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Abstract

Robots such as drones, disaster rescue robots, and automatic guided vehicles, have

been developed and become widely used. Many of them are controlled via a network.

Such systems are constructed of a controller, robots, and sensors that are connected via a

network. The controller predicts the network delay and the state of the robots at the time

of receiving the command. Then the commands are calculated for the predicted state of

the robot.

The predicted state of the robot includes errors, and commands are required to be

calculated, considering the errors. Such a prediction error depends on the environment.

Therefore, the controller needs to identify the current environment. Using machine learn-

ing is one approach to considering the error depending on the environment. In this ap-

proach, the commands and states of the robot after performing the commands are mon-

itored at the environment where robots are controlled. Then, the relation between them

is learned. However, environments can change. The controller is required to identify the

current environment immediately after the change of the environments. However, methods

based on machine learning require a sufficient amount of monitored data and takes time

to identify the current environment.

In this thesis, we establish a framework that enables controllers to identify the current

environment from a small number of observation results. Our framework is inspired by

the organisms that evolve to become able to identify the current environment by using

Bayesian inference with the prior distribution obtained through evolution.

In this thesis, we propose an environment identification method using Bayesian infer-

ence for remote control. In this method, the following operation is performed by a con-

troller. Based on observation obtained from the robot and control commands sent to the
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robot, the controller calculates an error that occurred when running the commands.Based

on the obtained error, the controller updates the error model for the current environment

by Bayesian inference and calculates the control commands based on the error model.

In our framework, the prior distribution of the error model is obtained by the evolution

under various environments; in each generation, we evaluate the controller with each prior

distribution by scoring the results of tasks done by the controller and evolve the parameters

of prior distribution based on the evaluation results.

In this thesis, we implement a controller for a two-wheel mobile robot based on our

framework. Through experiments, we demonstrate that the controller based on our frame-

work identified the current environment and control the robot properly. As a result, our

method reduces the deviation from the intended path by about 75% and the control time

by about 35% compared to the method that identifies the current environment only from

the observed information.

Keywords

Bayesian Inference

Network Control System

Mobile Robot

Genetic Algorithm

Environmental Identification
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1 Introduction

Robots such as drones, disaster rescue robots, and automatic guided vehicles, have been

developed and become widely used. Many of them are controlled via a network [2–7].

Such systems are constructed of a controller, robots, and sensors that are connected via a

network. The robots have only limited computational resources. On the other hand, the

controller has powerful computation resources. The controller collects and analyzes the

sensor data, and calculates the command for robots. The commands are received by the

robot after network delay. Thus, the controller predicts the network delay and the state

of the robots at the time of receiving the command. Then the commands are calculated

for the predicted state of the robot.

The prediction of the state of the robots is important to control the robots via a

network. If the actual state of the robots is different from the predicted one, the commands

sent by the controller are not suitable to the actual state. One approach to predicting the

state of the robots is to model robots. Based on the robots, we can predict the future state

of robots. However, the actual state of the robots may be different from the model. For

example, the fluctuation of the network delay causes that some commands are performed

at a different time than intended. The slip of wheels also causes the prediction errors of a

wheel-based robot [10].

Such a prediction error depends on the environment. For example, the amount of slip

depends on the surface of the floor, the weight of the baggage if the robots carry the

baggage, and so on. The network delay also depends on the environments; when there are

many devices using the same channel of the wireless network, the delay becomes large.

Using machine learning is one approach to considering the error depending on the

environment [11–14]. In this approach, the commands and states of the robot after per-

forming the commands are monitored at the environment where robots are controlled.

Then, the relation between them is learned. By using the learned relation, the controller

can accurately predict the state of future robots, and calculate the suitable commands.

However, environments can change. For example, the robots move to the area with the

different type of floor surface or the area that is far from the access points of the wireless

network. The change of the task such as picking up baggage may also cause the change of
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environment. The controller is required to identify the current environment immediately

after the change of the environments. However, methods based on machine learning require

a sufficient amount of monitored data and takes time to identify the current environment.

In this thesis, we establish a framework that enables controllers to identify the current

environment from a small number of observation results. Our framework is inspired by the

organisms that evolve to become able to identify the current environment. Camilo et al.

demonstrated that evolution makes organisms able to estimate the current environment

properly [1]. They simulated the evolution of organisms under the condition that each

individual predicts the occurrence probability pA of the event A by bayesian inference.

The results show that the individuals obtain the proper prior distribution to predicts the

occurrence probability of pA as they evolve.

In this thesis, we propose an environment identification method using Bayesian in-

ference for remote control. In this method, the following operation is performed by a

controller. (1) Based on observation obtained from the robot and control commands sent

to the robot, the controller calculates an error that occurred when running the commands.

(2) Based on the obtained error, the controller updates the error model for the current

environment by Bayesian inference and calculates the control commands based on the

error model.

In our framework, the prior distribution of the error model is obtained by the evolution

under various environments; in each generation, we evaluate the controller with each prior

distribution by scoring the results of tasks done by the controller and evolve the parameters

of prior distribution based on the evaluation results. By evolving the prior distribution

under the various environments, we obtain the prior distribution that can properly identify

various environments.

In this thesis, we implement a controller for a two-wheel mobile robot based on our

framework. Through experiments, we demonstrate that the controller based on our frame-

work identified the current environment and control the robot properly.

The rest of this thesis is organized as follows. Chapter 2 describes related work. Chap-

ter 3 proposes a framework to identify the current environment and control the remote

robot based on the identified environment, and Chapter 4 explains the implementation of

the framework for a two-wheel mobile robot. Chapter 5 evaluates our framework based
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on the experiments. Finally, Chapter 6 concludes this thesis.
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2 Related Work

2.1 Networked Control System

A network control system is a system in which a controller, sensors, and actuators are

connected via a network. In this system, the controller receives sensor data and transmits

commands via a network shared with other systems. As the many devices are being

connected to and controlled via a network, the network control system becomes important.

Thus, many methods to control devices in a network control system have been proposed.

Cuenca et al. developed an autonomous vehicle system [7]. In this system, the remote

controller makes decision based on the monitored data and generates reference path. The

autonomous vehicle receives the reference path and controls its wheels so as to follow the

reference path. This system handles the delays by predicting future state using extended

Kalman filter, and handles the packet-disorder by applying dual-rate control.

Yasuda et al. designed a method to control a device via network with high responsi-

bility by minimizing the sum of the control cycle and the network delay time [6].

Dohyun et al. proposed a method to operate unmanned aerial vehicles in a network

environment with a time-varying network delay. They applied model predictive control and

applied a Gaussian process to learn the model of unmanned aerial vehicles. By applying

them, the method successfully compensates network delay.

Zhang et al. proposed a predictive sliding mode controller for networked control sys-

tems with time delay and packet dropout [8]. They modeled the time delay and packet

dropout by using a Markov chain. Then, they proposed a new controller with a delay

compensator.

Most of the existing research on the network control system assume that the dynamics

of the devices and networks are static. Thus, they model or learn the dynamics, and

calculate the commands based on the modeled or learned dynamics. However, environ-

ments can change. For example, the robots move to the area with the different type of

floor surface or the area that are far from the access points of the wireless network. The

change of the task such as picking up baggage may also cause the change of environment.

Therefore, we propose a method to identify the current environment immediately after

the change of the environments.
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2.2 Evolution of Bayesian Learners

Organisms make decisions based on estimates of the state of their environment. The

mechanisms of how organisms estimate the state of their environment can be used to

estimation of the environment in the remote control of robots.

Camilo et al. demonstrates that evolution makes organisms able to estimate the cur-

rent environment properly [1]. Their demonstration is based on the simulation. In this

simulaation, each individual predicts the occurrence probability pA of the event A. The

prediction is performed by bayesian inference, and a beta distribution with parameters

[α, β] is used as a prior distribution. Each individual performs a Bernoulli trial of event A

for n times, updates the probability distribution as follows based on the number of times

event A was obtained k, and then uses updated distribution to predict the occurrence

probability of A.

ϕx(pA) =
k + α

n+ α+ β
(1)

In this simulation, evolution is performed by mutation and selection based on the

fitness function. The fitness function fs(x) of the individual x is defined below.

fs(x) =
1

1 +
∑

pi∈S [pi − ϕx(pi)]2
(2)

This value increases when the prediction of the individual and the occurrence of the

actual event A match. That is, by performing selection so that individuals with high

values survive, evolution can be performed so that appropriate individuals are generated.

The simulation results show that the individual obtained as a result of the above-

mentioned evolution can predict A with higher accuracy than the individual that predicts

the event based only on the events observed by itself.

In this thesis, we apply the above evolution to a mechanism to make the controller

able to identify the current environment.
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3 Framework for Robot Control through Identifying Phys-

ical/Network Environments

3.1 Remote Robot Control Considering Identified Environments

In this thesis, we discuss the systems where robots are controlled via a network. In

this system, we assume that the robots have only limited computational resources while

the controller has powerful computation resources. Thus, the tasks requiring powerfull

computation resources are done by the controller.

Figure 1 shows the overview of remote control of a robot. As shown in this figure, the

controller periodically receive the sensor data At−d1 at the time t from sensors, where d1 is

the network delay between the sensors and the controller. Then, the controller estimates

the state of the robot Xt−d1 at the time t− d1. Due to the network delay, the command

calculated at time t is received by the robot at time t+ d2. So, the controller predicts the

future state of the robot Xt+d2 . Then, the controller calculates the command Bt+d2 based

on Xt+d2 and sends it to the robot. In the above steps, the controller cannot accurately

estimate and predict the state of robots, because the controlling robots includes errors due

to time-varying network delay, slip of the wheels and so on. In this framework, we handle

such uncertainty by modeling the state of the robots as the probability function. That is,

we model P (At|Xt) and P (Xt+1|Xt, Bt), estimate and predict state of the robot Xt as a

probability function, and calculate Bt by usinf the probability function.

P (At|Xt) can be modeled by the relation between sensors and the state of the robots,

and considered to be static. However, P (Xt+1|Xt, Bt) depends on the environment. For

example, the amount of slip depends on the surface of the floor, the weight of the baggage

if the robots carry the baggage, and so on. The network delay also depends on the

environments; when there are many devices using the same channel of the wireless network,

the delay becomes large. Therefore, we should identify P (Xt+1|Xt, Bt) for the current

environment.

In this subsection, we explain how to estimate and predict the state of the robot and

calculate the commands when P (Xt+1|Xt, Bt) is given.
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Figure 1: Overveiw of Remote Control

3.1.1 Estimation of the Current Robot State

The controller periodically receive the sensor data At−d1 . Each time the controllre recieves

At−d1 ,it estimates the state of the robot at time t. To estimate the state, we use the baysian

inference.

P (Xt) = αP (At|Xt)P̂ (Xt) (3)

where P̂ (Xt) is the probability distribution of the state Xt predicted by using the infor-

mation obtained by the time t− 1. In this frame work, we assume that P (At|Xt) is given.

α is a constant that is introduced to make
∑

P (Xt) = 1.

3.1.2 Prediction of the Future Robot State

The controller predicts state of the robots at the time t + d1 from P (Xt). By using

P (Xt+1|Xt, Bt), the predicted probability distribution of the state of the robot at the
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time t+ 1, P̂ (Xt+1) is obtained by

P̂ (Xt+1) =

∫
Xt

P (Xt+1|Xt, Bt)P (Xt)

By repeating the above prediction, the state of the robot Xt+d at time t+ d is obtained.

3.1.3 Calculation of commands

The controller calculates the commands Bt+d so as to make the state of Xt+d+1 the

desired state Xdesired
t+d+1 under the condition that the variance of the probability distribution

of Xt+d+1 is less the threshold V th. That is, Bt+d is obtained by solving the following

optimization problem.

minimize|E(P̂ (Xt+d+1|Bt+d)−Xdesired
t+d+1 |

s.t.V ar(P (Xt+d+1|Bt+d)) ≤ V th

where E() and V ar() are the expected value and the variance of the probability distribu-

tion, and P̂ (Xt+d+1|B(t+ d) is

P̂ (Xt+d+1|B(t+ d)) =

∫
Xt+d

P (Xt+d+1|Xt+d, Bt+d)P (Xt+d).

3.2 Environment Identification using Bayesian Inference

The controller should identify P (Xt+1|Xt, Bt) of the current environment. One approach

to identifying P (Xt+1|Xt, Bt) is to use machine learning techniques. But it requires a

large amount of data. That is, this approach cannot identify the current environment

immediately after the environment changes.

Therefore, we use the model of the robots. We assume that the dynamics of the robots

are modeled in advance. The model is defined by

Xt+1 = f(Xt, Bt, ϵ)

where f is the function to obtain the next state of the robot. f has three parameters,

the current state of robot Xt, the current command Bt, and the error term ϵ. We assume

that the error term ϵ reflects the environment. Therefore, the current environment can be

identified by identifying the probablistic distribution of ϵ.
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The controller can calculate the current error term ϵt each time it receives the sen-

sor data and estimate the current state of robots; if the current state of robots P (Xt)

is obtained, ϵt−1 can be obtained by solving the following equation, assuming that the

controller can accurately estimate the current robot state.

E(Xt) = f(E(Xt−1), Bt−1, ϵt−1)

By using the obtained epsilont, the distribution of epsilont is estimated. But when we

obtain only a small number of epsilont, the estimated distribution of epsilont may be inac-

curate. To avoid inaccurate esimation, we introduce, the prior distribution P prior(ϵ) [15].

The distribution of P (ϵ) is obtained by

P (ϵ) ∝ P (ϵ|ϵ0:t)P prior(ϵ)

where P (ϵ|ϵ0:t) is the distribution of the monitored epsilon.

3.3 Evolution of Environment Identification

In the above-mentioned step to identify the current environment, P prior(ϵ) is important.

In this thesis, we obtain P prior(ϵ) by evolution, inspired by that evolution makes organisms

able to estimate the current environment properly [1].

We model P prior(ϵ) as a probability distribution such as a normal distribution, and we

evolve its parameters.

In the evolution process, each individual corresponds to a set of parameters. First, we

generate initial individuals by randomly setting their parameters. Then in each generation,

new individuals are generated by crossover and/or mutation. Then, the individuals are

evaluated. To evaluate individuals, we perform the tasks by using the controller with

P prior(ϵ) whose parameters are set to the values corresponding to the individual. This

evaluation can be done by using actual robots or using simulation. Then, the performance

of the controller is obtained. Finally, the individuals with high performance are selected

to the next generation.

By repeating the above process by changing the environment used to evaluate the in-

dividual, we can obtain prior distribution P prior(ϵ) that can identify various environment.
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4 Implementation of Mobile Robot Control With Environ-

ment Identification

In this thesis, we implement the controller for two-wheel mobile robot based on our frame-

work.

4.1 Mobile Robot Control Considering Identified Environments

4.1.1 Model of Mobile Robot

The state of the mobile robot is represented by its position and angle. That is the state

of the robot Xt is defined by

Xt =


xt

yt

θt

 (4)

(5)

where xt and yt are the position of the robot, and θt is the angle of the robot.

To simply model the two-wheel mobile robot, we separate Xt into the position Lt and

angle θt, and define Lt by

Lt =

 xt

yt

 (6)

The control command Bt includes the speed of wheels. That is,

Bt =

 wr

wl

 (7)

where wr is the speed of right wheel, and wl is the speed of the left wheel.

By using the above variables, the position and angle of the robot after running the

command Bt−1 is obtained by

Lt = Lt−1 + F (θt−1)Bt−1 + ϵXY
t−1 (8)

θt = θt−1 +RBt−1 + ϵθt (9)
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F (θt−1) =

 r
2 cos θt−1

r
2 cos θt−1

r
2 sin θt−1

r
2 sin θt−1

 (10)

R =
(

r
W − r

W

)
(11)

where W is the distance between two wheels, ϵXY
t−1 and ϵΘt are the control errors of the

robot position and angle, respectively.

4.1.2 Estimation of the current state of the mobile robot

The controller first estimates Xt based on the observed value At. In this thesis, we use

the systems that can detect the current position and angle of the mobile robot from the

camera images. For simplicity, we assume that the system accurately estimate the current

position and angle. That is,

Xt = F (At) (12)

θt = G(At) (13)

where F (At) is a function for estimatingXt from At, and G(At) is a function for estimating

θt from observed values.

4.1.3 Prediction

The controller estimates the probability distribution P̂ (Xt+d) at the time t+ d, based on

Xt and P (ϵ) estimated by the controller. The movement of the mobile robot is nonlinear

calculation, and it is difficult to analytically obtain the probability distribution of the state

of the mobile robot at time t + d. In this thesis, we estimate P̂ (Xt+d) by using Monte

Carlo simulation as shown in Figure2.

To estimate P̂ (Xt+1), we create a table whose cells corresponding to the state of robots.

By counting the number of robots in each cell in the table, we estimate P̂ (Xt+1). The

table for P̂ (Xt+1) is created by the following steps.

1. Generate E agents based on robot state Xt at time t.

2. For each agent generated in Step 1, ϵ are generated with probability P (ϵ). For each

epsilon, the state of the robot at time t+ 1 is obtained by simulation.
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3. Create the table by counting the egent whose state corresponds to each cell

By repeating the above steps, we can obtain the distribution of P̂ (Xt+1).

!
"#$

%
& '( )(*"

The Probability 
Distribution of +(

Probability Distribution of 
prediction result ,+(*%

-(./0

-(./0 -(./

-(./12

!
"#$

%
& '( )(*"

Figure 2: Prediction of mobile robot movement

4.1.4 Calculate the commands

In this thesis, we calculate the commands for the robot based on the method proposed by

Lazoya et al. [16]. This method calculates the command to follow the target point.

The speed of wheels B′
t+d to follow the target point Xtarget is obtained by the following

steps. First, the difference between target and current position of the robot [ex, ey] is

calculated by  ex

ey

 =

 cos θavet+d sin θavet+d

− sin θavet+d cos θavet+d

 xtarget − xavet+d

ytarget − yavet+d

 (14)
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where [xavet+d, y
ave
t+d, θ

ave
t+d] is the expected value of the current state of the robot, and [xtarget, ytarget]

is the target position.

Then the velocity and angular velocity (v, w) to follow the target is obtained by

v = Kt+d (15)

w = 2Dt+dKt+d (16)

where

Dt+d = sign(ex)
ey
e2x

(17)

Kt+d = sign(ex)
α

1 + |At|
(18)

where α is a positive constant, and the larger the value, the faster the robot moves.

Finally B′
t+d is obtained by

B′
t+d =

 v
r + Ww

2r

v
r −

Ww
2r

 (19)

B′
t+d obtained by the above may be different from B′

t+d−1. In our controller, we avoid

sudden acceleration by introducing the maximum acceleration ratio at each time slot

athreshold. By using athreshold, the command Bt+d should satisfy the following condition.

|v(Bt+d)− v(Bt+d−1)| ≤ athreshold (20)

|Xtarget − X̂t+d| ≥
1

2athreshold
|Bt+d|2 (21)

where v(Bt) is a function representing the speed when the robot run the command Bt.

In addition, the robot moving first causes uncertain state of the robot. That is, we also

should limit the speed in order to avoid uncertain state. In our framework, the uncertainty

of the robot is evaluated by V ar(P (Xt) and V ar(P (Xt+d+1|Bt+d)) should be less than a

threshold.

We obtain Bt+d satisfying above condition by scaling B′
t+d by the following steps.

1. Obtain α so that Bt+d = αB′
t+d satisfies Eq.(20) and (21).

2. Obtain the distribution of P (Xt+d+1|αB′
t+d)by Monte Carlo simulation descrived

above.
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3. If Var(P (Xt+d+1|αB′
t+d)) is less than or equal to the threshold, setBt+d+1 = αB′

t+d+1.

Otherwise, go back to Step2 after α← α− δα

4.2 Estimation of Error Distribution using Bayesian Inference

4.2.1 Control Error Model

The distribution of the control error depends on the command. If the robot moves faster,

the error ϵXY also becomes large. For simplicity, we model ϵXY so that it is proportional

to the velocity. That is,

ϵXY
t = aXY

t vt (22)

aXY
t ∼ N(µXY , σXY ) (23)

where vt is the velocity of the robot, and at is a random value. In this model, we simply

model a so that it follows a normal distribution.

Similarly ϵXY is modeled by

ϵθt = aθtwt (24)

aθt ∼ N(µθ, σθ) (25)

where wt is the angle velocity of the robot.

4.2.2 Estimation of Control Error

Each time the controller recieves the sensor data and estimates the current state of the

robot, the controller calculates error. The error can be calculated by using the estimated

states of the robot. The error that occur in each time slot is small. Thus, the accurate

calculation of the error in each time slot is difficult.

Therefore, we estimate the error by using the state of the robot N time slot ago.

That is, we use the estimated state of robot X̂t and X̂t−N , and the control inputs

Bt−N , Bt−N+1, · · · , andBt. By using them, we have the following equations.

L̇t − L̇t−N =
N∑
i=0

f(θ̇t−i)Bt−i +
N∑
i=0

aXY
t−i V (Bt−i) (26)

Θ̇t − θ̇t−N =

N∑
i=0

GθWt−i +

N∑
i=0

athetat−i W (Bt−i) (27)

20



where V (B) and W (B) are the velocity and angle velocity when the command B is run.

¿From Eqs. (26) and (27), we have

N∑
i=0

aXY
t−i V (Bt−i) = L̂t − L̂t−N −

N∑
i=0

f(θ)Bt−i (28)

N∑
i=0

aθt−iW (Bt−i) = θ̂t − θ̂t−N −
N∑
i=0

GΘBt−i (29)

If all of V (Bt−i) for i is from 0 to N nearly equal V̄ , the average of aXY is obtained by

aXY =
1

NV̄

(
L̂t − L̂t−N −

N∑
i=0

f(θ)Bt−i

)
. (30)

Similarly aθ is obtained by

aθ =
1

NW̄
θ̂t − θ̂t−N −

N∑
i=0

GΘBt−i. (31)

4.2.3 Update Distribution

In this thesis, we model P (aXY ) and P (aθ) by using the ”hierarchical probability distri-

bution. Hereafter, we explain the model of P (aXY ) only, but we use the same model for

P (aθ).

P (aXY) ∼ N(µ, σ) (32)

µ|σ ∼ N(µn,
σ2

kn
) (33)

σ2 ∼ IG(
rn
2
,
sn
2
) (34)

Here, kn, sn, rn, µn(kn > 0, sn > 0, rn > 0) are parameters for determining the distribution,

and n is the number of samples. kn, sn, rn, andµn are derived as follows.

µn =
k0

k0 + n
µ0 +

k0 + n

n
µϵ (35)

kn = k0 + n (36)

rn = rn + n (37)

sn = s0 + (n− 1)σ2
ϵ +

k0 + n

k0n
(µ0 − µϵ)

2 (38)

where k0, s0, r0, µ0 are prior distribution parameters given at the start of control.
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4.3 Evolution of Prior Distribution used Bayesian Inference

In our framework, the parameters of the prior distribution is obtained by evolution.To

evolve the parameters, the processes of selection, crossover, and mutation are required to

define. The rest of this subsection explains them.

4.3.1 Selection

We use the roulette selection. We define the fitness of each individual by the results of the

task done by the controller using the prior distribution with the corresponding parameters.

We denote the fitness of the individual i by fi.Based on fi, the individual i is selected

with the probability pi defined by

pi =
fi

ΣN
k=1fk

. (39)

4.3.2 Crossover

After selecting two parent individuals by the selection, the new individuals with the pa-

rameters (µc, kc, rc, sc) are generated. The new parameters are generated by

µc = random(min(µ1, µ2)− aIµ,max(µ1, µ2) + aIµ) (40)

kc = random(min(k1, k2)− aIk,max(k1, k2) + aIk) (41)

rc = random(min(r1, r2)− aIr,max(r1, r2) + aIr) (42)

sc = random(min(s1, s2)− aIs,max(s1, s2) + aIs) (43)

Iµ = |µ1 − µ2| (44)

Ik = |k1 − k2| (45)

Ir = |r1 − r2| (46)

Is = |s1 − s2|. (47)

where the parameters of the prior distribution of the two parent individuals are (µ1, k1, r1, s1)

and (µ2, k2, r2, s2), respectively. a is a constant, and random(a, b) represents a uniform

random number in the section [a, b].
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4.3.3 Mutation

The parameters of the prior distribution are set at random and newly generated. The new

parameters (µ, k, r, s) are generated by

µ = random(0,MAXc) (48)

k = random(0,MAXc) (49)

r = random(0,MAXc) (50)

s = random(0,MAXc) (51)

where MAXc is a constant, and random(a, b) is a random number in the section [a, b].
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5 Experiments

5.1 Senarios

Figure 3 shows the environment used in our experiment. In this environment, the camera

is used as a sensor to identify the state of the robot. The controller receives the image

and estimates the state of the robot every 30 ms. The camera is connected via the wired

network. The delay between the camera and the controller is 130 ms and stable. On the

other hand, the controller and the robot are connected via the wireless network, whose

delay may be unstable.

5.1.1 Tasks

In this evaluation, we perform the task of round trip movement of straight line.In the

simulation used to evolve the prrior distribution, we set the stating point to (0 , 0),

turning point to (200, 0), and the goal to (-500, 0). In the actual environment, we set the

stating point to (-35 , -865), turning point to (-145, 975), and the goal to (-35, -865).

Before starting the command to complete the above task, we perform the task to

rotate the robot with a predefined speed for a predefined time. The roration and stop are
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repeated 10 times. During this task, the controller obtains the information required to

identify the current environemtn.

5.1.2 Physical/Network Environment

In this evaluation, we control the moving robot in the corridor of our graduate school.

In this environment, we confirmed that the slip of wheels hardly occurs. The robot and

the controller are connected via a wireless network. To know the network condition, we

monitored the RTT between the controller and the robot. Figure 4 shows the monitored

RTT. In most time slots, RTT is less than 100 ms.

 0

 200

 400

 600

 800

 1000

 0  100  200  300  400  500  600

R
T
T
 [

m
s
]

time slot

sample1
sample2
sample3

Figure 4: RTT (Normal Condition)

In this evaluation, we also control under the condition that the errors become large,

to demonstrate our framework identifies the condition properly. As such a condition, we

generate the case of the bad network condition. Assuming that many devices use the same

channel and collision occurs, we artificially add the delay with a predefined probability.

We set the added delay to 400 ms and the probability to 5 %. Figure 5 shows the example

of the RTT generated by the above steps.
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Figure 5: RTT (Bad Condition)

5.1.3 Compared Method

In this evaluation, we compare the following methods.

Control with Bayesian Inference (Bayesian) This method is a method based on our

framework. The controller has the prior distribution obtained by evolution, and identify

the current environment by Bayesian inference using the prior distribution. Then, the

controller calculates the command based on the identified environment.

Control with Statistical Inference (Statistic) This method identifies the current

environment by using only the monitored error. By calculating the distribution of the

monitored error, this method identifies the current error model, and calculates the com-

mand based on the model. By comparing with this method, we demonstrate the advantage

of the identification based on the Bayesian inference.

Control with Fixed Error Model This method uses the predefined error model. In

this evaluation, we use two predefined error models; one is for the normal condition, and

the other is for the bad condition. By comparing with this method, we demonstrate the
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advantages of the identification of the current environment.

5.2 Parameter Settings

Table 1 shows the parameters of the controller used in this evaluation.

Table 1: parameters in controller

Parameter Name value

Control cycle 30 [ms]

Robot position variance threshold 100.0 [mm * mm]

Robot angle variance threshold 0.10 [rad * rad]

Error acquisition cycle 100 [ms]

Maximum speed 130 [mm / s]

Minimum speed 23 [mm / s]

Maximum angular velocity 1.25 [rad / s]

MinimumAngular velocity 0.20 [rad / s]

Threshold used for discriminating between rotation and straight ahead 0.01 [rad / s]

We also set parameters for evolving the prior distribution. Table 2 shows the param-

eters.

In addition, we set the fitness of each individual during evolution. In our framework,

the fitness is defined by the results of the task done by each individual. In this evaluation,

we use the following indicators to evaluate the individuals.

• Maximum deviation from the defined path: dmax
i

• Time to complete the task: tcomplete
i

In this evaluation, we set two kinds of the fitness functions Enormal
i and Ebad

i . Enormal
i

is used for the evaluaton under the normal network condition, while Ebad
i is used for the

evaluation under the bad condition.
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Table 2: parameters for evolution

Parameter Name value

Population: N 100

Maximum generations: G 100

Crossover probability 49 %

Reproduce probability 49 %

Mutation probability 2 %

Expansion of parameter at intersection: a 1.2

Maximum deviation allowed: Emax 100.0 [mm]

By using the above indicators, we define the fitness Ei by

Enormal
i =


T

tcomplete
i

, dmax
i ≤ Dmax

0, otherwise

(52)

where T and Dmax are constant. Enormal
i becomes 0, if the devition from the path is larger

than Dmax. Otherwise, Enormal
i becomes large as the time to complete the task is small.

On the other hand, Ebad is defined by

Ebad
i =


D

dmax
i

, tcomplete
i ≤ Tmax

0, otherwise

(53)

where D and Tmax are constants. Ebad
i becomes 0 if the time required to complete the

task is larger than Tmax. Otherwise, Ebad
i becomes large as the deviation from the path

is small. In the case of the bad network condition, the deviation from the path becomes

large. Therefore, Ebad
i focuses on the deviation from the path.

5.3 Results

5.3.1 Evolution of Environment Identification

In this subsection, we show the results of evolution. Figures 6 and 7 show the average and

minimum values of the control time and the deviation from the route in each generation.
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Figure 6 shows that the deviation from the path becomes small as the generations go by;

the deviation from the path fluctuates significantly at early stages, but the fluctuations

become small as the generations go by. This is because the deviation from the path

becomes small even in the case of the bad network condition.

Figure 7 shows that the time to complete the task becomes small as the generations go

by. There are two types of individual that takes a long time to complete the task; One is the

individual who unncessary limits the speed of the robot, and another one is the individual

who sends the command to move robots with high speed. The later one takes a long time

to complete the task, because it cannot accurately control the robot. As the generations

go by, the above individuals are eliminated. Instead of them, the individuals that can

accurately identify the current environment and control the robots properly considering

the environemt are generated and survive. As a reult, the time required to complete the

task becomes short.
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Figure 6: Max deviation from target trajectory in each generation

5.3.2 Comparison among method

Figures 9 and 8 show the cumulative complementary distribution of the maximum value

of the deviation from the path. In our evaluation, we perform the task 15 times for each
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Figure 7: Task completion time in each generation

method. The results indicate that our method suppresses the maximum values of the

deviation even in the case of the bad network condition. This is because our method

identifies the current environment properly. As a result, our method limits the speed of

robots in the case of the bad network condition to avoid large deviation. On the other

hand, the deviation for the other method except for the method with the fixed model

whose parameters are set to fit the bad network condition becomes large. This is because

these methods cannot identify the bad network condition properly. Even the method with

statistic inference may mistakenly identify the current environment as the environment

with small errors. As a result, the methods control robots too fast, which causes a large

deviation from the path.

Figures 11 and 10 shows the cumulative complementary distribution of time to com-

plete the delay. The results show that the time to complete the task by our method is

the smallest in both cases. This is because our method identifies the current environment

properly. As a result, the controller controls the robot with high speed in the case of

the normal network condition, while it limits the speed in the case of the bad network

condition. On the other hand, other methods cannot control properly. The method using

a fixed error model whose parameters are set to fit the normal network condition controls
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the robots too fast in the case of the bad network condition. As a result, it takes a long

time to set the angle of the robots to the target point. The method using a fixed error

model whose parameters are set to fit the bad network condition unnecessarily limits the

speed of robots and takes a long time to complete the task.
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Figure 8: Deviation from target route without delay
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6 Conclusion and Future Work

In this thesis, we established a framework that enables controllers to identify the current

environment from a small number of observation results. Our framework is inspired by

the organisms that evolve to become able to identify the current environment by using

Bayesian inference with the prior distribution obtained through evolution.

In this thesis, we proposed an environment identification method using Bayesian in-

ference for remote control. In this method, the following operation is performed by a con-

troller. Based on observation obtained from the robot and control commands sent to the

robot, the controller calculates an error that occurred when running the commands.Based

on the obtained error, the controller updates the error model for the current environment

by Bayesian inference and calculates the control commands based on the error model.

In our framework, the prior distribution of the error model is obtained by the evolution

under various environments; in each generation, we evaluate the controller with each prior

distribution by scoring the results of tasks done by the controller and evolve the parameters

of prior distribution based on the evaluation results.

In this thesis, we implemented a controller for a two-wheel mobile robot based on

our framework. Through experiments, we demonstrate that the controller based on our

framework identified the current environment and control the robot properly. As a result,

our method reduces the deviation from the intended path by about 75% and the control

time by about 35% compared to the method that identifies the current environment only

from the observed information.

In this report, in order to obtain prior distribution, we performed evolutionary com-

putation using genetic algorithm in simulation. When applied to an actual device, it is

necessary to obtain a prior distribution that can cope with an error generated in an ac-

tual environment while performing an operation test. In order to realize such a method,

it is important to show that evolutionary computation can be realized by real machine

experiments.

Futher our future research topics include applying our framework to the other tasks

and/or the other robots.
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