
Master’s Thesis

Title

On network function virtualization

for dynamically changing service requests

based on a Core/Periphery structure

Supervisor

Professor Masayuki Murata

Author

Yuki Tsukui

February 5th, 2020

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University



Master’s Thesis

On network function virtualization for dynamically changing service requests based on a

Core/Periphery structure

Yuki Tsukui

Abstract

NFV (Network Function Virtualization) is a system which provides application ser-

vices by connecting VNFs (Virtual Network Functions), and is expected to accommodate

new service requests through a little development of new VNF and connecting with exiting

VNFs. However, preparing a lot of VNFs in advance leads to increase a cost of NFV sys-

tem. On the contrary, preparing a small set of VNFs leads to increase a development cost

of new VNFs required for accommodating future service requests. Thus, it is important

to design the NFV system that reduces the current and future system costs when service

applications become diverse.

In this thesis, we first investigate the design principles that reduce the cost to design

and develop VNFs for accommodating new service requests. For this purpose, we intro-

duce CPBD (Core/Periphery Based Design) that utilizes a concept of core/periphery for

developing VNFs. In the CPBD, “core” VNFs are developed in advance, and repeat-

edly used for accommodating future service requests. While “core” VNFs are common to

current and future service requests, “periphery” VNFs are developed and customized to

each service request. Next, we investigate placement policies of VNFs for CPBD to fully

utilize the nature of core/periphery structure of VNFs. We examine the CLCP (Center-

Located Core/Periphery placement) policy and the GDCP (Geographically-Distributed

Core/Periphery placement) policy, and evaluate the long-term cost of NFV system under

resource restrictions to run VNFs. Our results show that CPBD reduces the long-term

cost about design and development VNFs by about 23 % compared to the design with

no core VNFs. Moreover, in the case of no resource restrictions, both the CLCP and the

GDCP reduce the long-term costs about place and connect VNFs by 15.83 % compared

1



to the existing VNF placement algorithm. With resource constraints, the GDCP reduce

the long-term costs by 11.10 % over the CLCP.
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1 Introduction

Recent years, devices communicating with networks grow popular worldwide, and users

enjoy various application services. As the service demands become diverse more and more,

a system which accommodates various service requests at low cost is expected. NFV

(Network Function Virtualization) [1, 2] is the system that implements VNFs (Virtual

Network Functions), such as firewall and proxy server, by software and is expected to

accommodate various service requests by connecting VNFs over a network in a flexible

manner.

Many literatures of NFV have investigated VNFs placement algorithms to optimize a

resource usage with given service requests. For example, in Ref. [3], a genetic algorithm is

used to minimize the power consumption without violating delay requirements of service

requests. Ref. [4] tries to minimize end to end delay of service requests by placing VNFs

assuming that the usage of VNFs is governed by Zipf’s law. These literatures assume that

VNFs have already been designed and developed and also assume that service requests are

given in advance. However, for an operational perspective of NFV system, service requests

is not always accommodated by existing VNFs, and the NFV system may need to develop

new VNFs to accommodate new kinds of service requests. In such a situation, when

VNFs are not properly designed, new VNFs are added frequently depending on changes

in service requests, and development cost increases severely. That is, a proper software

design of VNFs is required to reduce a long-term cost, which is a cost to accommodate

the current and future service requests, of NFV system. After a proper software design

of VNFs is obtained, the placement problem of their VNFs is our next concern. Above

existing placement methods [3,4] may frequently change the placement of VNFs, because

they did not concern about addition of VNFs depending on changing service requests.

To reduce the long-term cost of NFV system, a proper placement of VNFs is required

to reduce opportunities of changing placement, such as adding, moving, and removing

VNFs [5]. In this thesis, we investigate software design and placement method of VNFs,

and reduce long-term development cost and deployment cost against changes in service

requests.

For the software design of VNFs, we introduce a core/periphery structure [6, 7]. The
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core/periphery structure has been used to interpret a stable but flexible behaviors of

biological systems. In the system that has the core/periphery structure, a main part of

system components forms “core” components, which does not change despite changing a

composition of an entire system with time, and other part of system components forms

“periphery” components, which change and are mediated by the core components. We

introduce a concept of the core/periphery to VNFs of the NFV system, and distinguish

VNFs into core VNFs and periphery VNFs. By deploying core VNFs, it is expected that

future service requests can repeatedly use core VNFs and requires less amount of new

periphery VNFs, which reduces the long-term development cost. Note that, the larger the

number of core VNFs becomes, the more frequently core VNFs are used for accommodating

service requests. However, the larger core VNFs will lead to increase the cost to prepare

core VNFs. In this thesis, we develop a model to represent the cost of NFV system and

reveal the cost impact of setting the number of core VNFs to the long-term development

cost.

Next, we investigate how to place VNFs that are designed based on the core/periphery

structure. It is expected that the deployment cost will be reduced by properly placing

core VNFs in advance so that they can be shared for accommodating multiple service

requests. In fact, existing method in Ref. [8] tries to reduce the number of VNFs to place

by sharing common VNFs among service requests. In our case, the placement of core

VNFs under the resource restrictions is the most important because core VNFs will be

commonly used for accommodating the current and future service requests. We investigate

placement policies of VNFs for core/periphery based design to fully utilize the nature of

core/periphery structure of VNFs. CLCP (Center-Located Core/Periphery placement)

policy and the GDCP (Geographically-Distributed Core/Periphery placement) policy are

examined for placements of core VNFs, and evaluate the long-term cost of NFV system

under resource restrictions to run VNFs.

This thesis is organized as follows. Section 2 states our design and placement problems

of NFV systems. Section 3 develops the cost model of NFV systems and show the reduction

of the long-term cost by core/periphery-based design. Then, the placement algorithm for

core/periphery-based design of VNFs are presented and evaluated in Section 4. Finally,

we conclude our thesis in Section 5.
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2 Design and Placement Problems of NFV Software Sys-

tems

2.1 Design problem

For operation of the NFV system, it is important to design VNFs properly to reduce costs.

The NFV system has many VNFs and connects them for accommodating service requests.

There are some costs to develop VNFs, and proper software design of VNFs reduces such

costs. However, costly software design disturb flexible accommodation for service requests.

We show several software design and their cost below.

The monolithic software design has been widely used for software. In the monolithic,

multiple components form a single module [9]. These components are designed to accom-

modate a particular service and to be coupled with specific components. Thus, chang-

ing a componet leads to changes of other components, and thus increase a development

cost [10–14]. Moreover, such tightly couplings between components make it difficult to use

components already developed for accommodating new service. Existing works [10,12] an-

alyze how components of software had been designed and developed in the long-term, such

as Linux and Mozilla, and indicate that large-scale refactoring to reduce tightly couplings

may contribute to the spread of Mozilla. In conclusion, monolithic has many problems.

In recent years, microservices are getting attention due to the possibility of reducing

development cost [9, 14, 15]. In microservices, components are well independent and can

be connected to other components to form a variety of services. Components already

developed can be used for accommodating future services, thus microservices reduce the

number of components and costs to design and develop.

Such discussions on software design have been active in the software engineering field,

but have not been fully discussed on the NFV system. In this thesis, we discuss software

designs of VNFs that has not attracted enough attention in existing works. To reduce de-

velopment costs, like microservices, we design “core” VNFs to be used for accommodating

new service requests.
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2.2 Placement problem

Many literatures about NFV studied placement algorithms that accommodate service re-

quests efficiently. Existing placement algorithm called AaP (Affiliation-aware vNF Place-

ment) tries to reduce the number of VNFs to place by merging service requests [8]. AaP

places VNFs on a shortest path between source-destination nodes in order of each merged

request, and avoids bandwidth consumption. For example, in accommodating two ser-

vice requests, such as VNF1 → VNF2 → VNF3 and VNF4 → VNF2 → VNF5, AaP

merges these requests and assumes them as one service request, such as VNF1 → VNF4

→ VNF2 → VNF3 → VNF5. Here, VNF2 is shared and the number of placing VNF2

is reduced from 2 to 1. Other methods use genetic algorithm to solve the problem that

minimizes power consumption with satisfying service delay requirements [3], and places

VNF to physical network based on Zipf’s law, which models frequency of use, in order

to minimize end to end service time [4]. These literature aim at optimization in terms of

power consumption, end-to-end service time, or bandwidth consumption.

However, considering the long-term operation of the NFV system, it may be more

important to reduce costs to additionally place VNFs and to change the location of VNF

one to another. For accommodating service requests, the NFV system places VNFs to

the physical network and connects them in proper order. There are some costs to place

and connect VNFs, and these costs are called deployment cost as a whole. Note that

deployment cost includes costs to transfer a VM image to node, boot it, consume electric

resource to run VNFs, and connect VNF in proper order. In operating the NFV system,

service requests may variously change and need VNFs that have not yet been placed

and connected. Those additional VNFs need additional deployment costs. Moreover,

changes in a placement of VNFs, such as adding, moving, and removing VNFs, suspend

the execution of VNFs, and cause a delay in data communications [5]. However, above

existing placement method [3,4,8] may frequently change the placement of VNFs, because

they did not concern about changing the placement of VNFs depending on variation of

service requests. In this thesis, we investigate placement method of VNFs that reduces

long-term deployment cost against the change of service requests.
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Figure 1: The concept of core/periphery structure

2.3 Approaches with core/periphery structure

In considering the software design of VNFs, we introduce a core/periphery structure [6,7].

A core/periphery structure has been used to interpret behaviors of biological system,

social network, and Internet systems. Fig. 1 shows the basic concept of a core/periphery

structure. We distinguish VNFs into core VNFs and periphery VNFs. It is expected

that the additional VNFs and the development cost will be reduced by designing VNFs

so that core VNFs can be used repeatedly for accommodating future service requests.

Moreover, the deployment will be also reduced by properly placing VNFs designed based

on a core/periphery structures. In order to reduce deployment cost, we place core VNFs

in advance. This is so that core VNF can be used repeatedly for accommodating future

service requests, as in the case of software design. In fact, AaP described above tries to

reduce the number of VNFs to place by sharing common VNFs among service requests [8].
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Figure 2: An example of NFV system

3 Core/Periphery-based Design of NFV Systems

3.1 CPBD: Core/Periphery Based Design

The NFV system has many VNFs and accommodates various kinds of service requests

by appropriately connecting VNFs. Here, appropriately connecting order of VNFs is

called service chain. It is natural that some VNFs are used frequently for accommodating

service chain requests. We consider that such a situation occurs when the VNFs are well-

implemented which is enough to be connected with many other VNFs. Such VNFs are

regarded as core VNFs. The other VNFs are regarded as periphery VNFs, which are used

only for one specific service chain requests and implemented just enough to be connected

with specific VNFs, such as receiving the process result of a VNF as input and passing

the process result to another VNF as output. Fig. 2 illustrates the NFV system with

core/periphery VNFs.

Such a classification of VNFs is based on a core/periphery structure. In a core pe-

riphery structure, a core part does not change despite changing a composition of a entire

system with time, and mediate the connection of other system parts. A periphery part

has higher variability and absorbs changes of VNF requests. Then, core VNFs are used to

accommodate multiple service chain requests, and should not be changed frequently due

to its generalization. Periphery VNFs are used to accommodate service chain requests

that can not be accommodated by core VNFs alone, therefore periphery VNFs absorb

changes of VNF requests. The software design that has the both of above core VNFs and

periphery VNFs is called CPBD: (Core/Periphery Based Design).
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Because the core VNFs have an ability to be connected with other VNFs, they have

more opportunity to accommodate service chain requests. Preparing many core VNFs will

lead to have the less amount of development cost of periphery VNFs for accommodating

new service chain requests because most of service’s functionalities are provided by the

core VNFs. However, development cost of each core VNF will be higher than periphery

VNFs because core VNFs should be generalized in order to be connected with many other

VNFs. In what follow, we define the development cost of the CPBD NFV system.

3.2 Cost definitions

Let us consider the NFV system that accommodates n type of service chain requests, and

j-th service chain request requires k(j) VNFs on average. The NFV system has fall(n)

VNFs, which is the sum of the number of core VNFs, fc(n), and the number of periphery

VNFs, fp(n), and is,

fall(n) = fc(n) + fp(n). (1)

The development cost of the NFV system, call(n), is,

call(n) =

fc(n)∑
i=0

cc(i) +
n∑

j=0

(kp(j) · cp(j)), (2)

where fc(n) is the number of core VNFs and cc(i) is i-th core VNF’s development cost.

Moreover, j-th service chain request requires kp(j) periphery VNFs, and cp(j) is develop-

ment cost of each of the kp(j) periphery VNFs. In Eq. (2), the first term means the sum

of development cost of core VNFs. The second term represents the sum of development

cost of periphery VNFs because each periphery VNF serves only one service chain requests

and the number of periphery VNFs equals
∑n

j=1 kp(j).

cc(i) increases due to the ability to be connected with many other VNFs, such as core

VNFs already implemented. Thus,

cc(i) = α · i, (3)

with a parameter α which determines how the development cost of newer core VNF in-

creases as the number of core VNFs increases.
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Figure 3: The development cost for two design scenarios

Implementing more core VNFs decreases cp(j) because more service’s functionalities

are provided by core VNFs instead of periphery VNFs. Thus,

cp(j) = exp(−β · fc(j)), (4)

with a parameter β which determines how the development cost of a periphery VNF de-

creases as the number of core VNFs increases. For example, in implementing a firewall as

a periphery, its development cost can be reduced with using core VNFs such as pattern

matching or session management. In such the case, the development cost of periphery

VNFs is reduced more as the number of core VNFs increases. Note that not all imple-

mented core VNFs can serve as a periphery VNF, thus Eq.4 forms negative exponential.

In order to observe the change of call(n) by changing fc(n), we will represent kp(j) by

fc(j). When j-th service chain request requires kc(j) core VNFs, k(j) equals kc(j)+kp(j).

We introduce a parameter γ (0 < γ < 1/fc(j)) that represents how often fc(j) core VNFs

are repeatedly used among service chain requests, and assume that,

kc(j) = k(j) · γ · fc(j). (5)

Then, we obtain kp(j) from following equation;

kp(j) = k(j)− k(j) · γ · fc(j). (6)
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3.3 Results with long-term operations of the NFV system

We consider a scenario that n increases from 0 to 100. The increase of n represents

that new service chain requests emerge dynamically over time. In this subsection, we set

k = 10, α = 0.01, β = 0.001, and γ = 0.002.

We examined two design scenarios, NCBD (Non-Core Based Design) and CPBD. The

NCBD uses only periphery VNFs to accommodate service chain requests without devel-

oping core VNFs. This design keeps fc(n) = 0 regardless of n. The CPBD developed

100 core VNFs when none of service chain requests were accommodated, that is, when

n = 0. These 100 core VNFs are used on average by 2 per future service chain request

accommodation, because we set k = 10 and γ = 0.002. Note that our evaluation here do

not consider adding core VNFs, thus this design keeps fc(n) = 100 regardless of n

Figure 3 shows the development cost of the NFV system call(n) for each n. Looking at

the results of such the design scenarios, the call(0) of the CPBD is about 50 higher than

that of the NCBD. This is because the CPBD require more costs to develop core VNFs

before accommodating the service chain request. However, the CPBD reduces development

cost by about 23% compared to the NCBD. This result suggests that the core/periphery

structure of the NFV system reduces the development cost of the system.
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4 Placement Methods of Designed VNFs

In Section 3, we show that CPBD reduces the long-term development cost by using de-

veloped core VNFs to accommodate future service chain requests. Based on these results,

we investigate placement algorithm of core VNFs to reduce additional VNFs to place in

accommodating new service chain requests.

4.1 Core placement problem

It is expected that properly placing core VNFs in advance reduces deployment cost. When

the NFV system accommodate a new service chain request, new VNFs may be placed

additionally, and connected in order of requested service chain. Because deployment costs

increase in proportion to the number of VNFs to be placed in general, additionally placed

VNFs should be reduced. Additionally placed VNFs are reduced by using already placed

VNFs to accommodate service chain requests, and such a VNF is defined as a core VNF

in CPBD. When core VNFs are used for accommodations, additionally placed VNFs need

to be sequentially placed and connected from the source node to the destination node via

nodes where core VNFs are located.

However, connecting from the source node to the destination node via nodes where core

VNFs are placed increase hop count and consume more bandwidth resources. Moreover,

when a lot of service chain requests use the same core VNF, an overhead occurs in process-

ing. By duplicating core VNFs and placing them to multiple nodes, less overheads occur

in processing, bandwidth resource consumptions are reduced, but node resource consump-

tions and deployment cost increase. Therefore, in order to reduce long-term deployment

cost, we must decide the number of core VNFs to be placed in advance while considering

the trade-off between bandwidth resource restrictions, the number of service chain requests

that use the same core VNFs without delay, and the node resource restrictions. Such a

problem to decide the number of core VNFs is called “core placement problem”.

4.2 Placement algorithms for a core/periphery-based software system

One of the solutions to the “core placement problem” is to solve as optimization problem

that minimizes the deployment cost at each time step. However, as the number of nodes
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Figure 4: An example of CLCP

and VNF large, some nonlinear functions require an enormous amount of calculation time

to solve as an optimization problem. Therefore, we focus on the topology of the physical

network, and present two heuristics:

• CLCP (Center-Located Core/Periphery placement) policy to place core VNFs to

center of physical network.

• GDCP (Geographically-Distributed Core/Periphery placement) policy to place core

VNFs to be spread over the physical network.

4.2.1 Notations

The physical network is represented as G = (V,E), where V is the node set and E is

the link set. In each time slot t, Cv(t) represents the remaining node resources for each

node v ∈ V , and Be(t) represents the remaining bandwidth resources for each link e ∈ E.

Note that Cv(0) and Be(0) represent initially allocated node and bandwidth resources,

respectively. We pre-calculate the path set, P , that consists of shortest paths between

each source-destination pair in G = (V,E). Here, Pu,v ∈ P represents shortest paths

between each source node u ∈ V and each destination node v ∈ V .

17



Figure 5: An example of GDCP

At each time slot t, λ type of service chain requests are generated, and required VNFs

belonging to set of all VNFs, M , are placed to the physical network. When VNF m ∈ M

is placed on a node v, ĉm,v node resources is consumed from Cv(t). In this thesis, we

assume that ĉm,v is uniform for any VNF m ∈ M and node v ∈ V , and denote it by ĉ.

Moreover, when VNF m ∈ M is placed on a node v, ωm,v deployment cost is required.

We also assume that ωm,v is uniform for any VNF m ∈ M and node v ∈ V , and denote it

by ω. Note that the deployment cost of the entire NFV system increases in proportion to

the number of VNFs placed

Each VNF m ∈ M is classified into core VNF or periphery VNF. X is the core VNF

set, and Y is the periphery VNF set. Here, M = X ∪ Y and ∅ = X ∩ Y . For each core

VNF x ∈ X, wx is the number of duplications of x.

R = {R1, R2, ..., RT } is the set of all service chain requests, and Rt is the set of service

chain requests at each time slot t. Each service chain request r ∈ R is represented as

r = {sr, dr, br, n⃗r}. Where, sr ∈ V is the source node of a service chain request r, dr ∈ V

is the destination node of r, and br is the bandwidth resources that are consumed from

Be(t) of each link e ∈ E used for accommodating r. Um,v(t) is the remaining number of

service chain requests that use a VNF m placed to node v without processing overhead.
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We assume that Um,v(t) is uniform for any VNF m ∈ M and node v ∈ V and Um,v(0)

represents the maximum number. If VNF m ∈ M placed on node v ∈ V has been already

used for accommodations Um,v(0) times, such a VNF cannot be used for accommodating

a new service chain requests. Table. 1 shows notations defined in this subsubsection.

Table 1: Notations

V node set

E set of links

t time slot

T max size of time slot

P set of all pre-calculated shortest path

Pu,v set of shortest paths between u, v ∈ V , and Pu,v ∈ P

Cv(t) remaining node resources for each node v ∈ V

Be(t) remaining bandwidth resources for each link e ∈ E

M set of all VNF

X core VNF set

Y periphery VNF set

wx the number of duplications of x ∈ X

ĉ node resource consumption when VNF is placed on node

R set of all service chain requests (r = {sr, dr, br, nr}, r ∈ R)

Rt set of service chain requests at each time slot t

sr source node of r ∈ R

dr destination node of r ∈ R

br bandwidth consumption when link is used for accommodat-

ing r ∈ R

n⃗r service chain of r ∈ R

Um,v the remaining number of service chain requests that use a

VNF m placed to node v at each time t

ω deploy cost to place a VNF to a node
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Algorithm 1 The core placement algorithm of CLCP

Input: G = (V,E), X, wx

1: if t = 1 then

2: for each x ∈ X in descending order of ĉ do

3: v ⇐ node with the highest efficiency

4: for loopcounter = 1 to wx do

5: while Ĉv(t) < ĉ or x has been already placed to v do

6: v ⇐ node with a next higher efficiency

7: end while

8: place x to v

9: end for

10: end for

11: end if

4.2.2 CLCP: Center-Located Core/Periphery placement Policy

Nodes located at the geographic center of the physical network have more opportunity that

paths go through. Placing core VNFs to such nodes may further increase opportunity that

core VNFs are used for accommodating many service chain requests.

CLCP places duplication of core VNFs to nodes in descending order of the efficiency

[16] of nodes. Efficiency is one of the metrics to measure how efficient information exchange

is. A node with a high efficiency has an average short hop count from any other node,

and is located at the center of the physical network.

Algorithm 1 shows the core placement algorithm of CLCP. For loop from line 2 to

line 10 place core VNFs. From line 5 to line 7 get node v that has highest efficiency to

place x. However, there is a node resource restriction. In placing core VNF x on node

v, ĉ resources will be consumed from the Cv(t) resources remaining on node v. ĉ should

not exceed Cv(t), otherwise x cannot be placed on v due to lack of node resources. If

gotten v cannot satisfy node resource restriction or x has already been placed on gotten v,

Algorithm 1 sets v to a node with next higher efficiency. Such processing for placing the

core VNF x is repeated wx times, which is the number of duplications of the core VNF x.

Next, we show how to place periphery VNFs. In accommodating a service chain request
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with using core VNFs placed based on Algorithm 1, we place and connect periphery VNFs

sequentially from the source node to the destination node via nodes where core VNFs are

located. Basically, each section from the source node to the node that has a core VNF,

the node with core VNF to another one, and the node with core VNF to the destination

node, follow the shortest path.

Algorithm 2 obtains such a set of paths of each section, Pavail, that periphery VNFs are

placed on. In order to avoid processing delays, this algorithm determines which nodes are

gone through to use core VNFs, while considering the restriction of the number of service

chain requests that use the same core VNF in line 7. If Um,v(t) is 0, m placed on v cannot

be used to accommodate a new service chain request. Moreover, Algorithm 2 consider

the bandwidth resource restriction in line 13. In using a link e for accommodating a

service chain requests r, br bandwidth resources will be consumed from the Be(t) resources

remaining on link e. br should not exceed Be(t), otherwise r cannot use e due to lack of

bandwidth resources. If Um,v of all the placed core VNFs is 0 or Algorithm 2 does not

obtain Pavail with the remaining bandwidth resources bigger than br, a service chain

request r is rejected.

Algorithm 3 places periphery VNFs to Pavail obtained byAlgorithm 2. However, if the

hop count between nodes in Pavail is too short, periphery VNFs may not be additionally

placed. Shorter path go through less nodes, thus there are less remaining node resource to

run additional VNFs. In particular, nodes with core VNFs have few remaining resources.

To avoid such a situation that periphery VNFs cannot be placed, from line 11 to line 16

add a detour to shortest path of each section. In more detail, when m is placed to v that

owns core VNFs and do not leave enough resource, p will additionally traverse a detour

that go through neighbor nodes of v to reach a node remaining enough resource.
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Algorithm 2 The algorithm to get path to place periphery VNFs

Input: G = (V,E), X, P , r

Output: Pavail

1: Pavail ⇐ ∅

2: s′r ⇐ sr

3: for each m ∈ n⃗r do

4: if m /∈ X then

5: continue

6: end if

7: if Um,v(t) = 0 for any VNF m and node v then

8: reject r

9: end if

10: d′r ⇐ node with the shortest path from s′r, VNF m, and r̂m(t) < r̃m

11: obtain ps′r,d′r ∈ Ps′r,d
′
r
with the highest remaining bandwidth resources

12: for each e ∈ ps′r,d′r do

13: if B̂e(t) < br then

14: reject r

15: end if

16: end for

17: add ps′r,d′r to Pavail

18: s′r ⇐ d′r

19: end for

20: d′r ⇐ dr

21: repeat from line 11 to line 17
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Algorithm 3 The periphery placement algorithm of CLCP

Input: G = (V,E), X, P , R

1: for each r ∈ R in descending order of br do

2: call Algorithm 2 and obtain Pavail

3: p ⇐ first path of Pavail

4: v ⇐ source node of p

5: for each m ∈ n⃗r do

6: if m ∈ X then

7: p ⇐ next path of Pavail

8: v ⇐ source node of p

9: continue

10: end if

11: if v owns any core VNF then

12: while Cv(t) < ĉ do

13: v ⇐ neighbor node of v with the highest remaining node resource Cv(t)

14: end while

15: add a detour route that reaches from v to p

16: end if

17: while Cv(t) < ĉ do

18: if v is destination node of p then

19: reject r

20: end if

21: v ⇐ next node of p

22: end while

23: place m to v

24: end for

25: end for
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4.2.3 GDCP: Geographically-Distributed Core/Periphery placement Policy

By placing core VNFs in the center of a physical network as in CLCP, it is expected

that core VNFs are used more frequently for accommodating many service chain requests.

However, resources of nodes with core VNFs and neighbors of them run dry quickly because

such nodes are intensively used for accommodations. Therefore, we examine another

placement algorithm that spread core VNFs on the physical network.

CLCP divides the physical network into clusters to maximize the modularity [17, 18],

and place duplication of core VNFs to each cluster. Modularity is one of the metrics that

reflects the density of the cluster. When the modularity is maximized, there are many

links in each cluster and few links between clusters.

Algorithm 4 shows the core placement algorithm of GDCP. Line 2 divide the physical

network into clusters. Here, ζ is the number of clusters, and Here, the louvain algorithm

[19] is used for the clustering algorithm based on the modularity, and ζ, which is the

number of clusters, is determined so that it maximizes the modularity. Thus, line 3 set

wx to ζ that is the number of duplications of core VNF x. To place a duplication of core

VNF x to each cluster, line 6 use Algorithm 1 that places x on the center of the cluster.

To place periphery VNFs, Algorithm 3 is used as in CLCP. Then, periphery VNFs

are placed to reduce deployment cost while considering bandwidth resource restrictions,

restriction of the number of service chain requests that use the same core VNF without

delay, and the node resource restrictions. Note that a path may traverse multiple clusters,

and there are no usage limitations that core VNFs belonging to a particular cluster must

be used for accommodating service chain requests. For example, if the source node belongs

to one cluster and the destination node belongs to another cluster, core VNFs placed in

either of clusters are used for accommodating service chain requests.

4.3 A model for service chain requests

In the simulation to evaluate placement algorithms, service chain requests are dynamically

generated. Each service chain request consists of a total of k VNFs, which is the sum of

the number of core VNFs, kc, and the number of periphery VNFs, kp. Here, kc and kp are

obtained by using the Eq. 5 and the Eq. 6 in the section 3.2, respectively.
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Algorithm 4 The core placement algorithm of GDCP

Input: G = (V,E), X

1: if t = 1 then

2: divide G into ζ cluster by using louvain algorithm

3: wx ⇐ ζ

4: for each x ∈ X do

5: for loopcounter = 1 to wx do

6: place a duplication of core VNF x to loopcounter-th cluster by using Algorithm

1

7: end for

8: end for

9: end if

When the time slot t is incremented, λ new type of service chain requests described

above is generated. Both the source node and destination node of each service chain

request are chosen by using uniform random. kc core VNFs are chosen from all the |X|

types of core VNFs with using uniform random. Note that a service chain requests do

not have duplicate VNFs. Moreover, we examine the case that the increase of t does not

prevent existing service chain requests by being used.

4.4 Results

We perform simulations to evaluate CLCP policy and GDCP policy. AaP [8] is used

as a placement policy for comparison. In this subsection, in order to reveal the basic

characteristics of each placement policy , we first perform simulations when the resources

are ∞. Next, we consider the case that the only node resources are finite and become a

bottleneck for accommodating service chain requests. Finally, we show simulation results

when the bandwidth resources are also finite as well as node resources.

4.4.1 Results with no resource restriction

We use 7× 7 grid network as the physical network. Both initial node resource Cv(0) and

bandwidth resource Be(0) are ∞. The number of VNFs consisting a service chain request,
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that is chain length k, is decided with using uniform random from the range of [4, 8].

When t is incremented, new λ = 10 service chain requests are generated. Here, we set λ

to a value bigger than 1 because AaP presupposes the accommodation for multiple service

chain requests at the same time. Because louvain algorithm divide 7 × 7 grid network

into 5 clusters, we set both of CLCP and GDCP wx that is the number of duplications of

each core VNF x ∈ X to 5. The deployment cost for each VNF, ω, is decided with using

uniform random from the range of [1, 1.2].

Figure 6 shows deployment cost of each placement policy, when CLCP and GDCP

place |X| = 500 core VNFs in advance and such core VNFs are used for accommodations

at the frequency of γ = 0.001. Figure 7 and Figure 8 show nodes with core VNFs of CLCP

and GDCP, respectively, by coloring blue. When resources are ∞, the deployment cost of

the CLCP and GDCP is the same, so both of them are shown by the CLCP/GDCP line

in the figure 6. In t ≤ 8, the deployment cost of AaP is lower, but in 9 ≤ t, deployment

cost of CLCP/GDCP become lower than that of AaP. This is because CLCP and GDCP

reduce additional VNFs to be placed by using already placed core VNFs to accommodate

new service chain requests.

Placing more core VNFs in advance raises the performance to reduce deployment cost of

CLCP and GDCP. Figure 9 shows deployment cost of each placement policy, when CLCP

and GDCP place more core VNFs in advance, |X| = 800. Comparing the deployment

costs of CLCP/GDCP at t = 150, the deployment costs in Figure 9 are about 12.76%

less than those in Figure 6. This is because placing more core VNFs increase opportunity

to use core VNFs for accommodating a service chain request, and reduce opportunity to

use periphery VNFs. Moreover, increasing the parameter γ also raises the performance to

reduce deployment cost of CLCP and GDCP. This is because increasing γ makes it more

frequent to use core VNFs for accommodating service chain requests. Figure 10 shows

deployment cost of each placement policy, when γ is 1.5 times higher than that of Figure

6. Comparing the deployment costs of CLCP/GDCP at t = 150, the deployment costs in

Figure 10 are smaller than those in Figure 6.

Table 2 shows the average hop count of paths used by each placement policy for

accommodating service chain requests. The average hop count of GLCP is smaller than

that of GDCP. CLCP places core VNFs to the center of the physical network that has
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Figure 6: Deploy costs of each placement policy: |X| = 500, γ = 0.001

Table 2: Average hop counts of paths used by each placement policy

setting placement policy average hop count

CLCP 6.65

|X| = 500, γ = 0.001 GDCP 7.15

AaP 6.50

CLCP 6.63

|X| = 700, γ = 0.001 GDCP 7.20

AaP 6.49

CLCP 6.63

|X| = 500, γ = 0.0015 GDCP 6.70

AaP 6.49

an average short hop count from any node, CLCP tends to be able to use shorter paths

through nodes with core VNFs than GDCP. Note that AaP is the placement policy with

an average shortest hop count. This is because AaP uses the shortest path from the source

node to the destination node, while CLCP and GDCP add detours to a path to go through

a node with core VNFs.
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Figure 7: Location of core VNFs: CLCP, 7 × 7 grid network

Figure 8: Location of core VNFs: GDCP, 7 × 7 grid network

4.4.2 Results with restrictions of computing and bandwidth resources

As the NFV system is operated for a long time and accommodates a lot of service chain

requests, resources are gradually dried up. In such a situation, some service chain requests
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Figure 9: Deploy costs of each placement policy: |X| = 800, γ = 0.001
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Figure 10: Deploy costs of each placement policy: |X| = 500, γ = 0.0015

cannot be accommodated due to insufficient resources. Therefore, it is difficult to evaluate

the placement policies by comparing the deployment costs simply. Thus, when resources

are limited, we normalize the deployment cost by the number of service chain requests

accommodated. Moreover, in order to evaluate how efficiently each placement policy uses

the finite resources, we show the amount of resources consumed by the placed VNFs to
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accommodate service chain requests. The amount of resources consumed by placed VNFs

is normalized, as well as the deployment cost, by the number of service chain requests

accommodated.

First, we consider a case when only the node resources are finite and become a bottle-

neck to accommodate service chain requests. We set initial node resources Cv(0) to 100

for any node v ∈ V and initial bandwidth resource Be(0) to ∞ for any link e ∈ E. Node

resource consumed by a placed VNF, ĉ, is decided with using uniform random from the

range of [0.4, 1]. The upper number of service chain requests that use a VNF m placed

to node v without processing overhead, Um,v(0), is decided with using uniform random

from the range of [4, 40]. When t is incremented, new λ = 10 service chain requests are

generated. Chain length, k, is decided with using uniform random from the range of [4, 8].

The deployment cost for each VNF, ω, is decided with using uniform random from the

range of [1, 1.2].

Figure 11 shows deployment cost of each placement policy, when CLCP and GDCP

place |X| = 500 core VNFs to 7 × 7 grid network in advance and such core VNFs are

used for accommodations at the frequency of γ = 0.001. Referring to that the louvain

algorithm divides 7 × 7 grid networks into 5 clusters, we set both CLCP and GDCP

wx that is the number of duplications of each core VNF x ∈ X to 5 as well as the

case when resource is ∞. Deployment costs per service chain request accommodated

by CLCP and GDCP decreases as t increases. This results indicates an increase in the

performance to reduce deployment cost of CLCP and GDCP due to the repeated use

of the core VNFs placed in advance for accommodating future service chain requests.

When t is small and few service chain requests are accommodated, the performance to

reduce deployment cost cannot be sufficiently exhibited, and core VNFs placed in advance

increase the total deployment costs. When t is larger and more service chain requests are

accommodated, core VNFs will be used repeatedly enough for accommodations, and the

performance to reduce deployment cost is more remarkably exhibited. In Figure 11, the

deployment cost of AaP is lower than that of CLCP or GDCP in about t < 100. For

example, deployment costs per service chain requests accommodated by AaP at t = 1

is 6.82, whereas that of CLCP and GDCP is 278.69. However, in 100 ≤ t, deployment

costs per service chain request accommodated by CLCP and GDCP become less than
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that of AaP. Note that the deployment costs of GDCP become lower than that of CLCP.

This is because they accommodate different number of service chain requests due to the

node resource restriction. CLCP places core VNFs only nodes at the center of the physical

network and intensively use those nodes to accommodate service chain requests, thus node

resource restrictions are likely to occur. Whereas GDCP spreads core VNFs on the physical

network, thus can use geographically distributed nodes and accommodate more service

chain requests than CLCP. Moreover, in the long-term perspective, GDCP accommodates

more service chain requests than AaP. For example, at t = 150, AaP accommodates 1193

service chain requests, however the number of service chain requests accommodated GDCP

is 1346. Results similar to that of deployment cost is obtained in Figure 12 that shows the

amount of node resources consumed by the placed VNFs per accommodated service chain

requests. Therefore, GDCP is the best placement policy that accommodates many service

chain requests with low deployment cost while using finite node resources efficiently. Note

that Placing more core VNFs in advance raises the performance to reduce deployment cost

of CLCP and GDCP as well as the case when resources is ∞. However, the number of

core VNFs to be placed in advance is restricted by the initial node resources. Placing too

many core VNFs consumes too much resources, and makes it difficult to place additional

VNFs for accommodating new service chain requests. In such a case, the performance to

reduce deployment cost cannot be sufficiently exhibited, and the entire deployment cost

increases greatly due to placing many core VNFs in advance.

Even if the physical network topology changes, we obtain results similar to the case of

grid network. When physical network is larger scale 9 × 9 grid network, the deployment

cost and the amount of node resources consumed by the placed VNFs per accommodated

service chain requests are shown in Figure 13 and Figure 14, respectively. In order to

compare with model base network, we use 49-node BA topology and show results in Figure

15 and Figure 16. Figure 17 and Figure 18 show nodes with core VNFs of CLCP and

GDCP of 49-node BA topology, respectively, by coloring blue. Here, in order to generate

49-node BA topology, we set the number of nodes to 49 and number of edges to attach

from a new node to existing nodes to 2, so that the number of nodes and the number of

edges are similar to the 7 × 7 grid network. Moreover, we use a 40-node ternary tree as

the physical node to compare the grid topology with a very different network topology,
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where 40-node ternary tree has a similar number of nodes as a grid network. In a 40-node

ternary tree, each node has three or no children, and the height is 3. Results of a 40-node

ternary tree are shown in Figure 19 and Figure 20. Figure 21 and Figure 22 show nodes

with core VNFs of CLCP and GDCP of a 40-node ternary tree, respectively, by coloring

blue. In the 9 × 9 grid network and 49-node BA topology, |X| = 500, γ = 0.001, and

wx = 5. In a 40-node ternary tree, |X| = 250, γ = 0.002, and wx = 7. |X| of a 40-node

ternary tree is smaller than that of other network topology, because a 40-node ternary

tree has less nodes and less node resources. wx of a 40-node ternary tree is different from

that of other network topology, because louvain algorithm divide a 40-node ternary tree

into a different number of clusters. In any of above network topologies, the performance

to reduce deployment cost and node resource consumption of CLCP and GDCP increases

as t increases as well as the case when 7 × 7 grid network.

Next, we consider the case when the bandwidth resources are also finite as well as node

resources, and set Be = 500. Bandwidth resources of any link e ∈ E consumed by each

each service chain requests r ∈ R is decided with using uniform random from the range

of [1, 5]. Other settings are the same as in the case when only the node resources are

finite.Other settings are the same as in the case when only the node resources are finite.

Figure 23 shows deployment cost of each placement policy, when the physical network

is 7 × 7 grid network, |X| = 500, γ = 0.001, and wx = 5. Comparing the deployment

costs at t = 150 between Figure 11 and Figure 23, that in Figure 23 is larger for both

CLCP and GDCP. This result indicate that the performance to reduce deployment cost

was weakened, because adding the bandwidth resource restriction decrease the number of

service chain requests accommodated by CLCP and GDCP. However, at t = 150 in Figure

23, deployment cost per service chain requests by GDCP is still the lowest. That of CLCP

is by about 12.99% larger than Figure 11, but that of GDCP is by only about 4.26% larger.

In CLCP, nodes at the geographic center of the physical network are intensively used, thus

the links that reaches those nodes are also intensively used. As a result, bandwidth resource

restrictions are likely to occur as well as node resource restrictions, and both of restrictions

greatly reduce the number of service chain requests accommodated by CLCP. Whereas

GDCP uses geographically distributed nodes, and less bandwidth resource restrictions

occur than CLCP. Similar results is obtained in Figure 24 that shows the amount of node
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Figure 11: Deployment cost: 7 × 7 grid network, Cv = 100, BeJ = ∞ , |X| = 500, γ =

0.001, wx = 5
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Figure 12: The amount of node resources consumed by the placed VNFs: 7 × 7 grid

network, Cv = 100, Be = ∞, |X| = 500, γ = 0.001, wx = 5

resources consumed by the placed VNFs per accommodated service chain requests. Note

that AaP is superior to CLCP and GDCP in terms of bandwidth resource consumption,

for the same reason that AaP has an average shortest hop count in section 4.4.1.

33



 4.5

 5

 5.5

 6

 6.5

 7

 20  40  60  80  100  120  140

d
e
p
lo

y
 c

o
s
t 
/ 
re

q
u
e
s
t

t

CLCP
GDCP

AaP

Figure 13: Deployment cost: 9 × 9 grid network, Cv = 100, Be = ∞, |X| = 500, γ =

0.001, wx = 5
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Figure 14: The amount of node resources consumed by the placed VNFs: 9 × 9 grid

network, Cv = 100, Be = ∞, |X| = 500, γ = 0.001, wx = 5

34



 4.5

 5

 5.5

 6

 6.5

 7

 20  40  60  80  100  120  140

d
e
p
lo

y
 c

o
s
t 
/ 
re

q
u
e
s
t

t

CLCP
GDCP

AaP

Figure 15: Deployment cost: 49-node BA topology, Cv = 100, Be = ∞, |X| = 500, γ =

0.001, wx = 5
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Figure 16: The amount of node resources consumed by the placed VNFs: 49-node BA

topology, Cv = 100, Be = ∞, |X| = 500, γ = 0.001, wx = 5
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Figure 17: Location of core VNFs: CLCP, 49-node BA topology

Figure 18: Location of core VNFs: GDCP, 49-node BA topology
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Figure 19: Deployment cost: 40-node ternary tree, Cv = 100, Be = ∞, |X| = 500, γ =

0.001, wx = 5
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Figure 20: The amount of node resources consumed by the placed VNFs: 40-node ternary

tree, Cv = 100, Be = ∞, |X| = 500, γ = 0.001, wx = 5
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Figure 21: Location of core VNFs: CLCP, 40-node ternary tree

Figure 22: Location of core VNFs: GDCP, 40-node ternary tree
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Figure 23: Deployment cost of 7 × 7 grid network with restriction of link bandwidth
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Figure 24: The amount of node resources consumed by the placed VNFs: 7 × 7 grid

network, Cv = 100, Be = 500, |X| = 500, γ = 0.001, wx = 5
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5 Conclusion

In this thesis, we investigate software design and placement method of VNFs to re-

duce long-term development cost and deployment cost against the change of service re-

quests. We introduce CPBD that is the software design of the NFV system based on a

core/periphery structure. CPBD repeatedly uses core VNFs for accommodating future

service requests, and develops periphery VNFs specifically for each service request. Our

evaluation results indicate that CPBD accommodates service chain requests with lower

development cost than that of software design without core VNFs. Then, we investigate

the placement problem of VNFs which are designed by CPBD. Considering the nature

of core/periphery structure, we introduce CLCP policy and GDCP policy. CLCP places

core VNFs to the center of the physical network that has an average short hop count from

any node in order to increase the utility of core VNFs. Unlike CLCP, GDCP spreads

core VNFs on the physical network to avoid intensively using specific nodes and links to

accommodate service chain requests. In both cases, with or without resource restrictions,

GDCP is the best placement policy that accommodates many service chain requests with

low deployment cost while using finite node resources efficiently.

In this thesis, we assume that the usage frequency among core VNFs are identical

for simplicity. One of our future works is to consider the difference of usage frequency

among core VNFs. For example, GDCP should treat the less-used core VNFs as periphery

VNFs. Another of our future works is to evaluate the validity of parameter settings of

CPBD/GDCP by using actual application services.
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