classify benign data and malicious data (i.e., unknown families) on the basis of ŷ = Fc(Fs(x)).

In the optimization for the training phase, we consider three losses: one for classification of

class labels and two for representation learning. The loss for classification of class labels is called

the classification loss. This loss is used to make Fs and Fc accurately classify malicious and benign
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data and defined by using the cross entropy as follows:

Lc = −
N∑
i=1

2∑
j=1
yi j log ŷi j . (5.1)

For representation learning, we adversarially optimize Ff and Fs using two losses. One loss is

considered in the optimization of Ff , and the other is considered in the optimization of Fs. The

former, which is considered in the optimization of Ff , is called the family classification loss. This

loss is used to make Ff accurately classify known families and defined by using the cross entropy

as follows:

L f = −
N∑
i=1

(1l[yi2 = 1]
Nz∑
j=1

zi j log ẑi j). (5.2)

Note that the family classification loss is calculated by using only malicious data because family labels

are attached only to them. The latter, which is considered in the optimization of Fs, is called the family

confusion loss. This loss is used to increase family-invariant features in representations. We define

family confusion loss using the prediction probabilities of known families ẑ because we can identify

whether representations consist of family-invariant features on the basis of ẑ. When representations

consist of features across all known families, distributions of families’ representations completely

overlap. In this case, the family classification is too difficult, and thus elements of ẑ become equal,

i.e., a uniform distribution. Therefore, we use a uniform distribution as the objective of ẑ. The

family confusion loss is defined using the cross entropy between a uniform distribution and ẑ as

shown in Fig. 5.2(b):

Lconf = −
N∑
i=1

(1l[yi2 = 1]
Nz∑
j=1

1
Nz

log ẑi j). (5.3)

The family confusion loss is used to optimize an NN in the opposite way to the family classification

loss. Hence, the family confusion loss is also called the adversarial loss.

To robustly optimize an NN on the basis of the opposite losses, we iteratively optimize the
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parameters of NNs on the basis of the following two objectives:

min
θs,θc

Lc + αLconf (5.4)

min
θ f

L f , (5.5)

where α is a hyperparameter that controls the effect of the family confusion loss.

5.3.3 FirOptpart

We use the same NN shown in Fig. 5.2(a) for FirOptpart as FirOptall. The NN is optimized on

the basis of (5.4) and (5.5) considering three losses: the classification, family classification, and

family confusion losses. The only difference is the definition of the family confusion loss. The

classification and family classification losses are defined by (5.1) and (5.2), respectively.

We define the family confusion loss of FirOptpart so that representations include more features

inherent across a larger number of known families. If features specific to a small number of known

families are decreased from the representations, the prediction probabilities of known families are

smoothed and become similar to a uniform distribution because family classification becomes more

difficult. Therefore, we use smoothed prediction probabilities to define the family confusion loss as

described in the following two steps.

Step 1. We optimize an NN without a constraint of representation learning by minimizing two

objectives: minθs,θc Lc and minθ f L f . We use the prediction probabilities of known families

p = Ff (Fs(x)) in Step 2.

Step 2. We define p′ by smoothing p with a constant a ∈ R:

p′
i j =

pi j + a∑Nz

k=1(pik + a)
. (5.6)

By using p′ as the objective of ẑ, the family confusion loss is defined as the cross entropy between
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Table 5.2: Prediction probabilities of families A, B, and C before and after smoothing, where
a = 1.0.

Families across which Before smoothing After smoothing
features are inherent pA pB pC p′

A p′
B p′

C pA − p′
A

A 1.00 0.00 0.00 0.50 0.25 0.25 0.50
A and B 0.50 0.50 0.00 0.38 0.38 0.25 0.12
A, B, and C 0.33 0.33 0.33 0.33 0.33 0.33 0.00

p′ and ẑ:

Lconf = −
N∑
i=1

(1l[yi2 = 1]
Nz∑
j=1

p′
i j log ẑi j). (5.7)

Note that a smoothing parameter a is optimized by cross-validation using training data.

We describe why we can optimize representations so that they include more features inherent

across a larger number of known families on the basis of this family confusion loss. Table 5.2

shows examples of prediction probabilities before and after smoothing. The difference between

the prediction probabilities before and after smoothing (i.e., pA − p′
A) indicates the degree of

constraints based on the family confusion loss. Table 5.2 shows that the constraints are larger when

representations consist of features inherent across a smaller number of known families. As a result,

features inherent across a small number of known families tend not to be included in representations.

5.4 Evaluation

We evaluate whether our methods robustly improve detection of unknown families with three

case studies. Robustness is important for our methods because it determines their applicability.

Specifically, if they are effective without depending on datasets and NN architectures, our methods

can be applied to any DNN-based system and improve its detection of unknown families. We first

describe the experimental setup and then report the experimental results of the three case studies.

We conduct the evaluation using an Ubuntu server with 12 core CPU and 64GB RAM.
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Table 5.3: Dataset of malicious website case study.
Training Test

Label Family Period # Period #
Benign Oct. 10, 2017 10k Jan. 16, 2018 100k

Rig May 7, 2015–Nov. 5, 2016 270 Nov. 7, 2016–Oct. 25, 2017 270
Malicious Neutrino Jun. 19, 2013–Jul. 12, 2016 97 Jul. 13, 2016–Sep. 26 2016 97

Magnitude Jan. 15, 2014–May 28, 2015 41 May 28, 2015–Aug. 5, 2017 42
Sundown Dec. 27, 2015–Dec. 29, 2016 19 Dec. 29, 2016–May 7, 2017 20

5.4.1 Experimental Setup

Case Studies. We select diverse and common targets of detection systems for cyber security and

prepare three datasets: malicious websites, malicious Android applications, and malicious PE files.

Among these, the malicious website dataset was collected by ourselves to precisely analyze trained

classifiers. The others are public datasets to objectively conduct evaluations. NN architectures are

fully connected NNs and an RNN. These are selected to show that our methods can be applied to

NNs for both non-structured and structured data.

Conventional Method. We compare our proposed methods with a baseline method to measure how

much they improve DNN-based systems in terms of detection of unknown families. The baseline

optimizes NNs by minimizing only the classification loss Lc.

Hyperparameter Optimization. We optimize the hyperparameters by cross-validation using the

training data. For cross-validation, we prepare different datasets, each containing validation data

of one of the known families and training data of the other known families. The benign data are

randomly split into halves for training and validation. We select the best hyperparameters in terms

of a partial area under a receiver operating characteristic (ROC) curve (pAUC) in a region of false

positive rates (FPRs) from 0 to a threshold. Since detection systems for cyber security commonly

keep their FPRs under 0.1 [19,122], we select 0.1 as the FPR threshold when we calculate a pAUC.

5.4.2 Malicious Website Case Study

In this case study, we use proxy logs to detect sequences of communications to malicious websites,

which are created with exploit kits for drive-by download attacks.
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Datasets. Benign proxy logs are collected from company networks with users’ consent. To protect

privacy, no information identifying users or companies is recorded. Malicious proxy logs are

prepared using pcaps collected from Malware Traffic Analysis1 and Broad Analysis2. Table 5.3

shows the numbers and periods of benign and malicious data. We prepare four datasets, each

containing test data of one of four families and training data of the other three families.

Features. We design features referring to conventional systems for detecting drive-by download

attacks [19, 72, 122]. We extract feature vectors representing a communication and then integrate

vectors related to a sequence. Finally, we obtain feature vectors representing sequences of commu-

nications.

Features representing a communication are selected if they have been shown to be effective in

previous work and are easy to implement. We consider implementability so that others can easily

conduct follow-up research. Features are divided into two types: general and URL. General features

are the interval, existence of identical communications, and combination of HTTP method and

content-type. URL features include the presence of an IP address in the hostname, presence of a

subdomain, popularity of top level domain (TLD), file types, structural features of the URL, and

characters used in the URL.

We integrate the above features with different procedures depending on the data formats. For

numeric features, we calculate their average and standard deviation. For Boolean features, we

calculate their summation and average. For categorical features, we use their 1-grams and 2-grams.

An integrated feature vector has 793 dimensions. The feature vectors are normalized before they

are input into the NN so that the average and standard deviation of each feature become 0 and 1,

respectively.

Neural Network Architecture. For Fs, Fc, and Ff , we use multi-layer NNs, each consisting of

input, output, and one intermediate layer. All layers are fully connected. The activation functions

for the last layers of Fc and Ff are softmax, and those for all other layers are rectified linear units

(ReLU). We apply dropout to Fc to prevent overfitting and select Adam as the optimizer.

As a result of cross-validation, we select 10 for the number of neurons in intermediate layers,

1https://www.malware-traffic-analysis.net/
2http://www.broadanalysis.com/
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Table 5.4: Classification performances in malicious website case study.
Rig Neutrino Magnitude Sundown

Baseline 0.9089 0.9894 0.4655 0.4905
FirOptall 0.8890 0.9892 0.3757 0.4590
FirOptpart 0.9183 0.9890 0.5833 0.5580

Table 5.5: Calculation times in malicious website case study.
Training Test

(sec.) (ms/data)
Baseline 477 0.772
FirOptall 654 0.734
FirOptpart 652 0.759

(a) (b) (c) (d)
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Figure 5.3: ROC curves in the malicious website case study. Families assumed to be unknown are
(a) Rig, (b) Neutrino, (c) Magnitude, and (d) Sundown.

0.001 for the learning rate, 0.1 for the ratio of dropout, 100 for the batch size, 500 for the number of

epochs, 0.01 for α, 1.5 for the parameter of smoothing a when Sundown is assumed as unknown,

and 1.0 for a when the other families are assumed as unknown.

Classification Performance. Figure 5.3 shows ROC curves, and Table 5.4 shows pAUC in a region

of FPRs from 0 to 0.1. We select 0.1 as the FPR threshold for a pAUC because detection systems

for cyber security commonly keep their FPRs under 0.1 [19, 122]. FirOptpart achieves detection

performance similar to or higher than the baseline if any family is assumed to be unknown. In

other words, FirOptpart outperformed the baseline in terms of overall detection performance. In

the best-case scenario, FirOptpart achieves a 19% higher TPR than the baseline at 3.2% FPR when

Magnitude is assumed to be unknown. Unlike FirOptpart, detection performance of FirOptall is

similar to or lower than the baseline in all cases.

– 107 –



5.4 Evaluation

Table 5.6: Features whose order of contributions largely increases (left: FirOptall, right: FirOptpart).
Feature Rise Feature Rise
Std of query length 705 # of binary 758
2-gram[others/image,GET/application] 46 1-gram[GET/application] 753
Std of number ratio 31 Std of query length 703
2-gram[POST/audio,POST/others] 30 Std of upper case ratio 696
2-gram[GET/binary,POST/video] 30 Mean of path length 142
2-gram[GET/binary,POST/multipart] 27 Presence of subdomain 42
2-gram[others/multipart,GET/video] 27 2-gram[others/image,others/binary] 27
2-gram[others/font,POST/video] 21 2-gram[GET/binary,POST/multipart] 20
2-gram[GET/video,GET/font] 18 2-gram[POST/multipart,POST/text] 11
2-gram[GET/text,POST/text] 16 Std of URL length 11

We calculate contributions of features to classification results. Many methods have been pro-

posed for calculating the contribution of features in the research field of object recognition [9].

These methods are based on a gradient of a prediction. If a gradient with respect to a pixel in an

image is large, the prediction is sensitive to the value of the pixel. In other words, the contribution

of the pixel is large. When x is input to F, the contribution si of the i-th feature xi is calculated as

follows: si =
(
∂F(x)
∂xi

)2
. We use the average of the above contributions over all data because we need

to calculate contributions with respect to all data not specific data.

We identify features whose order of contributions is largely increased with our methods as

shown in Table 5.6. We compare the order with our methods and that with the baseline to investigate

the effect of representation training. Features that often appear in malicious communications are

written in bold. FirOptpart makes a classifier be based on many features appearing in malicious

communications, but FirOptall does not. The classifier trained with FirOptall does not use features

inherent across a part of families in classification, and thus those occasionally appearing in benign

communications needed to be used. The classifier trained with FirOptpart uses features inherent

across a part of families in classification, and thus those occasionally appearing in benign commu-

nications does not need to be used. As a result, the classifier trained with FirOptpart is superior to

that with FirOptall in terms of generalizability.

Calculation Time. Table 5.5 shows calculation times for training and test. Our methods need more

time for training than the baseline because they calculate additional losses, i.e., family classification
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Table 5.7: Android application dataset.
Training Test

Family # Family # Family # Family # Family #
Benign 59,485 Droidkungfu 115 Fakenotify 35 Lotoor 20 Benign 25,495
Fakeinst 965 Basebridge 94 Batterydoctor 34 Kmin 16 Mobiletx 55
Opfake 468 Boxer 94 Pjapps 26 Placms 13 Iconosys 22
Ginmaster 223 Geinimi 74 Fakelogo 26 Dougalek 12 Spyset 13
Jifake 138 Bgserv 56 Steek 21 Rufraud 11 Smsspy 11

loss and family confusion loss, and update parameters of NNs on the basis of these losses. Even

though our methods take longer to train, they are deployable to detection systems because attack

tools are not frequently updated, e.g., less than once in three months [113]. Since the training time

of our methods, i.e., 10 minutes, is much shorter than the interval of updates, detection systems can

finish training with our methods much earlier before their detection ability degrades. All methods

have similar test times because they conduct the same calculation: forward propagation through Fs

and Fc. Therefore, the test phase presents no problem for deploying our methods.

5.4.3 Malicious Android Application Case Study

We use the Marvin dataset [63] for this case study. We select this dataset because it is large scale

and available from the authors who developed Marvin. It includes features extracted from benign

and malicious Android applications and their metadata such as hash values.

Dataset. Benign applications of the Marvin dataset are collected from Google Play Store3 and

confirmed to be benign with VirusTotal4. Malicious applications are randomly collected from

VirusTotal. Since this dataset does not include family labels of malicious applications, we identify

their family labels with AVClass [95]. Leveraging a large number of families and malicious samples

in this dataset, we evaluate detection of families that are actually unknown at a certain point in

time. Among applications of known families, we use those uploaded before Aug. 1st, 2012 as

malicious training data. Malicious test data are applications uploaded after Aug. 1st, 2012 among

applications of unknown families. Family labels and the number of samples in each family are

3https://play.google.com/
4https://www.virustotal.com/
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Table 5.8: Classification performances in Android application case study.
Mobiletx Iconosys Spyset Smsspy

Baseline 0.0205 0.2259 0.0000 0.9927
FirOptall 0.0696 0.2764 0.0000 0.9927
FirOptpart 0.1275 0.2427 0.0000 0.9900
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Figure 5.4: ROC curves in Android application case study.

shown in Table 5.7.

Features. The Marvin dataset includes 496,943 features that are designed to exhaustively extract

malicious activities. Features are divided into static and dynamic analysis features. The static

analysis features are extracted from a manifest file and Android Application Package (APK) file.

Dynamic analysis features are extracted with a sandbox Andrubis [64]. Among these features, 8,539

effective features are selected as inputs to a classifier on the basis of F-score [20].

Neural Network Architecture. Features are extracted as a vector, not an image or sequence. Hence,

we use a fully connected NN for this case study. For Fs, Fc, and Ff , we use multi-layer NNs, each

consisting of input, output, and one intermediate layer. The activation functions for the last layers of

Fc and Ff are softmax, and those for all other layers are ReLU. We apply dropout to Fc and select

Adam as the optimizer.

As a result of cross-validation, we select 10 for the number of neurons in intermediate layers,

0.001 for the learning rate, 0.1 for the dropout rate, 500 for the batch size, 50 for the number of

epochs, 0.01 for α, and 1.5 for the parameter of smoothing.
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Table 5.9: Calculation times in malicious Android application case study.
Training (sec.) Test (ms/data)

Baseline 724 0.0273
FirOptall 1,490 0.0312
FirOptpart 2,218 0.0295

Classification Performance. Table 5.8 shows pAUC of each method in a region of FPRs from 0

to 0.1. Both FirOptpart and FirOptall achieve detection performance similar to or higher than the

baseline without depending on unknown families. To compare overall detection performance, we

also draw a ROC curve using all unknown families as shown in Fig. 5.4. FirOptpart outperforms

FirOptall and the baseline in terms of overall detection performance. Compared with the baseline,

FirOptpart improves TPR by at most 19.8% at 7.0% FPR. In terms of detection of each family, the

best method differs depending on unknown families. In terms of detection of Mobiletx, FirOptpart

outperforms FirOptall probably because the number of known families that produce similar behavior

is small. In terms of detection of Iconosys, FirOptall outperforms FirOptpart probably because the

number of known families that produce similar behavior is relatively large. In terms of detection of

Spyset, no method can detect it at all. This is because Spyset has an adware function, but no known

family in this dataset has a similar function. In terms of detection of Smsspy, all methods accurately

detected it. This is because Smsspy is a family that sends text messages to a remote site, and nine

known families have this function, i.e., sending text messages.

Calculation Time. The evaluation results of calculation time are consistent with those of the

malicious website case study. As shown in Table 5.9, training time does not cause any problem for

deployment because it was much shorter than the update frequency of attack tools. Test times for

this dataset are similar without depending on methods.

5.4.4 Malicious PE File Case Study

In the previous two case studies, we use fully connected NNs, but our proposed method can be

applied to other NNs such as a convolutional NN (CNN) and RNN. To evaluate our method using

other NNs, we use a dataset and NN of a previous study that proposes a system for detecting
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Table 5.10: Dataset of malicious PE file case study.
Family # Family # Family #
Benign (Training) 1,843 Artemis 130 Wisdomeyes 68
Benign (Test) 188 Eldorado 101 Scar 62
Dinwod 222 Zusy 73 Kazy 58

malicious PE files with an RNN [90].

Dataset. PE files dating from 2006 to 2017 are collected from four software sources: Softonic5,

PortableApps6, SourceForge7, and VirusTotal. These files are labeled with VirusTotal. The numbers

of benign and malicious samples are shown in Table 5.10. This dataset does not include a large

number of malicious samples, and thus we conduct an evaluation assuming that one family is

unknown, the same as in the malicious website case study.

Features. To be robust to obfuscation and make an instant prediction, dynamic features are extracted

by executing PE files in a short period. Dynamic features are 10 activities of a machine such as total

processes, maximum process ID. All PE files are executed for 19 seconds with Cuckoo Sandbox8,

and the feature vectors are extracted every second. As a result, a sequence of feature vectors is

obtained from a PE file.

Neural Network Architecture. The RNN consists of stacked multiple long-short-term memory

(LSTM) cells and a fully connected layer. We use stacked LSTM cells as Fs and use fully connected

NNs as Fc and Ff . Adam is selected as the optimizer.

For hyperparameters of Fs and Fc, we select the best ones shown in the paper of Rhode et

al. [90]. The depth of LSTM cells is 2, the number of neurons in hidden layers is 195, the number of

epochs is 39, the dropout rate is 0.1, the weight regularization is l1, the batch size is 64, the number

of layers in Fc is 2, the activation function of the last layer in Fc is sigmoid, and that of intermediate

layers is ReLU.

The other hyperparameters are selected on the basis of cross-validation. The number of layers

5https://en.softonic.com/
6https://portableapps.com/
7https://sourceforge.net/
8https://cuckoosandbox.org/
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Table 5.11: Classification performances in malicious PE file case study.
Dinwod Artemis Eldorado Zusy Wisdomeyes Scar Kazy

Baseline 0.9900 0.8185 0.8514 0.8460 0.8504 0.7555 0.8955
FirOptall 0.9891 0.8414 0.8851 0.8541 0.8838 0.7179 0.9069
FirOptpart 0.9889 0.8450 0.8737 0.8499 0.8815 0.7782 0.9307
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Figure 5.5: ROC curves in malicious PE file case study.

Table 5.12: Calculation times in malicious PE file case study.
Training (sec.) Test (ms/data)

Baseline 515 2.68
FirOptall 915 2.97
FirOptpart 909 2.98

in Ff is 3, the activation function of the last layer in Ff is softmax, and that of an intermediate layer

in Ff is ReLU. The parameters of smoothing are 1.0 for Dinwod, 5.0 for Artemis, 2.0 for Eldorado,

5.0 for Zusy, 2.0 for Wisdomeyes, 0.0 for Scar, and 0.0 for Kazy.

Classification Performance. Table 5.11 shows pAUC of each method in a region of FPRs from

0 to 0.1. FirOptpart achieves detection performance similar to or higher than the baseline without

depending on unknown families. On the other hand, FirOptall does not outperform the baseline

when Scar is assumed to be unknown. This is probably because features inherent across a part of

families are needed to detect Scar. To compare overall classification performance, we draw a ROC

curve using all unknown families. Figure 5.5 shows that FirOptpart outperforms the other methods.

Compared with the baseline, FirOptpart improves TPR by at most 7.4% at 0.7% FPR.
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Calculation Time. Table 5.12 shows calculation times for training and test. We obtain results

consistent with the other two case studies. Training times of our methods are longer than that of the

baseline but much shorter than the update frequency of attack tools. Test times of all methods are

similar.

5.5 Discussion

Applicability of Proposed Methods. Our methods can be applied to datasets and NN architectures

other than three case studies in the evaluation. Our methods can be applied to any malicious data

created with attack tools such as Internet of Things (IoT) malware [5] and malicious JavaScript [25].

Our methods can also be applied to any NN architecture such as a CNN [40] and graph CNN [29].

Although FirOptpart does not always significantly outperform the baseline in terms of detection

of each unknown family, it achieved similar to or higher than the baseline without depending

on unknown families. In other words, FirOptpart improves overall detection performance without

degrading detection of each family. Therefore, these results do not lower its applicability.

Validity of Evaluation. In the two case studies, i.e., malicious website and PE file case studies,

we use one family as test data assuming that it is unknown. Even in these case studies, we should

ideally evaluate the detection of malicious data produced by newly developed attack tools. In our

evaluation, we show that FirOptpart improved overall detection of actual unknown families in the

malicious Android case study. Furthermore, evaluation results are consistent across three case

studies without depending on datasets, and NN architectures. Therefore, FirOptpart is definitely

expected to improve overall detection of malicious data created with newly developed attack tools.

We evaluated our methods in comparison to the baseline, which is an NN optimized in terms of

the classification loss. Detection of unknown families also depends on extracted features and NN

architectures. However, the purpose of our methods is to improve existing DNN-based systems in

terms of detection of unknown families. In other words, design of features and NN architectures

is out of the focus of this Chapter. For this reason, we compare our methods with an optimization

method on the basis of the classification loss.
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Family Label Collection. Our methods need family labels as well as class labels for training.

Family labels can be identified on the basis of labels of intrusion detection system or anti-virus

engines [83, 95]. These labels have been shown to sometimes be wrong at the time of the first

detection and corrected a few weeks later [50]. This causes a problem if our methods need newly

detected data of known families. In fact, the effectiveness of our methods is evaluated by using test

data collected for at least three months in Section 5.4. Delay until obtaining reliable family labels is

much shorter than the period for collecting test data. For this reason, our methods are expected to

achieve sufficient detection performance if we use data whose reliable family labels can be obtained

for training.

5.6 Related Work

Detection Systems Leveraging DNNs. Many researchers have proposed sophisticated detection

systems leveraging DNNs. Examples include malicious Android application detection [71,129] and

malicious PE file detection [90]. However, these systems are not focused on detecting unknown

families. A method has been proposed for extracting invariant features [11]. This method designed

invariant features on the basis of a hypothesis of changes in malicious data. On the other hand, our

purpose is to improve existing DNN-based systems in terms of detection of unknown families, and

thus we use previously proposed features.

Classification Under Changing Data Distributions. To prevent a classifier from degrading classi-

fication performance under changes in data distributions, a method has been proposed for detecting

concept drift [49]. It uses a statistical comparison of training data with test data to detect concept

drift. If a change is detected, a classifier is retrained by using a new distribution of data (known

and unknown families in our setting). However, our purpose is to improve detection of unknown

families without detecting concept drift and retraining classifiers.

Domain Adaptation. To accurately classify an unlabeled dataset (target domain), a labeled dataset

(source domain) are used in domain adaptation. Domain adaptation methods optimize representa-

tions so that they consist of features inherent across the source and target domains (domain-invariant
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representations) [2]. In this Chapter, we use only known families for training and do not use a target

of detection, i.e., unknown families. Furthermore, we relax the constraint of representation learning

studied in domain adaptation and define the constraint of FirOptpart. While domain adaptation

methods optimize representations so that they consist of features inherent across all domains (i.e.,

the source and target domains), FirOptpart includes features inherent across a part of families in

representations.

5.7 Summary

To improve existing DNN-based systems in terms of detection of unknown families, we propose

two optimization methods for building a classifier that prioritizes family-invariant features. One is

FirOptall: a method optimizing representations so that they consist of features inherent across all

known families. The other is FirOptpart: a method improving robustness of FirOptall by including

features inherent across a part of known families in representations as well as features inherent

across all known families. We evaluate whether our methods robustly improve DNN-based systems

in terms of detection of unknown families with three case studies using three datasets and two

neural network architectures. Evaluation results are consistent across three case studies: FirOptpart

outperforms FirOptall and the baseline in terms of overall detection of unknown families. Although

the best method differs depending on unknown families, FirOptpart achieves detection of unknown

families similar to or higher than the baseline without depending on unknown families, datasets, and

NN architectures. On the other hand, FirOptall does not outperform the baseline in terms of detection

of some unknown families in the malicious website and portable executable file case studies. These

results show that the robustness of FirOptpart is induced by including features inherent across a part

of known families in the representations.

– 116 –



Chapter 6

Conclusion

To improve the effectiveness of network-based detection, we proposed systems for minimizing

negative effects of anti-analysis techniques on malicious communication collection and a method

for detecting dynamically changing attacks even when some malicious communications cannot be

collected by anti-analysis techniques. Specifically, we focused on unknown families, which are new

types of malicious websites or malware samples.

In Chapter 2, we proposed a system for detecting malicious websites without collecting all

malicious data. Even if we cannot observe some malicious data, such as exploit code or malware, we

can always observe compromised websites into which attackers inject redirection code to malicious

data. Since attackers use search engines to automatically discover vulnerable websites, compromised

websites have similar traits. We therefore built a classifier by leveraging both malicious and

compromised websites. Specifically, we converted all websites observed during an access into a

redirection graph whose vertices are URLs and edges are redirections between two URLs, and

classified it with graph mining. To perform this classification, we integrated similarities between

the redirection graph’s subgraphs and redirection subgraphs shared across malicious, benign, and

compromised websites. This system enhanced the exhaustiveness of collected malicious websites

and improved detection capabilities of network-based pre-infection detection.

In Chapter 3, we proposed a system for detecting communications to malicious websites from

simple logs such as proxy logs. We focused on sequences of destination URLs, because some
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artifacts of malicious redirections can be extracted from simple logs by considering several nearby

URLs. Specifically, simple logs contain malicious landing, redirection, and exploit URLs with their

sequential order preserved. We call these URL sequences, and URL sequences including accesses

to malicious websites malicious URL sequences. To find an effective approach for classifying

URL sequences, we compared three approaches: an individual-based approach, a convolutional

neural network (CNN), and a novel event de-noising CNN (EDCNN). By using detected malicious

communications to create blacklists, regular expression signatures, and machine learning classifiers,

we improved detection capabilities of network-based pre-infection detection.

In Chapter 4, we proposed a system for efficiently collecting HTTP requests through dynamic

malware analysis. Specifically, our system analyzes a malware sample over short periods, then

determines whether the analysis should be continued or suspended. This determination is made on

the basis of network behavior observed in the short-period analyses. To make accurate determi-

nations, we focused on the fact that malware communications resemble natural language from the

viewpoint of data structure. We applied recursive neural networks, which have recently exhibited

high classification performance in the field of natural language processing. Our system improved

efficiency of dynamic malware analysis by suspending analyses of malware that do not disclose ma-

licious behavior because of the analysis environment. We improved network-based post-infection

detection by using the collected HTTP requests for creating blacklists, regular expression signatures,

and machine learning classifiers.

In Chapter 5, we investigated how to improve existing DNN-based systems in terms of detecting

unknown families. Unknown families can be quite difficult to detect when their features completely

differ from those of known families. Even so, some features are inherent across families because

malicious data include similar code or produce similar behaviors to exploit vulnerabilities or to

cost-effectively achieve a successful attack. When features inherent across known families (family-

invariant features) are prioritized in classification, unknown families become easier to detect. We

therefore aimed at building a classifier that prioritizes family-invariant features. Evaluation results

showed that our method robustly improves DNN-based systems without depending on datasets.

This method can improve network-based detection and compensate for degradation caused by anti-

analysis techniques.
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Chapter 6. Conclusion

In the future, more and more detection systems will be proposed with the increasing diversity

of attacks. This increase in the number of systems will produce new research problems related to

computational costs and false positives. To maintain high detection capabilities with acceptable

computational costs and false positive rates, we will further research how to optimize combinations

of detection systems for multi-layered defense.
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