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Abstract

Our research group studies the virtual network (VN) reconfiguration method that

applies the Bayesian Attractor Model (BAM), which models the cognitive and decision-

making behavior of the human brain, as a method that does not use the traffic matrix.

The method holds some traffic situations and its corresponding virtual network topolo-

gies (VNTs) that work well under those traffic situations in advance. Then, the method

identifies the current traffic situation using Bayesian inference and selects the correspond-

ing VNT. However, it is known that when the method holds many traffic situations in

advance to emphasize the accuracy of identification, it takes more time to identify the

traffic situation. On the contrary, when the method emphasizes the speed of the traffic

situation identification and holds fewer traffic situations, it may fail to configure the VNT

that works well against the changes of traffic situations.

In this thesis, to achieve the VN reconfiguration with both accuracy and speed, we focus

on the cognitive mechanism of the human brain to perform cognition that satisfies both

speed and accuracy. As the knowledge of the brain science, it is known that the human

brain contains two cognitive pathways; a cognitive pathway that emphasizes speed and

a cognitive pathway that emphasizes accuracy. By incorporating such the two-pathway

mechanisms into the BAM-based VN reconfiguration method, it is expected to achieve

both speed and accuracy. To achieve this, we develop a VN reconfiguration method having

two BAM mechanisms; a fast-pathway-BAM (FP-BAM) for the fast decision-making and

a slow-pathway-BAM (SP-BAM) for the accurate decision-making. However, since we

cannot obtain the internal parameters of the actual human brain, we need to design the

parameters of each BAM suitable for VN control. More importantly, we need to have the
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design method of VNTs suitable for the role and parameter settings of each BAM. Our

thesis presents the design principles of parameters of each BAM and the design method

of VNTs based on the design principles. In our design method, for SP-BAM, we prepare

a lot of VNTs that perform the best in a certain traffic situation using a traditional

heuristic algorithm. Then, for FP-BAM, we prepare a few of VNTs that perform to some

extent in more patterns of traffic situations, based on frequency of virtual links used to

accommodate more traffic situations. Our simulation results show that FP-BAM quickly

identifies traffic situations with 70% fewer steps than SP-BAM. The results also show that

VNTs of SP-BAM has higher probability to form a virtual link between the node pairs

taking high traffic volume, and at maximum, 45% higher than that of VNTs of FP-BAM.

By operating FP-BAM and SP-BAM in parallel, our VN reconfiguration quickly relaxes

the traffic congestion against traffic changes and configures more efficient VNTs after the

accumulated traffic observations.
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1 Introduction

In recent years, the demand for traffic is diversifying and the amount of traffic is increas-

ing because various services such as video distribution services and cloud services have

been remarkably developed on the Internet. Research works are being conducted on net-

work virtualization problems that construct a virtual network (VN) on top of physical

infrastructure and that flexibly reconfigure the virtual network topology (VNT) against

fluctuations in the traffic demand [1–6].

There are several existing methods for reconfiguring VNT in real time against fluctu-

ations in the traffic demand, and most of them acquire the traffic matrix and optimize

it [7–10]. However, there remains challenges in applying the approach to the ever-changing

traffic demand and reconfiguring a fast and efficient VNT. First, because of the difficulty

to acquire the traffic matrix in real time, it is difficult to reconfigure the VNT based on the

traffic matrix within a short period. Also, the amount of traffic between node pairs fluctu-

ates significantly compared to the fluctuation of the traffic amount in the entire network,

so the method may overly reconfigure the VNT when traffic demand accidentally increases

or decreases. It is possible to use the time average of the amount of traffic between node

pairs to input the existing method, but in this case, the method cannot quickly reconfigure

VNT for the ever-changing traffic demand.

Our research group studies the VN reconfiguration method that applies the Bayesian

Attractor Model (BAM) [11], which models the cognitive and decision-making behavior of

the human brain, as a method that does not use the traffic matrix [12]. In this method,

BAM holds some traffic situations as attractors. BAM identifies the current traffic sit-

uation by observing the amount of traffic on the real network, accumulating evidence,

and calculating the attractor corresponding to the current traffic situation. In Ref. [12],

the method quickly reconfigures the VNT by limiting the observing traffic information to

the amounts of incoming and outgoing traffic at each node. BAM updates the probabil-

ity density of each attractor by receiving the observed value of the amounts of incoming

and outgoing traffic at each node as an input for each unit time and estimates the traffic

situation. In this method, BAM holds some traffic situations and VNTs, each of which cor-

responds to the traffic situation and works well under those traffic situations, in advance.
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When BAM identifies the current traffic situation to one of several traffic situations hold-

ing in advance using Bayesian inference, the method configures the corresponding VNT

that works well for the traffic situation identified by BAM.

In the VN reconfiguration method using BAM, BAM reconfigures the VNT that works

well corresponding to more traffic situations as the number of templates of traffic situations

holding in advance, that is, the number of attractors increases. However, the time required

to identify the traffic situation increases, as the number of attractors increases. When

BAM holds many traffic situations in advance to emphasize the accuracy of identification,

it can configure the VNT that works well against the changes of traffic situations, but it

takes more time to identify the traffic situation and it impairs the speed of identification.

When BAM emphasizes the speed of the traffic situation identification and assumes fewer

traffic situations, it identifies the traffic situation quickly against the fluctuation of the

traffic situation, but it may not configure the VNT that works well against the changes

of traffic situations. Therefore, the challenge of VN reconfiguration method using BAM is

to achieve both accuracy and speed.

In this thesis, we focus on the cognitive mechanism of the human brain to perform

cognition that satisfies both speed and accuracy using BAM. As the knowledge of brain

science, it is known that the human brain contains two cognitive pathways, a cognitive

pathway that emphasizes speed, which we call Fast Pathway (FP), and a cognitive pathway

that emphasizes accuracy, which we call Slow Pathway (SP), and recognizes by switching

the cognitive pathway. By incorporating such the two-pathway mechanisms into our VN

reconfiguration method, it is expected to achieve both accuracy and speed. To achieve this,

we develop a VN reconfiguration method having two BAM mechanisms; a fast-pathway-

BAM (FP-BAM) for the fast decision-making and a slow-pathway-BAM (SP-BAM) for

the accurate decision-making. However, since we cannot obtain the internal parameters

of the actual human brain, we need to design the parameters of each BAM suitable for

VN control. More importantly, we need to have the design method of VNTs suitable for

the role and parameter settings of each BAM. Our thesis presents the design principles of

parameters of each BAM and the design method of VNTs based on the design principles.

In our design method, for SP-BAM, we prepare a lot of VNTs that perform the best in

a certain traffic situation using a traditional heuristic algorithm. Then, for FP-BAM, we
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prepare a few of VNTs that perform to some extent in more patterns of traffic situations,

based on frequency of virtual links used to accommodate more traffic situations. By

operating FP-BAM and SP-BAM in parallel, our VN reconfiguration quickly relaxes the

traffic congestion against traffic changes and configures more efficient VNTs after the

accumulated traffic observations.

This thesis is organized as follows. Section 2 describes virtual network reconfiguration

method using BAM. Section 3 describes the principles and design of VN reconfiguration

method using BAM which emphasizes accuracy and BAM which emphasizes speed, in

parallel. Section 4 describes evaluations of our VN reconfiguration method by simulations.

Finally, Section 5 describes the conclusions and future works.
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2 Virtual Network Reconfiguration using Bayesian Attrac-

tor Model

2.1 Bayesian Attractor Model (BAM)

In this thesis, we use Bayesian Attractor Model (BAM) for virtual network (VN) control.

2.1.1 Outline of Bayesian Attractor Model

BAM is a model of the mechanism by which the human brain accumulates evidences ex-

tracted from sensory information from the outside world and makes cognitive and decision-

making based on the evidences. BAM has a D-dimensional state variable z, which changes

in value against the attractor dynamics [13] that converges to the state φi (i = 1, · · · , D)

as evidence accumulates. In addition, BAM has candidates µi (i = 1, · · · , D), which are

average patterns of observed values, and each candidate µi corresponds to the state φi. At

time t, BAM makes Bayesian estimates the posterior distribution p(zt|X1:t) defined on the

state space using the Unscented Kalman Filter (UKF) [14], where zt is the D-dimensional

state variable at time t and X1:t = x1, · · · ,xt is an observation value obtained at each

time up to time t. p(zt = φi|X1:t) represents the posterior belief for the state φi. Ref. [11]

introduces the posterior belief p(zt = φi|X1:t) as the confidence measure for making a

decision for the candidate µi. After estimation, if p(zt = φi|X1:t) ≥ λ holds, BAM adopts

candidate µi as the correct candidate, and if none of i = 1, · · · , D holds, BAM continues

observation. Thus, the BAM accumulates observation values and makes a decision when

the confidence for the decision is large enough (Fig. 1).

2.1.2 Bayesian inference in the BAM

BAM has a generative model for Bayesian inference by the decision maker, i.e., the brain.

The generative model calculates the likelihood of observations under all possible candi-

dates that the decision maker considers. More precisely, the generative model predicts a

probability distribution over observation values based on the current state variable and

its attractor dynamics. The generative model defines a change in the state variable from
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Figure 1: Bayesian Attractor Model (BAM)

one time step to the next as,

zt − zt−∆t = ∆t · f(zt−∆t) +
√

∆t ·wt, (1)

where f(z) is a function defining an attractor dynamics [13] for the vector of state variables

z. The noise variable wt follows the normal distribution N(0,Q), where Q = (q2/∆t · I)

is the isotropic covariance of the noise and q is called “dynamical uncertainty”.

The generative model predicts a probability distribution over observation values, given

the state variable z. The equation for the prediction is,

x = M · σ(z) + v (2)

= [µ1, · · · , µD] · σ(z) + v (3)
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= σ(z1) · µ1 + σ(z2) · µ2 + · · ·+ σ(zD) · µD + v, (4)

where M = [µ1, · · · , µD] contains the averages of observation values that correspond to

candidates and σ(z) is the sigmoid function that maps all valuables zj ∈ z to values

between 0 and 1. Due to the winner-take-all mechanism of attractor dynamics [13], the

state φi is mapped to a vector σ(φi) where one element is approximately 1 and the other

elements are approximately 0. Thus, the linear combination M ·σ(z) associates each state

φi with the candidate µi. The noise variable v follows the normal distribution N(0,R),

where R = r2 · I is the expected isotropic covariance of the noise on the observations and

r is called “sensory uncertainty”.

At time t, BAM infers the posterior distribution p(zt|X1:t) of the state variable zt

using the generative model and the unscented Kalman filter (UKF) [14]. The UKF is a

statistical sampling method that approximates the posterior distribution p(zt|X1:t) with

a normal distribution. We describe the flow of the Bayesian inference in BAM. First, the

generative model predicts the posterior distribution of the state variable at time t and

approximates it with a normal distribution N(ẑt, P̂t), where P̂t represents the isotropic

covariance of the predicted state variable ẑt. Second, the generative model predicts the

possibility distribution of the corresponding observation values at time t and approximates

it with a normal distribution N(x̂t, Σ̂t), where Σ̂t represents the isotropic covariance of the

predicted observation values x̂t. Finally, BAM calculates the observation residual between

the predicted observation values x̂t and the actual observation values xt, εt = xt− x̂t. And

BAM updates the estimation of the state variable z̄t and its posterior isotropic covariance

P̄t via a Kalman gain Kt as follows;

z̄t = ẑt + Kt · εt, (5)

P̄t = P̂t + Kt · ĈT
t . (6)

The Kalman gain represents the relative importance of the observation residual and is

given by,

Kt = Ĉt · Σ̂−1
t , (7)

where Ĉt is the covariance matrix between the predicted state variable ẑt and the predicted

observation values x̂t. In this way, BAM approximates the posterior distribution p(zt|X1:t)

with a normal distribution N(z̄t, P̄t).
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Figure 2: VN Reconfiguration using BAM

2.2 VN Reconfiguration using BAM

We consider applying BAM to estimate the traffic situation of the network and configuring

a VN suitable for the estimated situation. Figure 2 shows a schematic diagram of VN

Reconfiguration using BAM. BAM estimates a traffic situation by observing the amounts of

incoming and outgoing traffic at edge routers (hereinafter referred to as the traffic amount).

We make BAM hold specific traffic situations µi (i = 1, · · · , D) and VN candidates gi

(i = 1, · · · , D) that is suitable for specific traffic situations µi in advance. Every time BAM

observes the traffic amount, it updates the confidence that the current traffic situation

matches specific traffic situations µi. BAM identifies the current traffic situation when the

confidence factor of a specific traffic situation µi exceeds the threshold, and we configure

the VN candidate gi suitable for the identified traffic situation µi.

2.3 Parameters of BAM

We can make setting for several variable parameters for BAM. The number of attractors

BAM holds is one of the parameters. The more attractors BAM holds, the more traffic
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situations BAM can envision. However the more attractors BAM holds, the longer BAM

will take to identify the current state from the attractors. Conversely, reducing the number

of attractors BAM holds will reduce the time BAM takes to identify the current state from

the attractors, but will reduce the traffic situations BAM can envision. There is a trade-off

between the speed and accuracy of BAM estimation.

Other parameters are dynamics uncertainty and sensory uncertainty. Dynamics uncer-

tainty represents the expected state noise at the attractor level, which can be interpreted

as the propensity to switch between estimations. The higher the dynamics uncertainty,

the more likely BAM switches the identified traffic situation between traffic situation can-

didates. Sensory uncertainty represents the expected isotropic covariance of the noise on

the observation value. The higher the sensory uncertainty, the more noise BAM expects

to be included in the observation value. In this thesis, we use the covariance of the last

five observation values as sensory uncertainty.
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3 Virtual Network Reconfiguration Method using Two-Pathway

BAM

3.1 Two Pathways: Fast Pathway and Slow Pathway

We must set the parameters of BAM properly to apply BAM to estimate the traffic situa-

tion of the network and to configure a VN suitable for the estimated situation. However,

it is difficult to establish the VN reconfiguration method that satisfies both speed and

accuracy because there is a trade-off between speed and accuracy.

In this thesis, we focus on the cognitive mechanism of the human brain to perform

cognition that satisfies both speed and accuracy using BAM. As the knowledge of brain

science, it is known that the human brain contains two cognitive pathways, a cognitive

pathway that emphasizes speed (FP) and a cognitive pathway that emphasizes accuracy

(SP), and recognizes by switching the cognitive pathway [15]. We work to establish the

VN reconfiguration method that satisfies both speed and accuracy by incorporating this

mechanism into the algorithm.

By operating BAM, which we set the parameters that emphasizes the identification

speed over accuracy, and BAM, which we set the parameters that emphasizes the identifi-

cation accuracy over speed, in parallel in the traffic situations cognition, we establish the

VN reconfiguration method that satisfies both speed and accuracy.

When traffic fluctuations occur, we first configure the VNT corresponds to the traffic

situation identified by FP-BAM, and then reconfigure the VNT corresponds to the traffic

situation later identified by SP-BAM with higher confidence. This algorithm realizes the

VN reconfiguration method that shows good performance in both control speed and control

accuracy (Fig. 3).

3.2 Principles to Design Parameters for Two-Pathway BAM

We must design the parameters setting of each BAM for VN control, since we cannot

represent the parameters of the actual human brain. We need to determine guidelines on

how we set each BAM parameters in the VN reconfiguration method using FP-BAM and

SP-BAM. Therefore, we first clarify the principles and role of each BAM.
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Figure 3: VN Reconfiguration method using two-pathway BAM

For FP-BAM, when network congestion occurs, it aims to quickly eliminate the con-

gestion. For this reason,

FP1-1 Quickly reconfigure the VN in response to traffic fluctuations.

FP1-2 Reconfigure the VNT with a large number of virtual links between nodes to elim-

inate congestion.

FP-BAM should also set the number of attractors and the amount of information acquired

to emphasize cognitive speed, thus,

FP2-1 Keep the number of attractors to a minimum to make quick cognition.

FP2-2 Limit the amount of information to collect information quickly.

For SP-BAM, it aims to reconfigure the VNT that is more suitable for the traffic situations.

For this reason,

SP1-1 Reconfigure the VNT by observing the traffic situation in detail.
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Table 1: Parameters setting of FP-BAM

Parameter Setting Reason (Principle)

Number of attractors

BAM holds

fewer To make quick cognition

(Based on FP2-1)

Amount of information

acquired

limited (Get the traffic

amount only from a lim-

ited number of nodes)

To make quick decisions by

limiting the amount of infor-

mation (Based on FP2-2)

Threshold of confidence

for identification

lower To make quick cognition

(Based on FP1-1)

Maximum number of

links for each node

larger To follow traffic fluctuations

and avoid network congestion

(Based on FP1-2)

Dynamic uncertainty larger To quickly switch attractors

(Based on FP1-1)

SP1-2 Reconfigure the VNT with fewer virtual links between nodes to reduce power

consumption.

SP-BAM should also set the number of attractors and the amount of information acquired

to emphasize cognitive accuracy, thus,

SP2-1 Keep a large number of attractors to make accurate cognition.

SP2-2 Maximize the amount of information acquired to make accurate cognition.

3.3 Virtual Network Reconfiguration Method using Two-Pathway BAM

3.3.1 Parameters settings

In consideration of the above, the parameters setting guidelines for each BAM are shown

in Table 1,2. By setting the parameters as shown in Table 1,2, this method should work

as follows. When the fluctuation of the traffic amount is small, the traffic situation does

not change significantly and the optimum VN for the traffic situation does not change so
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Table 2: Parameters setting of SP-BAM

Parameter Setting Reason (Principle)

Number of attractors

BAM holds

larger To make accurate cognition

(Based on SP2-1)

Amount of information

acquired

maximized (Get the

traffic amount from all

nodes)

To make accurate decisions by

maximizing the amount of in-

formation (Based on SP2-2)

Threshold of confidence

for identification

higher To make accurate cognition

(Based on SP1-1)

Maximum number of

links for each node

fewer To reduce power consumption

(Based on SP1-2)

Dynamic uncertainty smaller To accurately switch attrac-

tors (Based on SP1-1)

much, so that we can reconfigure the VN as intended as described above. When traffic

fluctuations occur, FP-BAM identifies the traffic situation in response to the traffic fluctu-

ations quickly and reconfigures the VNT, and SP-BAM continues long-term observations

in parallel. When both FP-BAM and SP-BAM identify the traffic situation, SP-BAM

reconfigures the VNT with a small number of virtual links to save resources. When the

VNT corresponding to the attractor held by SP-BAM with a small amount of resources

cannot accommodate a large amount of traffic and the maximum link utilization exceeds

the numerical target, we attempt to reduce the maximum link utilization by reconfiguring

the VNT corresponding to the attractor held by FP-BAM with a large number of virtual

links.

3.3.2 Switching between two pathways

We set the state transition of the VN reconfiguration method using two-pathway BAM as

shown in Fig. 4 to reconfigure VN as described above. There are eight states, State 1,

State 2-A, State 2-B, State 3-A, State 3-B, State 4-A, State 4-B, and State 5.
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FP-BAM has 
identified.

State. 3-B

SP-BAM has 
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State. 4-B

Both FP-BAM and 
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Figure 4: State transition diagram of VNT control using two-pathway BAM

State 1 is the initial state in which both FP-BAM and SP-BAM have not identified.

The states are divided depending on the state in which only FP-BAM has identified, the

state in which only SP-BAM has identified, and the state in which both FP-BAM and

SP-BAM have identified into State 2, State 3, and State 4.

State 2 is divided into State 2-A and State 2-B, and State 3 is divided into State 3-A

and State 3-B depending on whether the link utilization is within the numerical target.

State 4 in which both FP-BAM and SP-BAM have identified is divided into State 4-A,

which the VNT that SP-BAM configures achieves the numerical target, and State 4-B,

which FP-BAM configure the VNT with a large number of virtual links since the VNT

that SP-BAM configures do not achieve the numerical target. State 5 is the state which

the numerical target is not achieved even with the VNT that FP-BAM configure.

When only FP-BAM has identified, transition to State 2-A, and when the link uti-

lization exceeds the numerical target, transition to State 2-B. When only SP-BAM has

identified, transition to State 3-A, and when the link utilization exceeds the numerical tar-

get, transition to State 3-B. When both FP-BAM and SP-BAM have identified, transition

to State 4-A and configure the VNT that SP-BAM identified, which has a small number
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of virtual links. When the link utilization exceeds the numerical target with the VNT

that SP-BAM configured, transition to State 4-B and try to reduce the link utilization

by configuring the VNT corresponding to FP-BAM with a large number of virtual links.

When even the VNT that FP-BAM configured exceeds the numerical target, transition to

State 5.

3.3.3 VNT calculation

SP-BAM holds ns attractors, and FP-BAM holds nf less attractors than SP-BAM based

on FP2-1. We consider how to calculate the VNT suitable for the traffic situation of the

attractor each BAM holds. We want to calculate the suitable VNT for the traffic matrix.

Each BAM aims at the following.

• FP-BAM wants to configure the VNT to adapt to various traffic situations with a

small number of attractors.

• SP-BAM wants to configure the VNT that forms links between node pairs that

efficiently flow traffic with a small number of virtual links.

SP-BAM uses HLDA, which will be described later, to efficiently flow traffic by forming

virtual links in order from node pairs with the largest amount of traffic. FP-BAM reduces

the number of nodes it observes to acquire information quickly. We would like to greatly

change the traffic situation FP-BAM assumes depending on the traffic amount of the

fewer nodes that it observes. However, it is unclear how FP-BAM can assume greatly

different traffic situations. Therefore, we consider extracting attractors with significantly

different traffic situations from SP-BAM, which has a large number of attractors. We

consider grouping the attractors of SP-BAM based on the traffic amount of the node FP-

BAM observes and imitating an attractor from each group with different traffic situations.

However, there is no guideline as to which attractor we should imitate from each group

with different traffic situations. Therefore, we consider calculating an attractor that has

the characteristics of attractors in each group with different traffic amounts. One attractor

can be calculated from each group, and the characteristics of the attractors are different

each group. From the above, first determine the VNT corresponding to attractors of

SP-BAM.
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Since we generate a wide variety of traffic matrices for attractors SP-BAM holds, we

generate the traffic matrices A
s(k)
T for the attractor with index k (k = 1, · · · , ns) that

SP-BAM holds by the following procedure. A
s(k)
T (s, d) represents the amount of traffic

transmitted from the source node s to the destination node d. A
s(k)
T (s, d) = 0 when s = d.

Generate a random number p (0 ≤ p ≤ 1.0) for each node-pair ij,

T (i, j) =


µ+ σ ·N(0, 1) if 0 ≤ p ≤ 0.4,

2µ+ σ ·N(0, 1) if 0.4 < p ≤ 0.75,

3µ+ σ ·N(0, 1) if 0.75 < p ≤ 1.0.

(8)

A
s(k)
T (i, j) =

 0 if i = j,

T (i, j) if i 6= j.
(9)

SP-BAM holds the amounts of incoming and outgoing traffic of each node based on

these traffic matrices as attractors and uses them for cognition. We calculate VNT by a

simple heuristic algorithm, HLDA (Heuristic Logical topology Design Algorithm) [16, 17]

for the traffic matrix corresponding to the attractor. The outline is shown below.

We calculate ns VNTs, A
s(k)
V for k = 1, · · · , ns, by setting A

s(k)
V (a, b) = 1 when a

virtual link is assigned from node a to node b of VNT corresponding to index k attractor,

and by setting A
s(k)
V (a, b) = 0 when no virtual link is assigned from node a to node b of

VNT corresponding to index k attractor. The matrices Out(N) and In(N) represents the

number of transmitter and receiver resources allocated to the virtual link of each node.

Out(c) represents the number of assigned transmitters on node c, and In(c) represents

the number of assigned receivers on node c. The parameters OutLimit and InLimit

represents the maximum number of transmitters and receivers of each node that can

allocate resources to virtual links. Each element of Out(N) and In(N) cannot allocate

resources beyond OutLimit and InLimit.

Algorithm 1 shows the HLDA algorithm. From the 2nd line to the 12nd line, assign

virtual links between adjacent nodes. In the 13th line, calculate the node pair with the

maximum traffic amount. From the 15th line to the 20th line, assign virtual links between

the node pair with the maximum traffic amount when resources are remained, and calculate

the node pair with the next maximum traffic amount. Repeat lines 15th to 20th until all

node pairs are checked.
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Figure 5: Classifying ns attractors of SP-BAM into nf groups

FP-BAM aims to quickly eliminate congestion when a traffic fluctuation occurs. While

FP-BAM holds a small number of attractors, it has the requirement to handle a wide range

of traffic situations. Therefore, FP-BAM needs to hold attractors whose traffic situation

trends are significantly different for each attractor.

We roughly classify ns SP-BAM attractors into nf type groups based on the tendency

of traffic situations, and use the characteristics of each group to create nf attractors that

FP-BAM holds (Fig. 5). We use the following method as a method for roughly classifying

SP-BAM attractors.

Since FP-BAM limits the amount of information based on design principle FP2-2,

FP-BAM observes only the traffic amount of a limited number of nodes. In addition, FP-

BAM generates a VNT that has a larger maximum number of virtual links for each node

than SP-BAM based on design principle FP1-2. We calculate feature quantities from the

traffic matrix of each SP-BAM attractor and classify them into nf groups based on the

tendency of the feature quantity. We construct a feature quantity space using the traffic

amount between nodes with a large average amount of traffic as the feature quantity of

each attractor. We classify SP-BAM attractors to groups using the k-means method for

feature quantities. Algorithm 2 shows a method to classify ns SP-BAM attractors into nf

groups. From the 1st line to the 6th line, extract the traffic amount of the nodes FP-BAM

observes. From the 8th line to the 9th line, group into nf groups uniformly. From the

11th line to the 12th line, calculate the center of gravity Ck of each group k. From the

13th line to the 14th line, regroup to nf by distance to center of gravity. Repeat lines
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11th to 15th until grouping does not change.

As described above, we generate the traffic matrices A
s(k)
T (i, j)(k = 1, · · · , ns) for the

attractor with Index k that SP-BAM holds by the following procedure. Generate a random

number p (0 ≤ p ≤ 1.0) for each i, j,

T (i, j) =


µ+ σ ·N(0, 1) if 0 ≤ p ≤ 0.4,

2µ+ σ ·N(0, 1) if 0.4 < p ≤ 0.75,

3µ+ σ ·N(0, 1) if 0.75 < p ≤ 1.0.

(10)

A
s(k)
T (i, j) =

 0 if i = j,

T (i, j) if i 6= j.
(11)

SP-BAM attractor with index k represents the amount of traffic flowing from node a

to node b in A
s(k)
T (a, b). FP-BAM observes only t (1 ≤ t ≤ N) nodes (N1, N2, . . ., Nt)

with a large amount of traffic to make a quick decision. Then, we classify ns SP-BAM

attractors into nf groups based on the traffic amount of t nodes that FP-BAM observes.

We roughly classify SP-BAM attractors based on the features of traffic matrices by

focusing on the traffic amount flowing between arbitrary nodes of t nodes (Fig. 5). Since

there are t(t−1)
2 combinations of t nodes, information focusing on the traffic amount of

SP-BAM attractor between each node of t nodes is mapped to the t(t−1)
2 -dimensional

feature quantity space. F (N , t(t−1)
2 ) represents the feature quantities of SP-BAM attractor

focusing on the t nodes of the traffic matrix. SP-BAM attractor of index k is located at

(Fk(1),Fk(2),...,Fk( t(t−1)
2 )) on the t(t−1)

2 -dimensional feature quantity space.

We calculate one VNT of FP-BAM attractor for each of the classified groups. When

observing the current traffic situation T (i, j), FP-BAM emphasizes the following points.

1. FP-BAM identifies the current traffic situation as one of FP-BAM attractors Af .

2. When FP-BAM identifies the current traffic situation as Af(1), VNT V f(1) corre-

sponding to Af(1) eliminates network congestion.

Since the principle of FP-BAM is to eliminate congestion when the traffic situation fluc-

tuates, we generate virtual links between node pairs with large amounts of traffic for

calculating VNT.
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We need to form virtual links between node pairs required for a VNT can accommodate

the traffic matrix of more attractors in the group. Therefore, we preferentially form virtual

links between the node pairs that have a large number of times in common with VNTs

of SP-BAM attractors in the group, which we call Frequency-based method. As long as

physical resources remain, we form virtual links in sequence between the node pair that

have the largest number of times in common with VNTs of SP-BAM attractors in the

group. When there are multiple node pairs that have the same number of times in common

with VNTs of SP-BAM attractors in the group and it becomes impossible to form a virtual

link for physical resources confliction, we calculate VNTs using brute-force. When physical

resources are surplus after brute force, we form virtual links in order from the node pair

with the smallest index until the physical resources are exhausted. After a conflict, we

try multiple thresholds of brute force. We perform brute force between the node pairs

that have more than the threshold number of times virtual links are formed. Suppose a

physical resource conflict occurs when the number of times in common with VNTs of SP-

BAM attractors in the group is c. We implement Frequency-based-1 method in which a

threshold is set to maximum value c, and Frequency-based-2 method in which a threshold

is set to maximum value c -1 , and Frequency-based-all method in which a threshold value

is set to 1 and performs brute force among all node pairs. In addition, as an algorithm for

comparison, we also consider Brute-Force method which exclude node pairs with a small

number of times in common with VNTs in the group from the candidates and performs

brute force. We evaluate how much better the performance of the method is compared to

Centroid-based method that calculate simple VNT using HLDA for the traffic matrix of

the center of gravity in the group. Algorithm 3 shows the algorithm of Frequency-based

method. From the 3rd line to the 11th line, function CalculateT iebreak(Lk) calculates

the maximum value c. From the 12th line to the 15th line, perform brute force between the

node pairs that have more than each threshold number of times virtual links are formed.

Since FP-BAM aims to respond quickly to avoid congestion, we generate a traffic

matrix with a randomly increased amount of traffic based on the traffic matrix of the

center of gravity of the group, and evaluate whether the VNT accommodate the traffic

matrix.

We use the center of gravity of the traffic matrices in the group as the traffic matrix of
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Figure 6: Patterns of traffic matrices accomodated for each VNT calculation method

attractors FP-BAM holds. We generate a traffic matrix A
f ′(k)
T with a randomly increased

traffic amount by adding n ·µ · |N(0, 1)| to the traffic matrix of the center of gravity using a

normal distribution and evaluate whether the VNT accommodates it. We generate a traffic

matrix A
f ′(k)
T by 30 times with the normal distribution of different seeds and compare the

number of times the VNT accommodates it. That is,

A
f ′(k)
T (i, j) =

{
A

f(k)
T (i, j) + n · µ · |N(0, 1)|. (12)

In Fig. 6, the horizontal axis shows n, and the vertical axis shows how many times

VNT accommodates out of the 30 traffic matrices generated with n (n = 1 to 3). Brute-

Force has a huge number of candidate node pairs and cannot complete the calculation, so

it shows the result obtained with the best VNT configured by 10 hours after the algorithm

execution.

The difference between the elements of the traffic matrix of SP-BAM attractor is about

2 µ at most. Therefore, it is considered that the traffic matrix, which is obtained by adding

2µ · |N(0, 1)| to each element of the traffic matrix A
f(1)
T of FP-BAM attractor, is grouped

into other groups and FP-BAM does not recognize Xn as Af(1). Therefore, we think

that it is more than enough to accommodate all traffic matrices when n = 2, but we use

25



Frequency-based-all in consideration of the number of accommodations when it is larger

than n = 2.

We calculate the VNT of FP-BAM attractor by following the steps below.

1. Calculate the VNT for the traffic matrix of all SP-BAM attractors in the group using

HLDA.

• Generate a VNT with the maximum number of virtual links on each node set

to the same as parameter of FP-BAM.

2. Count the number of virtual link formations between each node pair for all VNTs

of SP-BAM in the group.

• Preferentially forms virtual links between node pairs that have a large number

of times in common with VNTs in the group based on FP-BAM principle of

eliminating network congestion.

3. Form virtual links in order from the node pair that have the largest number of times

in common with VNTs in the group. Test if the generated VNT can accommodate

the traffic matrix for each attractor of SP-BAM in the group.

• When conflicts occur between node pairs that have the same number of times

in common, use brute force among all the remaining nodes to form virtual links

and generate VNTs.

• Hold the VNT, which can accommodate the most traffic matrices in the group,

as FP-BAM attractor.

• Use the center of gravity of each group used in the k-means method as the

traffic matrix of FP-BAM attractor.

By following the above steps, FP-BAM holds VNTs that work well in a variety of

traffic situations, and quickly configure VNT for traffic fluctuations.
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Algorithm 1 Calculate VNT (HLDA)

Input: AHLDA
T (double× double)

Output: AHLDA
V (int× int)

1: AHLDA
V (N ×N)⇐ 0

2: for i = 1 . . . N − 1 do . Assign virtual links between adjacent nodes

3: if Out(i) < OutLimit and In(i+ 1) < InLimit and AHLDA
V (i, i+ 1) = 0 then

4: AHLDA
V (i, i+ 1)⇐ 1

5: Out(i)⇐ Out(i) + 1

6: In(i+ 1)⇐ In(i+ 1) + 1

7: AHLDA
T (i, i+ 1)⇐ 0

8: if Out(i+ 1) < OutLimit and In(i) < InLimit and AHLDA
V (i+ 1, i) = 0 then

9: AHLDA
V (i+ 1, i)⇐ 1

10: Out(i+ 1)⇐ Out(i+ 1) + 1

11: In(i)⇐ In(i) + 1

12: AHLDA
T (i+ 1, i)⇐ 0

13: Smax, Dmax ⇐ arg maxS,D(AHLDA
T (S,D)) . calculate the maximum node pair.

14: while AHLDA
T (Smax, Dmax) 6= 0 do . Repeat until all node pairs are checked

15: if Out(Smax) < OutLimit and In(Dmax) < InLimit and AHLDA
V (Smax, Dmax) = 0 then

16: AHLDA
V (Smax, Dmax)⇐ 1

17: Out(Smax)⇐ Out(Smax) + 1

18: In(Dmax)⇐ In(Dmax) + 1

19: AHLDA
T (Smax, Dmax)⇐ 0

20: Smax, Dmax ⇐ arg maxS,D(AHLDA
T (S,D))
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Algorithm 2 Feature extraction and grouping

Input: A
s(1...ns)
T (double× double)

Output: S1...nf
(int), C1...nf

(int)

1: for n = 1 . . . ns do

2: i⇐ 1

3: for a = 1 . . . t− 1 do

4: for b = a+ 1 . . . t do

5: Fn(i)⇐ A
s(n)
T (Na, Nb) +A

s(n)
T (Nb, Na)

6: i⇐ i+ 1

7: t⇐ 0

8: for k = 1 . . . nf do . Group into nf uniformly

9: S
(t)
k ⇐ {Fn : n mod nf = k} . S

(t)
k represents the group of index k at step t

10: while {∃i | S(t)
i 6= S

(t−1)
i } do

11: for k = 1 . . . nf do

12: Ck ⇐ 1

|S(t)
k
|

∑
Fn∈S(t)

k

Fn . Calculate the center of gravity Ck of each group k

13: for k = 1 . . . nf do . Regroup to nf by distance to center of gravity

14: S
(t+1)
k ⇐ {Fn : |Fn − Ck|2 ≤ |Fn − Cj |2 ∀j, 1 ≤ j ≤ nf}

15: t⇐ t+ 1
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Algorithm 3 The calculation method of V f(k) (Frequency-based)

Input: Lk
ij(int× int), nsk(int)

Output: V
f(k)
ij (int× int)

1: nsk represents the number of SP-BAM attractors classified into group k to calculate

FP-BAM attractor with index k.

2: Define Lk(N × N), which Lk(i, j) represents the number of times a virtual link is

formed between (i, j) using HLDA for all traffic matrices of SP-BAM in the group.

3: function CalculateTiebreak(Lk)

4: for c = nsk . . . 0 do

5: for each node-pair(i, j) do

6: if Lk(i, j) == c then

7: if Physical resource exists to form a virtual link between (i, j) then

8: V f(k)(i, j)← 1

9: else

10: V f(k) ← Vkeep

11: return c

12: Vkeep ← V f(k)

13: Brute force between node pairs (i, j) where Lk(i, j) is threshold or higher.

14: Frequency-based-1 uses l for threshold.

15: Frequency-based-2 uses l − 1 for threshold.

16: Frequency-based-all uses 1 for threshold.
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4 Evaluations of the Virtual Network Reconfiguration Method

4.1 Simulation Settings

In the simulation, we use a 12-node network in the shape of Japan (Fig. 7). We simulate

VN reconfiguration method using the two-pathway BAM on a 12-node network, and grasp

the tendency of appropriate parameter setting in each BAM. After grasping appropriate

parameter in a 12-node network, we perform VN reconfiguration simulation for 19 nodes

EON to confirm that the parameter setting for each BAM are valid even on different

topology. In a 12-node network, FP-BAM observes only three nodes, Tokyo (node 3),

Osaka (node 8), and Fukuoka (node 11), to reduce the amount of information (Fig. 7).

In a 19-node network, FP-BAM observes only four nodes, node 2, node 7, node 12, and

node 15, to reduce the amount of information (Fig. 8).

We give traffic fluctuations and measure the speed and accuracy of VN reconfiguration.

In the simulation, we cause one traffic fluctuation per trial. We simulate the trial 300

times and evaluate the average. We generate the traffic situation by the following formula

during the simulation. We change the seed of the normal distribution Nfluc in the following
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equation each time a traffic fluctuation occurs.

Tstep(i, j) =

 0 if i = j,

|2µ+ µ ·Nfluc(0, 1)| if i 6= j.
(13)

During the tfluc steps after the traffic fluctuation occurs, we add a little noise to the traffic

situation for each step based on the traffic matrix generated by the above equation, and

continue to generate roughly the same traffic situation. We change the seed of the normal

distribution Nstep in the following formula for each step.

Tstep(i, j) =

 0 if i = j,

|2µ+ µ ·Nfluc(0, 1) + σnoise · µ ·Nstep(0, 1)| if i 6= j.
(14)

The numerical target of the maximum link utilization in each step is not to exceed 0.8. For

FP-BAM, we set the maximum number of virtual links for each node to two in addition

to the degree of each node on the physical network. For SP-BAM, we set the maximum

number of virtual links for each node to one in addition to the degree of each node on the

physical network.
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4.2 Evaluation Results

4.2.1 Results of 12-node network

We simulate VN reconfiguration method using Two-Pathway BAM on a 12-node network.

Impact of the parameter q (dynamics uncertainty)

We evaluate the appropriate parameter q (dynamics uncertainty) in FP-BAM and SP-

BAM. The dynamics uncertainty represents “ease of transition between attractors”. There-

fore, in FP-BAM, which emphasizes speed to respond quickly to traffic fluctuations, it is

intuitively correct to set q larger. In SP-BAM, which emphasizes accuracy to switch the

attractor with sufficiently confidence, it is intuitively correct to set q smaller.

Suppose a traffic fluctuation occurs and the traffic situation becomes A. Prepare δA(t)

and when BAM has identified one of attractors at step t, δA(t) is set to 1, otherwise

set to 0. We simulate 300 trials with tfluc = 50 and calculate the average number of

steps required for FP-BAM to identify the traffic situation against traffic fluctuations.

We simulate setting σnoise to 0.1 and changing the parameter q from 0.4 to 1.0 in 0.1

increments. Fig. 9 shows the cumulative complementary distribution of the number of

steps required for FP-BAM to identify the traffic situation against traffic fluctuations. In

Fig. 9, the horizontal axis shows the number of observation steps (t), and the vertical

axis shows the probability that attractor identification is not completed within t step as

a cumulative complementary distribution. We calculate the value on the vertical axis by

taking the average of δA(t) with 300 traffic fluctuations within step t and subtracting it

from 1. That is, it is desirable that the probability on the vertical axis decreases as the

number of observation steps on the horizontal axis increases. The vertical axis shows the

value obtained by taking the natural logarithm.

There is not much difference depending on the value of q, but the identification is a

little fastest when we change q from 0.7 to 0.9. Since q is a parameter that indicates the

ease of transition between attractors, it is desirable for FP-BAM that emphasize speed to

set q larger to respond quickly to traffic fluctuations. We conclude that it is appropriate

for FP-BAM to set q = 0.9 among q = 0.7 to 0.9 with an equivalent performance to

emphasize speed.

Next, we evaluate the parameter q in SP-BAM. Since the confidence value may fluc-
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FP-BAM: 12-node network

tuate excessively in noisy situations, as an evaluation for whether SP-BAM emphasizes

accuracy than speed, examine whether the confidence value does not fluctuate excessively

with respect to other attractors after identifying the traffic situation.

In the traffic fluctuation, we generate the traffic situation based on the traffic matrix

of one of SP-BAM attractor (the index of the attractor is k in the formula below) and add

noise as shown in the following formula;

Tstep(i, j) =

 0 if i = j,

A
s(k)
T (i, j) + σnoise ·Nstep(0, 1) if i 6= j.

(15)

We simulate 300 trials which traffic fluctuation occurs one time with tfluc = 200.

We calculate the ratio of 1) the case when SP-BAM continues to identify the correct

attractor, 2) the case when SP-BAM identifies the correct attractor but confidence value

fluctuates to other attractors on the way, and 3) the case when SP-BAM cannot identify

the correct attractor, to the traffic situation generated after each traffic fluctuation. In

SP-BAM, which emphasizes accuracy, it is desirable that the ratio of the case when SP-

BAM continues to identify the correct attractor is high. When we set the σnoise to 0.4,

the identification ratio for each q is as shown in Fig. 10. When we set the σnoise to 0.8,

the identification ratio for each q is as shown in Fig. 11.
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Figure 10: Identification ratio of SP-BAM: 12-node network, σnoise = 0.4

When we set q too large, the ratio of the case when SP-BAM identifies the correct

attractor but confidence value fluctuates to other attractors on the way increases, but

when we set the value of q too small, the ratio of the case when SP-BAM cannot identify

the correct attractor increases. When we set q to 0.6, the ratio of the case when SP-BAM

continues to identify the correct attractor is the highest. We conclude that it is appropriate

for SP-BAM to set q to 0.6 to emphasize accuracy.

From the above, we set the parameter q to 0.9 for FP-BAM and 0.6 for SP-BAM. This

result is in line with the principles we have expected in advance, as q represents the ease

of attractor transitions.

Impact of the number of attractors

We evaluate the speed of FP-BAM by the number of attractors. Suppose a traffic fluc-

tuation occurs and the traffic situation becomes A. Prepare δA(t) and when BAM has

identified one of attractors at step t, δA(t) is set to 1, otherwise set to 0.

We simulate 300 trials which traffic fluctuation occurs one time with tfluc = 50. We

calculate the rate at which δA(t) becomes 1 when a total of 300 trials traffic fluctuations

occur. We generate the traffic matrix AT of the traffic situation A after the traffic fluc-

tuation by the following formula. We change the seed of the normal distribution Nfluc in
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Figure 11: Identification ratio of SP-BAM: 12-node network, σnoise = 0.8

the following formula for each trial.

AT (i, j) =

 0 if i = j,

|2µ+ µ ·Nfluc(0, 1)| if i 6= j.
(16)

In Fig. 12, the horizontal axis shows t [step], and the vertical axis shows the probability

that attractor identification is not completed within t step as a cumulative complementary

distribution. We calculate the value on the vertical axis by taking the average of δA(t)

with 300 traffic fluctuations within step t and subtracting it from 1. That is, it is desirable

that the value on the vertical axis becomes smaller as the number of observation steps on

the horizontal axis increases.

It is shown that the smaller the number of attractors FP-BAM holds, the faster FP-

BAM identifies the traffic situation. Since FP-BAM has a small number of attractors

when the number of FP-BAM attractors is 3, the identification is delayed by a few per-

cent compared to when the number of FP-BAM attractors is 6 or 9, but the percentage

of identification when FP-BAM holds 3 attractors is the highest from 0 to 15 steps, so

FP-BAM is able to identify the traffic situation quickly. Regarding SP-BAM, although

the number of steps required for identification of SP-BAM increases as the number of

attractors increases, the possibility of identification at 50 steps is higher when the number
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Figure 12: Cumulative complementary distribution of the number of steps to identify for

FP-BAM and SP-BAM: 12-node network

of attractors is large.

Speed of identification of FP-BAM

We set the number of attractors to 33 for VN reconfiguration method using one BAM.

To set the total number of attractors 33 as well, we set the combination of nf and ns as

(nf , ns) = (3, 33), (6, 27), (9, 24) and compare with the method using only SP-BAM.

We simulate 300 trials which traffic fluctuation occurs one time with tfluc = 50 and

evaluate average steps required for identification. In Fig. 13, the horizontal axis shows

the number of attractors, and the vertical axis shows the average steps required for iden-

tification.

FP-BAM, which require fewer steps for identification, are operated in parallel to quickly

reconfigure the VNT in response to traffic fluctuations.

The accuracy of SP-BAM

We evaluate the accuracy of SP-BAM. To evaluate the accuracy, we evaluate whether

the VNT that SP-BAM configures after the traffic fluctuation is suitable for the post-
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Figure 13: Box-plot of number of steps required for identification: 12-node network

fluctuation traffic matrix, that is, whether virtual links are formed between the node pairs

with a large amount of traffic.

We rank the node pairs in descending order of the traffic amount in the traffic matrix

after the traffic fluctuation. When SP-BAM identifies the traffic situation and configures

the VNT, we evaluate the accuracy of SP-BAM based on whether links are formed between

node pairs at the top group of the traffic amount ranking for the configured VNT. For

comparison, we also calculate the accuracy when FP-BAM identifies the traffic situation

and configures the VNT. The detailed definition of the evaluation method is described

below.

The number of attractors is set to nf = 3 for FP-BAM and ns = 30 for SP-BAM. Let

A
f(k)
V and A

s(k)
V be the VNT identified either by FP-BAM or SP-BAM 50 steps after the

traffic fluctuation, and we calculate whether A
f(k)
V , A

s(k)
V forms a virtual link between node

pair for all of the traffic rankings. We perform 300 trials which a traffic fluctuation occurs

and evaluate the percentage that A
f(k)
V , A

s(k)
V forms virtual links between node pairs with

large traffic amount. 21 cases in which SP-BAM failed to identify the traffic situation are

excluded. In Fig. 14, the horizontal axis shows the ranking r of the traffic amount between

node pair, and the vertical axis shows each percentage that FP-BAM and SP-BAM forms

a virtual link between the node pair of the traffic amount corresponding to the ranking r.
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Figure 14: Relation betwen the traffic amount and existence probability of virtual link:

12-node network

The percentage of virtual links that are formed between the node pairs with the higher

traffic amount ranking is higher in SP-BAM than in FP-BAM. It can be said that SP-

BAM accurately configures the VNT suitable for the traffic situation.

Performance of the VN reconfiguration method with FP-BAM and SP-BAM

in parallel

We set the combination of nf and ns as (nf , ns) = (3, 33), (6, 27), (9, 24) and compare

with the method using only SP-BAM. We simulate 300 trials which traffic fluctuation

occurs one time with tfluc = 50 and evaluate the average number of steps where the link

utilization exceeds the numerical target.

In Fig. 15, the horizontal axis shows the number of attractors, and the vertical axis

shows the average number of steps where the link utilization exceeds the numerical target.

The smaller the number of attractors FP-BAM holds and the larger the number of

attractors SP-BAM holds, the average number of steps where the link utilization exceeds

the numerical target is suppressed. The reason for this is the result shown in Fig. 13 and

Fig. 14. Figure 13 shows that the smaller the number of attractors of FP-BAM is the fewer

steps required for the identification is, and Figure 14 shows that SP-BAM preferentially
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Figure 15: Average number of steps where the link utilization exceeds the threshold:
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forms virtual links between node pairs with higher traffic. The speed of identification of

FP-BAM and the accuracy of SP-BAM shown by these figures reduces the average number

of steps where the link utilization exceeds the numerical target.

4.2.2 Results of 19-node network

Next, we simulate VN reconfiguration method using Two-Pathway BAM on a 19-node

network.

Impact of the parameter q (dynamics uncertainty)

We evaluate the appropriate parameter q (dynamics uncertainty) in FP-BAM and SP-

BAM for a 19-node network in the same way as a 12-node network. We simulate 300

trials with tfluc = 50 and calculate the average number of steps required for FP-BAM to

identify the traffic situation against traffic fluctuations. We simulate setting σnoise to 0.1

and changing the parameter q from 0.4 to 1.0 in 0.1 increments. In Fig. 16, the horizontal

axis shows the number of observation steps (t), and the vertical axis shows the probability

that attractor identification is not completed within t step as a cumulative complementary

distribution. That is, it is desirable that the probability on the vertical axis decreases as

the number of observation steps on the horizontal axis increases. The vertical axis shows
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Figure 16: Cumulative complementary distribution of the number of steps to identify for

FP-BAM: 19-node network

the value obtained by taking the natural logarithm.

We got a result similar in a 12-node network. Since q is a parameter that indicates the

ease of transition between attractors, it is desirable for FP-BAM that emphasize speed to

set q larger to respond quickly to traffic fluctuations. We conclude that it is appropriate

for FP-BAM to set q = 0.9 among q = 0.7 to 0.9 with equivalent performance to emphasize

speed.

Next, we evaluate the parameter q in SP-BAM for a 19-node network in the same

way as a 12-node network. We simulate 300 trials which traffic fluctuation occurs one

time with tfluc = 200. We calculate the ratio of 1) the case when SP-BAM continues to

identify the correct attractor, 2) the case when SP-BAM identifies the correct attractor

but confidence value fluctuates to other attractors on the way, and 3) the case when SP-

BAM cannot identify the correct attractor, to the traffic situation generated after each

traffic fluctuation. In SP-BAM, which emphasizes accuracy, it is desirable that the ratio

of the case when SP-BAM continues to identify the correct attractor is high. When we

set the σnoise to 0.4, the identification ratio for each q is as shown in Fig. 17. When we

set the σnoise to 0.8, the identification ratio for each q is as shown in Fig. 18.

We got a result similar in a 12-node network. When we set q too large, the ratio of
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Figure 17: Identification ratio of SP-BAM: 19-node network, σnoise = 0.4

the case when SP-BAM identifies the correct attractor but confidence value fluctuates to

other attractors on the way increases, but when we set the value of q too small, the ratio

of the case when SP-BAM cannot identify the correct attractor increases. When we set q

to 0.6, the ratio of the case when SP-BAM continues to identify the correct attractor is

the highest. We conclude that it is appropriate for SP-BAM to set q to 0.6 to emphasize

accuracy.

From the above, we set the parameter q to 0.9 for FP-BAM and 0.6 for SP-BAM also in

a 19-node network. This result is in line with the principles we have expected in advance,

as q represents the ease of attractor transitions.

Impact of the number of attractors

We evaluate the speed of FP-BAM by the number of attractors for a 19-node network

in the same way as a 12-node network. We simulate 300 trials which traffic fluctuation

occurs one time with tfluc = 50. In Fig. 19, the horizontal axis shows t (step), and the

vertical axis shows the probability that attractor identification is not completed within t

step as a cumulative complementary distribution. That is, it is desirable that the value

on the vertical axis becomes smaller as the number of observation steps on the horizontal

axis increases.
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Figure 18: Identification ratio of SP-BAM: 19-node network, σnoise = 0.8

It is shown that the smaller the number of attractors FP-BAM holds, the faster FP-

BAM identifies the traffic situation also in a 19-node network.

Speed of identification of FP-BAM

We set the number of attractors to 33 for VN reconfiguration method using one BAM.

To set the total number of attractors 33 as well, we set the combination of nf and ns as

(nf , ns) = (3, 33), (6, 27), (9, 24) and compare with the method using only SP-BAM.

We simulate 300 trials which traffic fluctuation occurs one time with tfluc = 50 and

evaluate average steps required for identification. In Fig. 20, the horizontal axis shows

the number of attractors, and the vertical axis shows the average steps required for iden-

tification.

FP-BAM, which require fewer steps for identification, are operated in parallel to quickly

reconfigure the VNT in response to traffic fluctuations.

The accuracy of SP-BAM

We evaluate the accuracy of SP-BAM. To evaluate the accuracy, we evaluate whether

the VNT that SP-BAM configures after the traffic fluctuation is suitable for the post-

fluctuation traffic matrix, that is, whether virtual links are formed between the node pairs
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Figure 19: Cumulative complementary distribution of the number of steps to identify for

FP-BAM and SP-BAM: 19-node network

with a large amount of traffic.

We rank the node pairs in descending order of the traffic amount in the traffic matrix

after the traffic fluctuation. When SP-BAM identifies the traffic situation and configures

the VNT, we evaluate the accuracy of SP-BAM based on whether links are formed between

node pairs at the top group of the traffic amount ranking for the configured VNT. For

comparison, we also calculate the accuracy when FP-BAM identifies the traffic situation

and configures the VNT. The detailed definition of the evaluation method is described

below.

The number of attractors is set to nf = 3 for FP-BAM and ns = 30 for SP-BAM. Let

A
f(k)
V and A

s(k)
V be the VNT identified either by FP-BAM or SP-BAM 50 steps after the

traffic fluctuation, and we calculate whether A
f(k)
V , A

s(k)
V forms a virtual link between node

pair for all of the traffic rankings. We perform 300 trials which a traffic fluctuation occurs

and evaluate the percentage that A
f(k)
V , A

s(k)
V forms virtual links between node pairs with

large traffic amount. 21 cases in which SP-BAM failed to identify the traffic situation are

excluded. In Fig. 21, the horizontal axis shows the ranking r of the traffic amount between

node pair, and the vertical axis shows each percentage that FP-BAM and SP-BAM forms

a virtual link between the node pair of the traffic amount corresponding to the ranking r.
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The percentage of virtual links that are formed between the node pairs with the higher

traffic amount ranking is higher in SP-BAM than in FP-BAM. It can be said that SP-

BAM accurately configures the VNT suitable for the traffic situation.

Performance of the VN reconfiguration method with FP-BAM and SP-BAM

in parallel

We set the combination of nf and ns as (nf , ns) = (3, 33), (6, 27), (9, 24) and compare

with the method using only SP-BAM. We simulate 300 trials which traffic fluctuation

occurs one time with tfluc = 50 and evaluate the average number of steps where the link

utilization exceeds the numerical target.

In Fig. 22, the horizontal axis shows the number of attractors, and the vertical axis

shows the average number of steps where the link utilization exceeds the numerical target.

We got a result similar in a 12-node network. The smaller the number of attractors FP-

BAM holds and the larger the number of attractors SP-BAM holds, the average number

of steps where the link utilization exceeds the numerical target is suppressed.
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Figure 21: Relation betwen the traffic amount and existence probability of virtual link:

19-node network
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5 Conclusion

We showed the VN reconfiguration method using the speed-emphasized BAM and the

accuracy-emphasized BAM in parallel were able to quickly reconfigure a VNT to eliminate

congestion and later reconfigure a high-performance VNT. In Chapter 4.2 we simulated

on two networks to provide guidelines for parameters on different topologies. We would

like to simulate what the result will be depending on conditions such as the magnitude of

traffic fluctuations. Moreover, since we evaluated only by simulation, it is a future task to

evaluate using the actual traffic on the actual network.

In the actual environment, we would like to think about the replacement of attractors.

When there is an attractor that has not been used for a long time, the traffic situation that

the attractor assumes is not appropriate for the current environment. It is meaningless

to assume a traffic situation that is not appropriate for the current environment, so it is

better to replace the unused attractor and assume a different traffic situation. The traffic

situation may change suddenly, but it is possible to grasp the tendency statistically. For

example, the amount of traffic between a certain node pair and in a certain area tends to

increase during the day, the amount of traffic is generally low at night, etc.

We may reconfigure the VN more appropriately by replacing the attractors BAM holds

in consideration of changes in the traffic situation on the real network over the time of

the day. In addition to FP-BAM and SP-BAM, we consider increasing the number of

BAMs that operate in parallel on the assumption that the BAM replace attractors it

holds. We think that in the daytime, BAM holds attractors that corresponding VNT

forms virtual links between nodes that tend to have a lot of traffic amount, and at night

when the amount of traffic is low, BAM holds attractors that corresponding VNTs save

the number of virtual links. By increasing the number of BAMs that operate in parallel,

BAMs assume more traffic situations. We consider operating additional BAMs, which

replace attractors in consideration of the tendency of the traffic situation on a monthly

basis (a traffic amount between a specific node pair tends to increase at the beginning of

the month, traffic amount between node pairs is small overall at the end of the month,

etc.) or the tendency of the traffic situation on a yearly basis (a traffic amount between a

specific node pair tends to increase in summer, etc.), in parallel. On the other hand, it is

46



hard to control VN while combining cognitive results when multiple BAMs identify traffic

situations, so it is necessary to carefully add a new BAM.
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