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Abstract

There have been many studies on biomimetics focusing on the superior functions and

behaviors of living organisms. Various studies have applied swarm intelligence to network

control. For that purpose, we are now focusing on the sound communication of Japanese

tree frogs and applying it to network control methods. Sound communication is found

in many living organisms and important strategies for increasing the survival rate of the

swarm would be latent in it. It is known that Japanese tree frogs synchronize each timing

of the start and stop of their calling with other frogs over a long time-scale, which forms

a chorus. And over a short time-scale, they vocalize at the almost same interval and

they also avoid call overlap. Moreover, in order to save energy, a male frog sometimes

rests without calling near another calling male frog, which is called a satellite behavior.

Satellite males begin calling when they have a chance to get females. Such a satellite

behavior seems selfish for breeding, but it makes the time for the swarm to continue the

chorus for making an appeal to females be extended.

It is thought that there is an important relationship between the behavior of Japanese

tree frogs and their spatial distribution, but it has not been elucidated yet at this time.

Thus, our research is proceeding in the following three steps: (1) measuring the calling

timing and position of Japanese tree frogs, (2) constructing a mathematical model based

on the measured data, and (3) applying the mathematical model to a network control.

The second step is proceeded with collaborators, and this thesis deals mainly with the

first and third steps.

For measuring when and where frogs interact with each other, we implemented a sound

localization system with wireless devices connecting with a microphone. From an outdoor
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experiment using the system, a sound position was estimated with an error of 57 cm. Re-

garding the application to network control, we focused on the satellite behavior of Japanese

tree frog. By applying a mathematical model that can reproduce the satellite behavior to

wireless sensor nodes, we propose a design method for the coverage in a low power wide

area network (LPWAN) that can provide a long-term service while maintaining constant

network performance. In this thesis, we evaluate the proposed method by computer sim-

ulation. Simulation results show that the proposed method can extend the time by 20.9%

that at least one device can sense 60% of the observed field.

Keywords

direction of arrival (DOA), microphone array, real-time computation, satellite behavior,

mathematical model , LPWA, coverage control
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1 Introduction

Mathematical models inspired by biological mechanisms help us to develop robust and

adaptive systems in the field of information communications technology [1]. As part of

this interdisciplinary research progress, mathematical modeling research into biological

systems has been facilitated by the development of experimental techniques and enhanced

computer performance. Specifically, various studies have applied swarm intelligence; i.e.,

cooperative social behavior that emerges from the autonomous motion of individuals, to

network control [2, 3].

For that purpose, we are now focusing on the calling behavior of Japanese tree frogs

(Fig. 1), in which only the males produce successive calls to attract female frogs and

advertise their territory to other males. In general, females tend to be attracted by males

with large body lengths, and such males tend to make a low, large, and long call in chorus.

It is known that some kinds of frogs synchronize each timing of the start and stop of

their calling with other frogs over a long time-scale, which forms a chorus. This is because

if a frog does not call even when other males begin to call, the frog loses a chance to

get a female. Also, a male stops calling, when the other males stop calling, to reduce its

risk of being found by external enemies. As a result, frogs make a chorus synchronously.

Over a short time-scale, frogs vocalize at the almost same interval and avoid call overlap

by shifting the vocalization timing, which is called anti-phase synchronization. This is

for appealing to the females in a chorus. Moreover, some males rest close to the calling

males, which is called a satellite behavior. A satellite behavior can be seen when there

are nearby more attractive individuals for females, such as length, voice quality, and high

calling frequency [4]. Males with low attractiveness waits without calling near males with

high attractiveness, and when a female was attracted by high attractiveness, satellite

males try to get that female. Since a lot of energy is used for calling, males take a satellite

behavior to court females effectively. These behaviors can be said to be selfish for breeding,

but can be said to be energy saving and efficient behaviors as a swarm. From the viewpoint

of a swarm, by performing synchronous chorus, it is possible to appeal to females with

loud chorus, which gives females the impression of a high quality area for a breeding. In

addition, while frogs perform a chorus, a certain rate of males are rested in the satellite
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Figure 1: Photograph of a Japanese tree frog

behavior so that the time for the swarm to continue the chorus can be extended.

It is known that different species of frogs have a difference between the short time-

scale and the long time-scale of chorus. There is a hypothesis that this difference is due to

differences in the external environment in which they exist, and important strategies for

increasing the survival rate of the swarm may be latent in them. Male Japanese tree frogs

collectively switch between a calling state and a silent state and avoid call overlap, which

is a quite interesting phenomenon. Some research results have been obtained on efforts to

apply such features to information networks [5, 6].

We believe that there is an important relationship between the behavior of Japanese

tree frogs and their spatial distribution, but it has not been elucidated yet at this time.

Therefore, our research is proceeding in the following three steps: (1) measuring the calling

timing and position of Japanese tree frogs, (2) constructing a mathematical model based

on the measured data, and (3) applying the mathematical model to a network control

method. The second step is proceeded with collaborators, and this thesis deals mainly

with the first and third steps.

Sound source localization We need to know when and where individuals interact with

each other. The when can be obtained from recorded sounds using sound separation tech-

niques such as independent component analysis (ICA); however, it is difficult to identify

frogs in an outdoor environment because they are typically small and able to conceal them-

selves. For resolving the where problem, it is true that many sound-source localization

methods have been proposed.

Sound-source localization methods use the time-difference-of-arrival (TDOA) of the

sound from the sound source at multiple microphones, and use the direction-of-arrival (DOA)
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of the sound from the sound source [7]. In the localization method using TDOA, a hyper-

bola with each microphone as a focal point is obtained as an estimated position from the

coordinates of each microphone and the value of TDOA. There is a method of calculat-

ing the TDOA of a signal, such as GCC-PHAT [8], which calculates the cross-correlation

of two signals. However, it is difficult to distinguish when sounds arrive from multiple

sound sources simultaneously. Accurate time synchronization between microphones is re-

quired when calculating TDOA. In the localization method using DOA, a half-line from

the microphone position in the direction from which the sound arrives is obtained as the

estimated position. On a two-dimensional plane, an estimated position of a sound source

is determined at one point by installing at least three microphones so as not to be arranged

in the same straight line in localization method using TDOA and DOA. A method using

a signal subspace, such as Multiple Signal Classification (MUSIC) [8], is widely used as

a method for obtaining a DOA because it is robust to noise. In order to calculate the

DOA, multiple time-synchronized microphones are required, and in many cases, time syn-

chronization is realized by connecting multiple microphones in hardware. Such a device is

called a microphone array, and a highly accurate DOA can be obtained by using the mi-

crophone array. Also, with the DOA estimation method represented by MUSIC, when the

number of microphones in the microphone array is M , even if sounds arrival simultaneous

from M − 1 sound sources, each DOA can be estimated.

There are many localization method in outdoor areas such as our field experiments [9–

12]. Our typical case of experiments is shown in Figure 2. Frogs are distributed in the

field, but the placement area of microphones is limited. On the other hand, existing

methods assume that the sound sources are surrounded by microphones, which requires

the sound-observable range of the microphones to exceed the maximum distance between

the microphones. However, this assumption is typically unavailable in an outdoor set-

ting. Moreover, because the deployable space for system equipment is very limited in the

outdoor environment, it may be difficult to locate the devices in their optimal positions.

In this thesis, we implement a DOA-based sound-source localization method proposed

in [13]. In order to overcome the aforementioned limitations, our proposed method allo-

cates microphones closer to each other than previous methods; e.g., on the four corners of

a square with sides measuring 100 cm side length. The method then estimates locations
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outside the area surrounded by the microphones. We implement a localization system

with wireless devices connecting with a microphone to reduce the deployment cost. This

brings advantages that time synchronization is easy and that the installation of devices

can be flexibly changed. Besides, by locating the microphones near to each other, our

method has three significant advantages: (1) it can accurately measure the positions of

installed microphones, (2) it can capture the majority of generated sounds with all mi-

crophones, which is a key requirement of sound-source localization methods, and (3) the

system equipment requires less space for deployment.

無線センサーネットワークによるカエルを対象とした
音源位置推定手法の実装

鳴き声を利用した
カエルのリアルタイム位置推定

無線センサーネットワークアプリケーション

平野康晴小南大智村田正幸
大阪大学村田研究室

[2] Griffin, Anthony, et al. "Real-time localization of multiple audio sources in a wireless 
acoustic sensor network." 2014 22nd European Signal Processing Conference (EUSIPCO). 
IEEE, 2014.

• ニホンアマガエル

• 体長 20 mm – 45 mm

• 夜行性

• 鳴き声は 2 kHz, 4 kHz の周波数成分にピーク

• 合唱は長ければ 5分程度

• 鳴いている間は移動しない

• 水田の畔で 1 m 程度の間隔をあけて鳴く習性

• 推定精度 30 cm 程度を目標

• 生物のリアルタイムな定位は生物学者に需要

• 希少生物や外来種の生息範囲の把握や捕獲に利用

• カエルの生態への興味

• カエルには鳴き声を逆相同期させる特徴

• カエルのコミュニケーションのモデル化のためにはカエル
のコミュニケーションの様子の記録が有効

• カエルの位置をリアルタイムで推定

• 体が小さく保護色であるが、大きな鳴き声

• 水辺に生息しており、観測機器の有線接続は困難

約 1 m

ニホンアマガエル ニホンアマガエルの生息する水田

• 単一音源を対象とした場合

1. 位置推定対象の範囲をグリッドに分割し、各グリッドの
中心位置を計算

2. 各マイクロホンアレイと各グリッドとの角度𝚿を計算

3. コスト関数 σ𝑚=1
𝑀 [𝐴 መ𝜃𝑚, 𝜓𝑚,𝑛 ]を最小化する 𝑛を計算

4. 算出したグリッドの位置を推定位置

• 推定精度、計算コストはグリッドの粒度に依存

• 正確な到着角の取得

• 音源が複数の場合

• 環境ノイズ

• 風雨、虫の音

• センサーノード位置の自動取得
• 現在は、センサーノード位置は手作業で測定、入力

• カエルの移動の考慮

• 観測領域の拡大

• 鳴き声が届かないノードを考慮したアルゴリズム

i

𝜃4

𝜓4,1

センサーノード

センサーノード
収集情報送信

集約サーバ音声を計測、到着角取得

推定結果

システム概要

[1] Schmidt, Ralph. "Multiple emitter location and signal parameter estimation." IEEE transactions on 
antennas and propagation 34.3, 1986.

• 構成機器とその役割

• センサーノード

• 8 chのマイクロホンアレイを用いて録音

• 録音した音声を小期間に区切り、各期間について
音声の到着角を計算し、集約サーバへ順次送信

• 到着角の取得にはMUSIC 法 [1]を使用

• 集約サーバ

• 各センサーノードから得た音声の到着角を用いて
音源位置を推定

𝑀 センサーノード数

𝜓𝑚,𝑛 センサーノード𝑚と
グリッド 𝑛との角度

መ𝜃𝑚 センサーノード𝑚で
観測された音声の到着角

𝐴(𝑋, 𝑌) 𝑋と 𝑌の角距離

𝑝(𝑗) 到着角の組み合わせ 𝑗から
生成した音源位置候補

• コスト関数で重み 𝑤を考慮

• σ𝑚=1
𝑀 [𝑤𝑚𝐴 መ𝜃𝑚, 𝜓𝑚,𝑛 ]

• 重み 𝑤は、得られた到着角の分散

• 信頼できる到着角を重視

• 複数音源への対応が課題 真の到着角

得られた到着角

到着角の分散が小ならば 𝑤 → 1 到着角の分散が大ならば 𝑤 → 0

• 複数音源を対象とした場合

1. 全センサーノードの全到着角の組み合わせ 𝐽を生成

2. 𝑗 ∈ 𝐽について、単一音源の場合の手法を用いて推定位置
の候補 𝐿を生成

3. 各候補 𝐿について、残余 𝑟𝑗 = σ𝑚=1
𝑀 𝐴 መ𝜃𝑚

(𝑗)
, 𝜃𝑚 𝑝(𝑗)

2

を

計算

4. 残余の小さいものから推定音源個数を推定位置とする

• 音源個数は一つのセンサーノードが観測した
到着角の最大個数

分散が大きいのか、他のカエル
からの到着角かの判断が困難

実環境で録音した
カエルの合唱

Figure 2: Photograph of a rice paddy where we did experiments

Network coverage method inspired by Japanese tree frogs We are currently

focusing on the satellite behavior of Japanese tree frogs, which is a kind of sound com-

munication of them, and applying a mathematical model that can reproduce the satellite

behavior to wireless nodes in order to extend the lifetime of the entire wireless network.

Our collaborators develop a mathematical model and in this thesis, we apply the mathe-

matical model of Japanese tree frog to a design method of an LPWAN (low power wide

area network) so that it can provide sustainable service where a gateway collects location-

aware information from sensing nodes while maintaining a certain rate of coverage of the

network.

It is assumed that LPWAN collects sensing data (temperature, humidity, etc.) that

has a correlation with the position of the wireless node. Under this assumption, at least

one node in a certain area has to transmits sensing data to the gateway and the remaining

nodes in the area can sleep, which extends the service time of the network. When the

accuracy of sensing data are required, it is necessary to maintain sensing coverage of an
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observed area [14]. We show that by applying the satellite behavior of frogs, network

lifetime can be extended while satisfying a certain degree of coverage.

The remainder of this thesis is organized as follows. In Section 2, we describe related

work of sound-source localization methods. In Section 3, we describe the characteristics

of the Japanese tree frog, the requirements of the localization system based on the their

features, the explanation of the implementation method, and the evaluation results in

simulations and outdoor experiments. In Section 4, a mathematical model expressing

chorus and satellite behavior of the Japanese tree frog is explained, and we describe how

our coverage design method of an LPWA network is realized, and we show the simulation

results. Finally, we present our conclusions in Section 5.
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2 Related work

Sound localization techniques enable many applications, such as robot audition, automatic

meeting processing, and sound-source tracking. Most existing sound-source localization

methods can be classified as time difference of arrival (TDOA)-based or DOA-based ap-

proaches [7]. Both methods assume that three or more microphones or microphone arrays

can record the sound from the same source.

TDOA-based methods estimate the sound-source positions using the locations of the

microphones and the time differences of the sound arrivals between all pairs of micro-

phones [15]. This type of method requires comparatively accurate time synchronization

among all microphones [16]. Comparing two sounds recorded by different microphones, we

can obtain one TDOA measurement from the phase-difference between them. The possible

positions of a sound source are obtained from the TDOA as two hyperbolas whose foci are

on the microphone locations. The intersection of all hyperbolas obtained from all sets of

microphones is the estimated position of the sound source. Errors in the timer of a sensor

node as well as environmental noise mean that not all hyperbolic curves intersect at the

same point. Many estimation techniques have been proposed to solve this problem [17–20].

DOA-based localization methods estimate the sound-source position using the location

of microphone arrays and the angle of the signal arrival. DOA refers to the direction from

which a sound travels to a microphone array. Nodes with a microphone array can estimate

the DOA using methods such as the well-known multiple signal classification (MUSIC) [21].

As a microphone array consists of multiple microphones connected with one another via a

hardware circuit, there is no need to synchronize the clock among all microphones, which

improves the measurement accuracy. We can localize the sound-source position by finding

the point where each DOA line from each microphone array intersects. As for TDOA,

DOA-based methods suffer from various types of errors, resulting in an estimation error

in the source position. A number of estimation techniques have been proposed to solve

this problem [22–24].

The existence of multiple sound sources makes it more difficult to identify them. Given

that there are multiple sound sources and a localization server that collects TDOA/DOA

measurements from all microphones, so-called data association problems occur. Namely,
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the localization server does not know which sound source generates which TDOA/DOA

measurements. The erroneous TDOA/DOA combinations often give rise to a “ghost

source” that does not actually exist. References [25,26] discuss this problem.

2.1 MUSIC

This section describes MUSIC which is a DOA estimation method. MUSIC [21] is proposed

as a method for frequency estimation, and has been focused on estimating the direction

of arrival of a signal as one of its applications. MUSIC converts a steering vector A(ω, θ)

representing a sound transfer characteristic of a microphone array to be used into a space

spanned by eigenvectors of an observation signal called signal subspace. Here, ω represents

a frequency, θ represents an angle, and it is assumed that the steering vector is in the form

of a transfer function. In an environment where there is no sound source other than

the observation sound source and there is no noise, the eigenvalue of the signal correlation

matrix of the observation signal takes a positive value by the number of sound sources, and

otherwise becomes 0. However, it is assumed that all signals are uncorrelated with each

other. After the above conversion, MUSIC uses that the signal subspace corresponding to

the 0 eigenvalue is orthogonal to the steering vector whose sound arrival direction matches.

Let the Fourier transform of the time domain audio signal x(τ) observed by the mi-

crophone array be X(ω). The number of each element is the number of microphones M

included in the array. Also, let S(ω) be a complex vector representing the signal of the

sound source. The number of elements of S is the number of sound sources L. The signal

X observed by the microphone array changes in amplitude and phase from the original

S when transmitting in space, and a sound source signal arriving from the direction of θ

can be expressed as follows using a steering vector as follows:

X(ω) = A(ω, θ)S(ω). (1)

At this time, the signal correlation matrix R(ω) is a statistic indicating the spatial

property of the observed signal. This is given by

R(ω) = X(ω)XH(ω) (2)
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where XH represents the Hermite transpose of X. Eigenvalue decomposition of R(ω)

is given by

R(ω) = E(ω)Λ(ω)E−1(ω) (3)

where λi(ω), ei(ω)(1 ≤ i ≤ M) are the eigenvalues and eigenvectors of R(ω), re-

spectively. E(ω) = {e1(ω), e2(ω), · · · , eM (ω)}, and Λ(ω) is a diagonal matrix with a

diagonal component (i, i) as λi(ω). λ(ω) represents the energy of each sound, and if the

number of sound sources is L, λi(ω), ei(ω) is , 1 ≤ i ≤ L, the eigenvalue and eigenvector

corresponding to the sound source i.

From the above, if the direction θ of the steering vector A(ω, θ) matches the direction

of arrival from the sound source, in the case of L+ 1 ≤ i ≤ M , Since the eigenvalue is 0,

the expression (4) is obtained.

|ei(ω)A(ω, θ)|2 = 0 (4)

We obtain a spatial spectrum (which called MUSIC spectrum) by summing the ex-

pression(4) in the range of L+ 1 ≤ i ≤ M and multiplying by the normalization term as

follows:

P (ω, θ) =
|AH(ω, θ)A(ω, θ)|∑M
m=L+1 |AH(ω, θ)em|2

. (5)

As described above, if the direction θ of the steering vector A(ω, θ) matches the direc-

tion of arrival from the sound source, the denominator is 0 due to the orthogonality of the

subspace (Actually, it is not completely 0 due to noise) and P is a peak. By searching the

observed signal for θ of the steering vector such that P has a peak, the arrival direction

of the sound, the DOA can be estimated.

2.2 Grid-based localization method

This section describes Grid-based localization method [24] on which the implemented

method is based. This method divides an area into N equal-sized cells. The cell whose

direction from the microphones most closely matches the estimated DOA is then identified.

The localization algorithm is as follows:
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1. Discretize the area of interest into N cells and calculate the coordinates of the center

of each cell.

2. Calculate the (M ×N) matrix Ψ whose elements ψm,n give the angle from the mth

microphone array to the nth cell center (M is the number of microphone arrays).

3. Define a cost function Cost that represents the degree of coincidence between the

true DOA and the calculated angle in (6)

Cost(n) =

M∑
m=1

[
A
(
θ̂m, ψm,n

)]2
(6)

where θ̂m is the DOA obtained from the mth sensor node.

4. Find the cell that minimizes the cost function, that is, n∗ = arg minCost(n).

A(X,Y ) is the angular distance between X and Y . This is given by

A(X,Y ) = 2 sin−1 | exp(jX)− exp(jY )|
2

. (7)

In this method, the resolution of the grid, which depends on the number of cells,

N , affects the estimation accuracy. Increasing N will decrease the estimation error but

increase the computational cost. Therefore, the authors of [24] proposed a recursive search

method for the cell that has minimum Cost.

This localization method can deal with multiple sources given the correct number of

sound sources. To determine the positions of multiple sources, the authors of [24] used

a two-step procedure. First, the set Q containing all possible combinations of DOAs

is calculated. Second, for each cell, Cost is calculated using a combination of DOAs,

denoted by q (q ∈ Q). The S cells that have the sth minimum Cost are selected as the

source locations (s = 1, 2, · · · , S), where S is the highest number of DOAs detected by all

microphones.
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3 Real-time sound source localization system using wireless

sensor network in the outdoor environment

3.1 Characteristics of Japanese tree frog

Japanese tree frogs are about 2.0 ∼ 4.5 cm in size and inhabit paddy fields and forests.

The breeding season of Japanese tree frog is the spring, and during the breeding season,

from the evening to around midnight, the male makes a sound called the advertising sound,

which informs the female of its presence. When one or more Japanese tree frogs start to

call, they start to call (which called chorus). At that time, it is known that a small number

of Japanese tree frogs, about two to four, avoid call overlap so that they do not sound

simultaneously [27]. At this time, they often away 0.5 m more than each other. Japanese

tree frogs do not call very much in the water or on the water, do not move while they are

calling, and once they start calling, they often continue chorus for more than five minutes.

Each advertisement sound of a Japanese tree frog is about 0.1 seconds to 0.2 seconds long,

and its fundamental frequency is about 2, 000 Hz.

We assume that a spring-summer rice field in which Japanese tree frogs inhabit and

are actively calling. One side of the rice field is about 20 m, and there are often no tall

trees around the rice field, but there are many grasses. The rice fields are covered with

water, the shores are muddy and there are few flat parts. In this thesis, a single rice field

is targeted, and estimation is not performed over multiple rice fields, such as terraced rice

fields. That is, vertical estimation is not performed, and the location where the equipment

can be installed must be on the same plane as the rice field.

3.2 System performance requirements

The implemented system can be applied not only to observation of frogs but also to

observation of various organisms performing voice communication. Here, the system is

designed in consideration of the characteristics of Japanese tree frogs and their use in

the habitat. As described above, the localization system is used in rice fields. At this

time, there are various obstacles, weather, terrain, and other factors, and it is not always

possible to guarantee that the devices are arranged as expected. When laying a large
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number of devices, the preparation cost is also a problem. From the above, it is required

that a system be configured with a small number of devices, that the device be installed

with a certain degree of arbitrariness, and that the devices be easily adjusted.

In this thesis, the signal generated from the sound source is acquired by multiple

microphones, and the position is estimated by collecting necessary information for the

computer by using a wireless network. Localization in a two-dimensional plane can be

realized by collecting DOAs from three devices that are not aligned on the same straight

line. In addition, by using a wireless network, if devices are within wireless communication

range of each other, they can communicate with each other, so that the cost of installation

is reduced.

As for performance requirements, the following numerical values are targeted, taking

into account the characteristics of the Japanese tree frog described in section 3.1.

• Estimation accuracy : error 50 cm or less

• Estimation time : 5 minutes or less

• Estimable area : 20× 20 m2

3.3 Implementation of real-time sound source localization system

3.3.1 Source number estimation in MUSIC for outdoor environments

Since the MUSIC described in Section 2.1 estimates a DOA at each frequency, it is nec-

essary to consider the frequency characteristics of the sound source. In a practical imple-

mentation, using the fact that the eigenvalue λ(ω) represents the energy level of the signal

at each frequency ω, as shown in Eq. (8), DOA estimation is performed by summing up

the MUSIC spectra weighted by the eigenvalue (λ(ω)) obtained at each frequency.

P (θ) =

ωmax∑
ω=ωmin

L∑
i=1

λi(ω)P (ω, θ) (8)

Here, ωmin and ωmax represent the lower and upper limits of the frequency for DOA

estimation, respectively.

As described in Section 2.1, the MUSIC can estimate multiple DOA from a recorded

sound data. To do so, the number of sound sources is required. However, it is a difficult
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challenge to estimate the number of sound sources from recorded sound data. Some meth-

ods have been proposed for estimating the number of sound sources from the eigenvalue

distribution of a signal correlation matrix calculated by MUSIC using Akaike’s Informa-

tion Criterion (AIC). AIC is used to balance model complexity with data fit. For using an

AIC-based source number estimation, it is necessary to set the number of sound sources

as the number of model parameters and define a likelihood function for estimating the

number of sound sources from the distribution of observed eigenvalues. Here, since the

likelihood generally increases when the number of model parameters (the number of sound

source) becomes larger, an appropriate number of sound sources is estimated by using AIC.

A general AIC formula is as follows, and the number of sound sources that minimizes the

AIC is obtained.

AIC(M) = −2 lnL(M) + 2η (9)

Here, L is a likelihood function, M is a model, and η is the number of parameters.

In [28], the likelihood function L when the number of sound sources is n is defined as in

Eq. (10). L(n) becomes larger and closer to 1 as the (n+1) th and subsequent eigenvalues

are equal. That is, it has a high value when n is equal to or greater than the true number

of sound sources.

L(n) = (λn+1λn+2 · · ·λm)
1

m−n

1

m− 1
(λn+1 + λn+2 + · · ·+ λm)

(10)

The number of sound sources is estimated by using this likelihood function. Since the

number of sound sources is estimated for each frequency, the estimated value Lest(ω) of

the number of sound sources at the frequency ω is given by the follows:

Lest(ω) = arg min
n

−2 ln

 (λn+1λn+2 · · ·λm)
1

m−n

1

m− 1
(λn+1 + λn+2 + · · ·+ λm)

+ 2n

 . (11)

In the existing sound-source number estimation method, there is a possibility that the

influence of noise appears strongly. With the weighting method described in Eq. (8), when

17



Lest > L due to the influence of noise such as wind at a specific frequency, the MUSIC

spectrum peaks in the direction in which no sound source exists. It is considered that

the noise such as wind causes a smaller eigenvalue indicating power as compared with

the advertisement sound of the Japanese tree frog. Therefore, we propose a method to

estimate the number of sound source where the estimation result of the number of sound

sources in each frequency is weighted by the first eigenvalue obtained in the frequency. In

the current implementation, the number of sound sources L̂ is represented by Eq. (12).

We use L̂ instead of L in Eq. (8).

L̂ =


2

ωmax∑
ω=ωmin

Lest(ω)λ1(ω) +

ωmax∑
ω=ωmin

λ1(ω)

2

ωmax∑
ω=ωmin

λ1(ω)

 (12)

3.3.2 Localization method used for implementation

Here, we describe the extension of the grid-based method proposed in [24]. When we

use the original grid-based localization method to estimate the positions of sound sources

outside the area surrounded by the microphone arrays, a much higher grid resolution is

required to avoid the estimation error. However, this involves a greater computational cost,

which results in a longer calculation time. With the recursive method proposed in [24],

although the calculation time can be reduced, the estimation accuracy might decrease.

In our method, we first calculate a directional cost, Costd, for each direction from the

center of the microphone arrays. Then, the direction that has the minimum Costd can be

obtained. The localization server calculates the Cost defined by Eq. (6) for each cell whose

center is close to the line running from the center of the microphone arrays according to

this direction. In the following, we describe the proposed method for an example with

only one sound source.

Our proposed method is divided into two steps. First, we estimate the direction in

which the sound source exists and then we perform grid-based sound-source localization.

Let θ̂ be an M × 1 vector in which each element θ̂m is the DOA estimated by the

microphone array m. Here, without loss of generality, we can assume that the coordinates

of the center of the microphone arrays describe the origin. First, we estimate the direction

18



from the origin to the sound source. To estimate the sound-source direction, we use the

sum of the angular distances between a vector from the origin to the direction θs and the

estimated DOAs of each sensor node. This is because incorrect cells in the grid-based

localization for an outside area surrounded by a microphone array often have the same

direction from the origin as the true cell.

The cost of the sound-source direction for each θs (0 ≤ θs < 2π) is

Costd(θs) =

M∑
m=1

[
A
(
θ̂m, θs

)]2
(13)

where A(X,Y ) is the angular distance defined in (7).

Then, we can estimate the direction of the sound source as follows:

θ∗ = arg min
θs

(Costd(θs)). (14)

For the second step, the grid-based sound-source estimation is conducted. We start

by dividing the area of interest into cells with side lengths of x; sets of cells are denoted

as P . The value of x affects the accuracy and computational cost of our method and is

adjusted to meet the required estimation accuracy. Next, we determine the cell set P ′ that

intersects with a vector whose starting point is the origin and whose direction is θ∗ (Fig.

3). Accordingly, the computation cost of our proposed algorithm is O(
√
N), while that of

the original grid-based method is O(N) (or O(log(N)) if the above mentioned recursive

approach is used). Reducing the computational cost is important for localizing multiple

sound sources because, in most techniques, this requires repeating the calculation of single

sound source localization.

We use the angular distance function (7) to obtain the cost in each direction. To

obtain θ∗ using an algorithm, we discretize θs by equally dividing the angle of 2π by Nθ.

To achieve high accuracy, we must divide θs finite, which increases the computational cost.

Therefore, we use a recursive algorithm. First, we start with a coarse angle then obtain θ1

and θ2, which are the minimum and next-lowest Costd values, respectively. Once θ1 and

θ2 have been determined, we repeat this step in the range θ1 ≤ θs ≤ θ2 (here, we assume

that θ1 < θ2). This results in the desired direction and also reduces the search cost.
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Microphone array            Center of microphone arrays
Sound source          True DOA             Selected cell

Figure 3: Schematic showing the method for reducing the number of cells to be searched

Table 1: Specification of devices

Raspberry Pi 3 Laptop PC

Clock frequency 1.2 GHz, 4 core 1.9 GHz, 2 core

RAM 1 GB 8 GB

OS Raspbian stretch Windows 7

3.3.3 Devices and implementation

First, we describe the devices used in our experiments. To obtain the DOA of the sound

source, we use an 8-channel microphone array with a height of 12 cm (TAMAGO-03,

System in Frontier Inc. [29]). Each TAMAGO-03 is connected to a Raspberry Pi 3 Model

B with a USB cable (Fig. 4), on which we implemented the MUSIC [21] method to calculate

the DOA. The TAMAGO-03 digitally converts an analog sound signal as 24-bit amplitude

information at a sampling frequency of 16 kHz. The Raspberry Pi is equipped with a

wireless LAN adapter (IEEE 802.11b/g/n) as standard. In the experiment, all Raspberry

Pis are wirelessly connected with each other, constituting an IEEE 802.11 ad-hoc network.

Sound-source localization is conducted on a laptop computer that collects DOAs from all

Raspberry Pis; thus, the lap-top also belongs to the ad-hoc network. Table 1 summarizes

the specifications of these devices.

By connecting the microphone arrays with each other by wireless communication, it is
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Figure 4: Raspberry Pi 3 Model B with an 8-channel microphone array (TAMAGO-03)

easy to place and carry the devices. Localization is conducted according to the following

steps.

1. Time synchronization of Raspberry Pis and the laptop PC is performed by using the

network time protocol (ntp) via wireless communication.

2. Each Raspberry Pi records 8-ch sound data received from a connected microphone

array for T s.

3. Each Raspberry Pi divides the sound data into ∆ s and estimates a DOA for ∆-

second sound data.

4. Each Raspberry Pi transmits the estimated DOAs to the laptop PC.

5. The laptop PC conducts the proposed grid-based localization method utilizing the

received DOAs.

All programs for estimating the DOA and sound-source position are written in C++

language. As mentioned above, DOAs are estimated using the MUSIC method. We set ∆

to 0.5 so that it is long enough to record the bout length of a Japanese tree frog of about

0.2 s. For avoiding the influence of a temporal noise, we set T to 30 and each Raspberry

Pi calculates the mode of generated DOA estimates. Note that if ∆-s sound data has a
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Table 2: Simulation parameters

Parameters Value Description

N
100× 100

Number of cells
1000× 1000

M 4 Number of microphone arrays

Nθ 360/0.05 θs resolution

very low sound pressure level, the Raspberry Pi ignores the data and does not conduct

DOA estimation. We used the squared amplitude of the recorded sound as the threshold.

To estimate a DOA by the MUSIC method, an array manifold matrix is required, which

most closely fits the signal subspace of a microphone array. The array manifold matrix

of TAMAGO-03 is provided by HARK open source robot audition software [30]. The

DOA estimation resolution is 5◦ when using the original array manifold matrix obtained

from [30]. We use an interpolation method proposed in [31], which can interpolate the

array manifold matrix to any degree in the time domain and frequency domain. According

to this interpolation method, the Raspberry Pi estimates the DOA to an accuracy of 1◦.

Note that a higher interpolation resolution increases the size of the array manifold matrix

file.

3.4 Numerical analysis of localization method used for implementation

3.4.1 Simulation settings

In this section, we evaluate the estimation accuracy of the proposed method by comparing

it with the original grid-based method with and without a recursive approach using a

computer simulation for clarifying the characteristics of our method. The estimation

accuracy is defined as the localization error that reflects the distance between the true

and estimated positions of a sound source. In the simulation, we also consider the case

where a DOA error occurs. We summarize the simulation parameters of the evaluation in

Table 2.

In the simulation, the observation area is an A×A square and the corners of the area

are assigned the coordinates (0, 0), (0, A), (A,A), and (A, 0). Here, we set A as 10 m.
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This area is divided into N square cells; that is, each cell is a square with sides measuring

A/
√
N . A sound source is randomly placed in the observation area according to a uniform

distribution. Microphone arrays are placed at (−1,−1), (−1, 0), (0, 0), and (0,−1). In

the grid-based method with a recursive approach, the observation area was divided into

2 × 2 square cells, and the search was performed recursively until the side length of the

cell became less than A/
√
N .

We assume that the DOA error follows the same uniform distribution regardless of the

distance between the microphone array and the sound source when the microphone array

can obtain a sufficient SNR. This assumption is based on our actual outdoor measurements.

Note that, in the DOA estimation method, an estimated DOA is chosen from predefined

discrete angles [21]. Therefore, we assume that a DOA error of m, denoted by eDOA
m ,

follows the discrete uniform distribution whose probability density function P (eDOA
m = k)

is 1/(eDOA + 1), where k = 0, 1, · · · , eDOA.

3.4.2 Simulation Results

First, we present the estimation accuracy of our proposed method without DOA er-

rors in Fig. 5 and Table 3. In the figure, we show the cumulative distribution func-

tion (CDF) of the estimation error in the proposed method (red line), the original grid-

based method (blue line) and the grid-based method with a recursive approach (green

line) when N = 100 × 100. Since there is no significant difference between the results of

N = 100× 100 and N = 1000× 1000, we only show the figure of the former result.

The localization accuracy of the proposed method was the same as that of the origi-

nal grid-based method for both average and maximum error, and it was shown that the

localization can be performed with a higher accuracy than the grid-based method with a

recursive approach. In the grid-based method with a recursive approach, when the size of

grid division is rough, the sound source does not necessarily belong to the cell with the

minimum Cost. Thus, although the computation cost is smaller than that of the original

one, the localization accuracy becomes lower.

Next, we evaluate the localization error by considering DOA errors. We set eDOA to 1

and 2.

Figure 7 and Table 4 show the results of simulating DOA errors. Our proposal showed
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Figure 5: Localization-error distribution without DOA errors

almost the same accuracy as that of the original grid-based method. And both of the

methods are superior to the recursive method in terms of the localization accuracy. Note

that in all methods, the localization error increases when the DOA error was given, but the

proposed method showed slightly better performance than that of the original grid-based

method. As shown in Fig. 6, the estimation error increases near the edge of the observation

area, which suggests that a localization system that utilizes our proposed method should

be installed near the target of localization.

As shown in Section 3, the computation cost of our proposed algorithm, the original

grid-based method, and the grid-based method with a recursive approach are O(
√
N),

O(N), and O(log(N)), respectively. Here, the calculation time on the Laptop PC used for

the localization of one sound source is evaluated. Table 5 shows the average calculation

time of these methods when changing the value of N . As shown in Table 5, when N =

10, 000, there is almost no difference in the calculation time among the three methods,

but when N = 1, 000, 000, the original method takes about 0.4 s for localization. In the

case of multiple sound-source localization, as the number of DOA combinations increases,

the calculation time for localizing them increases. Then, it can be said that our proposed
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Table 3: Localization error without a DOA error

N
Error (m)

Average Max

Original
100× 100 0.142 1.007

1000× 1000 0.092 0.652

Original (recursive)
100× 100 1.790 8.538

1000× 1000 1.763 8.330

Proposed
100× 100 0.141 0.987

1000× 1000 0.093 0.636

method is more advantageous than the original from the viewpoint of localization accuracy

and calculation time.

3.5 Outdoor experiment and results

3.5.1 DOA estimation experiment for multiple sound sources

We conducted outdoor experiments to verify whether the correct DOA value could be

estimated by the MUSIC method when there were multiple sound sources. In our exper-

iments, there is no obstacles near the sound source or devices. If two sound sources are

extremely close to each other, the two sound sources can not be able to distinguished by

the MUSIC. Therefore, we placed a microphone array and two loud speakers (for sound

sources) as shown in Fig. 8. The two loud speakers played back recorded sounds of differ-

ent frogs. Spectrograms of the frogs’ calling are as shown in Fig. 9. It can be seen that the

frequency bands with high sound energy are common, but have different characteristics.

Figure 10 shows the MUSIC spectrum calculated by the MUSIC described in Sec-

tion 3.3.1. The MUSIC spectrum have two peaks only in the direction where the sound

source exists.

3.5.2 Localization experiment in outdoor experiment

In order to evaluate the accuracy of our localization system, we conducted localization

experiments in an outdoor area with no obstacles near the sound source or devices. The
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Figure 6: Heat map showing the spatial error distribution of the proposed method

true positions of the sound source had to be obtained in advance; however, it is difficult

to measure their accurate positions in an outdoor environment. Therefore, we used a

laser distance meter with an error of approximately 1 mm (Leica DISTO D210 [32]) and

calculated the positions of the sound source by triangulation. It was also necessary to

calibrate the direction of the microphone arrays in advance, using several localization

results. According to the results from section 3.4, localization accuracy is higher when the

sound source is located near to the microphone arrays; therefore, for the calibration, we

installed the sound source close to the microphone arrays.

We installed microphone arrays as shown in Fig. 11. For the sound source, we used

a loud speaker that replayed the advertisement calls of a Japanese tree frog. The maxi-

mum sound pressure level of the replay was approximately about 80 dB. The localization

parameters were the same as those in the simulation shown in Table 2.

We show the results in Table 6. The average, maximum, and minimum values of the

localization error are 0.57 m, 1.28 m, and 0.16 m, respectively. Note that when we can

obtain the true DOA estimates, these values are 0.13 m, 0.38 m, and 0.06 m, respectively.

Regarding computational time, DOA estimation takes approximately 0.07 s for a 0.5-s
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Figure 7: Localization-error distribution including DOA errors

8-ch sound data and location estimation takes approximately 0.1 s.

In the experiment, the estimated DOAs include an average error of 1.8◦ and a maximum

error of 4◦. These errors are caused by various factors, such as sound reverberation, the

position error of the microphone arrays, and the sound source. Specifically, the Raspberry

Pi connected to the microphone array has a strong influence on the DOA estimation error,

likely due to sound reflection. For more accurate localization, increasing the number of

microphone arrays is a simple and robust solution. This is easily achieved because they

are connected by wireless communication.
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Table 4: Localization error including a DOA error

N eDOA

Average
RMSE

error (m)

Original

100× 100
1 0.163 0.404

2 0.293 0.541

1000× 1000
1 0.252 0.71

2 0.399 0.632

Original (recursive)

100× 100
1 1.716 1.310

2 1.715 1.309

1000× 1000
1 1.687 1.299

2 1.670 1.292

Proposal

100× 100
1 0.168 0.410

2 0.291 0.539

1000× 1000
1 0.157 0.397

2 0.288 0.537

Table 5: Calculation time

N = 1002 N = 5002 N = 10002

Original 0.039 s 0.124 s 0.379 s

Original (recursive) 0.038 s 0.036 s 0.038 s

Proposal 0.038 s 0.037 s 0.038 s
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Figure 9: Spectrograms of sound sources
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Figure 11: Position of sound sources and microphone arrays in localization experiment

Table 6: Result of a localization experiment

Position of sound source Estimated result
Localization error (m)

x y x y

0.31 4.01 0.425 4.125 0.16

2.34 3.98 2.475 4.875 0.91

3.71 3.76 3.325 3.675 0.40

0.40 6.48 0.575 6.075 0.45

2.46 6.30 2.325 6.225 0.15

4.13 6.08 3.925 6.225 0.25

0.36 8.50 0.525 8.325 0.24

2.37 8.38 2.125 7.475 0.98

4.05 7.73 4.125 8.625 0.90

1.72 11.70 1.775 10.425 1.28
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4 Efficient LPWA network coverage method

4.1 Mathematical model of chorus and satellite behavior of Japanese

tree frogs

Temporally not available until the corresponding part will be published
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Table 7: Parameter settings
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Figure 12: Change in fatigue of three frogs (1,500–3,000 step)

Figure 13: Change in energy of three frogs (1,500–3,000 step)

4.2 Sleep control of LoRaWAN end-devices based on satellite behavior

In the following, we describe the sleep control method of LoRaWAN end device based on

the mathematical model described in section 4.1. First, we describe how frogs chorus and

satellite behavior are applied to end device control.

State(sn) LoRaWAN end devices have three communication modes: ClassA, ClassB,

and ClassC. Class A devices are only received when an ACK is received from the gateway.

Class B devices can receive beacons that the gateway sends periodically, while class C

devices can always receive and never sleep. End devices can consume less battery by

properly switching between these three modes depending on whether reception is required.

The state in which sensing data is being transmitted periodically, the state in which the

sensor is in standby mode and senses periodically, and the state in which it is in sleep are

called a sending state, a standby state and a sleep state, respectively. If the state of the n th

end device is represented as sn, sn = 0 corresponds to the sending state, sn = 1 corresponds

to the standby state, and sn = 2 corresponds to the sleep state. sn = 0 corresponds to

ClassC. The mathematical model in Section 4.1 allows them to always know the calling

of other individuals without consuming battery, but requires more battery to perform the

same action on the end devices. Therefore, if sn = 1, 2, the end devices will not receive

initially in class A, but after a certain time the switch to class C will. Devices transit

between sn = 0 and sn = 1 based on the Eqs. (21) and (21). In addition, the transition

probability between sn = 1 and sn = 2 is calculated as in Eq. (34) to Eq. (38). Devices

switch mode from Class A to Class C causes after the elapse of α×∆Tinter time. Where

∆Tinter is the average duty cycle. In Class C, devices release the receiving slot for β× 2π,

and if no state transition occurs, switch to Class A.

Figure 14: Change in energy of three frogs
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Figure 15: State transition of three frogs (1,500–3,000 step)

Figure 16: Ratio of frogs in each state

Data transmission timing(θn) When sn = 0, the end device transmits sensing data

to the gateway. The data transmission timing is determined based on θn which is the

phase. A end device transmits sensing data at the timing of θn = 0, and when receives

that another device is transmitting sensing data, the phase is updated based on the phase

difference from itself. At the time of transmitting the sensing data, we add the remaining

battery level to the header.

Duty Cycle(Tn) We can determine a duty cycle for determining an interval for collecting

sensing data by adjusting Tn according to a required value.

Battery(En) We express the battery capacity (mAh) of the end device as En. Here,

we ignore the battery consumption in the sensing, and the power consumption only in the

standby mode, the receive mode, and the transmit mode in Table 8 is considered. Table 8

is excerpted from the datasheet of Semtech’s LoRa communication module SX1276 [33].

The change of En for each class is expressed by the Eqs. (39) and (40). we determine the

value of η, ι and, κ with reference to Table 8.

P standby→sleep
n = I3(En) (34)

P sleep→standby
n = I4(En) (35)

In Section 4.1, we use the number of continuous calling to calculate the transition prob-

ability to the satellite state. The end device can directly compare the remaining battery

power, so if the battery is lower than the surrounding device, the transition probability to

the sleep state is increased, and if the battery is higher than the surrounding device, we

determine transition probabilities as shown in Eqs. (37) and (38) so as to make a transition

to the standby state.
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Table 8: Power consumption in LoRa module SX1276 (DC=3.3V)

Mode Configuration Value

sleep 0.2(uA)

standby 1.6(mA)

receive mode
bands 2&3 12.0(mA)

band 1, LNA boost ON 11.5(mA)

transmit mode
TX power=13dBm 29(mA)

TX power=7dBm 20(mA)

Esleep
n =

˜⃗
E (36)

I3(En) =
1

exp(−ϵ(Esleep
n − En − δ)) + 1

(37)

I4(En) =
1

exp(ϵ(Esleep
n − En + δ)) + 1

(38)

Here, Esleep
n indicates the remaining battery level that determines whether or not to

transition to the sleep state, and E⃗ is the battery level of end device that was observed

within r1 from itself.

• ClassA 
dEn

dt
= 0 if sn = 2A,

dEn

dt
= −η if sn = 1A.

(39)

• ClassC 
dEn

dt
= −ι if δ(θn) = 1,

dEn

dt
= −κ otherwise.

(40)
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4.3 Simulation evaluation

In this section, we show that by applying satellite behavior to LoRaWAN end devices, it is

possible to extend the service life by performing sleep while maintaining constant coverage

by simulation. In order to show the effectiveness of satellite behavior, we compared the

sleep control method described in Section 4.2 with the method that does not transition

to the sleep state. LoRaWAN is one of the LPWA standards, and enables long-distance

communication with the same transmission power as conventional wireless communication.

According to the communication range of LoRaWAN, we install 100 end devices randomly

in the observation area of 1 km × 1 km. The coverage is calculated on the intersections

of the grid when the observation area is divided into squares of 20 m × 20 m. In this

paper, coverage is defined as the ratio of intersections sensed by one or more sensors to

the total number of intersections. Table 9 shows the parameter settings. End device can

sense within a circle of radius r2 around the end device.

We show changes in coverage and battery in Figs. 17 and 18. By performing the

sleep control inspired by the satellite behavior, it was shown that the sleep was performed

without decreasing the coverage and the sensing time could be extended. Also, the ratio

of numbers of the end device in each state with respect to the total number of end devices

when the sleep reference in the Eq. (36) is set to the maximum value or the median value

of battery of which end devices at a distance of r1 or less is shown in Fig. 19. We also

show that by changing the criterion for entering the sleep state, it is possible to adjust

according to the required life and coverage.
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Table 9: Parameter settings on LoRaWAN end device

Parameter Value Description

r0 200
Maximum distance

activated by data transmission from another terminal

r1 100
Maximum distance to the individual

that can be a reference in transition to sleep

r2 150 Maximum sensing distance

α 0.39 Recovery rate of fatigue

Tmax 100.12 Maximum value of fatigue

∆T Tmax/1.2 Parameter to determine inflection point in Eq. (25) and Eq. (27)

γ 0.5 Steepness of logistic functions (Eq. (25) and Eq. (27))

Emax 500 Battery capacity (mAh)

phigh 0.8 Parameter in Eq. (28)

plow 0.01 Parameter in Eq. (28)

ϵ 0.5 Steepness of logistic functions (Eq. (31) and Eq. (32))

η 1.6 Power consumption in standby mode

ι 29.0 Power consumption in transmit mode

κ 12.0 Power consumption in transmit mode
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Figure 17: Change in coverage (Esleep
n = maxE⃗)
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Figure 19: Ratio of end devices in each state
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5 Conclusion

In this thesis, we implemented a sound-source localization method using a wireless microphone-

array network for the outdoor environment. Simulation results showed that the proposed

method can estimate the position of a sound source with an average error of 0.29 m for

a 10 m×10 m area when errors related to the DOA estimation were considered. In the

experiments, the average localization error of our proposed method was 0.57 m. We also

show that the number of sound sources can be estimated by eigenvalue distribution and

DOA estimation for multiple sound sources can be performed in outdoor environment.

We also applied a mathematical model representing Japanese tree frog chorus and its

satellite behavior to an LPWA coverage method. Simulation results show that the lifetime

of an LPWAN can be extended while maintaining a certain coverage.

Our future work is to propose and implement a localization method for the DOA

combination problem that occurs with multiple sound sources, and to conduct experiments

in a real environment. In addition, for the application of the mathematical model into an

LPWAN, it is necessary to evaluate collision avoidance due to anti-phase synchronization

of frogs over a short time scale, and to compare with existing methods.
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