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Abstract

Many services have become provided through the cloud. These services utilize large-

scale computational resources, memory, and storage in large-scale data centers, and handle

a large amount of data that cannot be handled by end user’s devices. However, time-

sensitive applications are difficult to provide through the cloud due to the large latency

between the cloud data center and end device.

Edge computing is one technology for addressing this kind of problem. In this ap-

proach, many micro data centers are deployed near users. Each user has a micro data

center that is close to him/her and has more resources than the end devices. Thus, time-

sensitive services can also be provided by using micro data centers.

Efficient resource utilization is important in a micro data center because a micro data

center has a limited amount of resources, compared with large data centers. One approach

for achieving efficient resource usage is to disaggregate the resources. In a disaggregated

micro data center, resources such as CPUs, GPUs, memories, and storages are connected

via a network. We can flexibly construct a virtual computer by connecting the required

resources.

In a disaggregated micro data center, resource allocation has a large impact on the per-

formance of the application. Especially, network resources between the computation and

memory resources are important. If some links become congested and cause a large delay

between resources, it takes a time to complete the process using the resources. There-

fore, we introduce a micro data center whose network is constructed of packet switches

and multi-core optical fibers and propose a resource allocation method for the micro data

center using multi-core fibers. The resource allocation method allocates the computation,
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memory, and network resources to each application so that each process of the application

will be completed within the requested time. In this data center, we allocate optical fiber

cores to the communication between resources as network resources. We accommodate

more applications by allowing multiple applications to share the same optical fiber core.

In addition, we also allow communication in an application to use multiple optical fiber

cores between the same nodes to reduce the delay if required.

The resources for an application are allocated when the request to start the application

arrives. However, the allocated resources may affect the allocation of the resources to the

request that will arrive in the future. Even if there are enough computation and memory

resources, the network resources required to connect them may be already used by the

previous requests. Therefore, our resource allocation method avoids using the resources

that may be required for the accommodation of future applications. In this method, we

define an allocation cost for each resource based on the importance of the resource and

allocate resources based on the costs.

We evaluate our resource allocation method by simulation. The results show that our

method can allocate requested resources even in the case that the method that allocates

resources without considering future requests cannot allocate more than 10% of requested

resources. we also demonstrate that we can accommodate more applications by allowing

multiple applications to use the same optical fiber core and allowing each communication

to use multiple optical fibers if necessary. By allowing them, we can reduce the number

of requests whose requirements cannot be satisfied by 2/3.
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1 Introduction

Many services have become provided through the cloud. These services utilize large-scale

computational resources, memory, and storage in large-scale data centers, and handle a

large amount of data that cannot be handled by end-user devices. However, time-sensitive

applications are difficult to provide through the cloud due to the large latency between

cloud data center and end device.

Edge computing is one technology for addressing this kind of problem [1]. In this

approach, many small data centers (hereafter we call micro data centers (µDCs)) are

deployed near users. Each user has a µDC that is close to him/her and has more resources

than the end devices. Thus, time-sensitive services can also be provided by using micro

data centers. By deploying the process to compress the data in µDCs, we can also reduce

the amount of traffic to the cloud data centers.

Efficient resource utilization is important in a µDC because a µDC has a limited

amount of resources, compared with large data centers. One approach to achieving effi-

cient resource utilization is to disaggregate resources [2]. In this approach, each µDC is

constructed of resources connected by a network as shown in Figure 1. We call these µDCs

disaggregated micro data centers (µDDCs). Unlike traditional data centers where each

server has its own CPUs, RAM, and storage, we can flexibly use the resources in µDDCs

by allocating the needed amount of resources to each task [3]. In addition, the resources

in µDDCs can be easily upgraded because each resource is independent. That is, we can

timely update CPU, GPU, and memory to follow their evolution.

Figure 1: Differences between server centric and disaggregated data centers

In a disaggregated micro data center, resource allocation has a large impact on the

performance of the application. Especially, network resources between the computation
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and memory resources have a large impact [3–6].

We evaluated the impact of network performance on the execution performance of

AI applications provided by µDDC [4]. The results indicate that latency has a large

impact on the performance of the application. Therefore, several architectures to construct

disaggregated data centers have been proposed. Zervas et al. used optical circuit switches

in a data center in addition to the electrical packet switches [5]. By configuring the optical

circuit switches, the resources can communicate with low latency.

In a disaggregated data center, resource allocation is also important. The inappropri-

ate allocation may cause a large delay between resources and degrades the performance

of the application. Therefore, several resource allocation methods have been proposed.

Papaioannou et al. proposed a resource allocation method based on latency and band-

width [7]. This method allocates resources and paths between them so that enough CPU

and memory resources are allocated and latencies between them are less than the prede-

fined target value. The above researches assume that the paths between the resources are

reserved and cannot be used by the other applications. However, the network resources

should also be used efficiently in a µDDC. µDDC can accommodate more applications by

sharing network resources among multiple applications.

Therefore, we introduce a µDDC architecture and propose a resource allocation method

for the architecture that allows the network resources shared among multiple applications.

In this architecture, the network is constructed of packet switches and multi-core optical

fibers. The resource allocation method allocates the computation, memory, and network

resources to each application so that each process of the application will be completed

within the requested time. In this data center, we allocate optical fiber cores to the com-

munication between resources. We accommodate more applications by allowing multiple

applications to share the same optical fiber core. In addition, we also allow communication

in an application to use multiple optical fiber cores between the same nodes to reduce the

delay if required.

The resources for an application are allocated when the request to start the application

arrives. However, the allocated resources may affect the allocation of the resources to the

request that will arrive in the future; even if there are enough computation and memory

resources, the network resources required to connect them may be already used by the
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previous requests. Therefore, our resource allocation method avoids using the resources

that may be required for the accommodation of future applications. To achieve this, we

define an allocation cost for each resource including computation, memory, and network

resources based on the importance of the resource, and allocate resources based on the

costs.

In this thesis, we evaluate our resource allocation method by simulation and demon-

strate that our method accommodates more applications satisfying the requirements.

The rest of this thesis is organized as follows. Chapter 2 describes related work. Chap-

ter 3 describes the µDDC assumed in this thesis, and Chapter 4 proposes a resource allo-

cation method considering future application requests. Chapter 5 evaluates our resource

allocation method by simulation. Finally, Chapter 6 concludes this thesis.

8



2 Related work

2.1 Recent research on resource disaggregation

A disaggregated data center (DDC) is a data center constructed of resource units such

as CPU, GPU, and memory that are connected to each other via a network. Resource

disaggregation improves resource utilization and scaling flexibility [8].

In a DDC, the network performance has a large impact on the performance of appli-

cations. In particular, the communication delay between the CPU and remote memory

may degrade the performance. Gao et al. investigated the network requirements for a

DDC and concluded that high bandwidth communication is necessary to reduce the im-

pact of communication delays [3]. Liu et al. also discussed the requirements for the optical

transmission technology in a DDC and pointed out that high-bandwidth communication

devices that support more than 1 Tbps communication are necessary for a large-scale

DDC that runs large-scale parallel computing applications [6]. We also investigated the

impact of the network performance on the performance of the application, focusing on

the AI application to be hosted in edge µDDC [4]. As a result, we showed that the la-

tency has a large impact on the application performance while higher bandwidth than 50

Gbps is not necessary for the applications such as image recognition that require frequent

communication with small data size between CPUs and memories.

Several approaches that reduce the delay between resources in a DDC have been pro-

posed [9–11]. Gu et al. reduced processing delays during communication by using Remote

Direct Memory Access (RDMA), which allows direct access to remote memory without OS

processing [9]. Sidler et al. reduced the overhead of copying and processing of data from

remote memories by direct access to data in remote memory through a programmable

NIC [10]. Lee et al. reduced the overhead of memory management by centrally managing

remote memory by programmable network switches [11].

Architectures in a DDC have also been proposed. Zervas et al. proposed network

architecture for a DDC that uses optical circuit switches in addition to electrical packet

switches [5]. By configuring the optical circuit switches, the resources can communicate

with low latency.

Especially the DDC architecture focusing on the AI applications have been proposed
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in recent years. Kwon et al. proposed a ring network in which computing devices and

memories are connected alternately [12]. In this architecture, computing devices can access

both of the neighbor memories with low latency. They also proposed another architecture

that connects the GPU and memory with a high bandwidth link whose capacity is more

than 100 Gbps [13]. They also have solved the problem of performance limited by the

bandwidth inside the memory by providing a computing unit inside the memory although

there is a problem of high power usage. Zhu et al. construct a low-latency remote memory

by using an optical interconnect to connect the computing device to the memory [14].

Optical interconnects enable low latency communication.

The above researches assume that the paths between the resources are reserved and

cannot be used by the other applications. However, the network resources should also

be used efficiently in a µDDC. A µDDC can accommodate more applications by sharing

network resources among multiple applications. Therefore, in this thesis, we introduce a

µDDC architecture and propose a resource allocation method for the architecture that

allows the network resources shared among multiple applications.

2.2 Resource allocation method for disaggregated data center

In a disaggregated data center, resource allocation is also important. The inappropriate

allocation may cause a large delay between resources and degrades the performance of the

application. Therefore, several resource allocation methods have been proposed [6, 7]

Papaioannou et al. proposed a resource allocation method based on latency and band-

width [7]. This method allocates resources and the paths between them so that enough

CPU and memory resources are allocated and latencies between them are less than the

predefined target value.

Zervas et al. proposed a resource allocation method that minimizes the cost based

on the residual amount of resources, the bandwidth, and length of the path between

resources [6]. This method allocates resources and the paths between them so that enough

CPU and memory resources are allocated and latencies between them are less than the

predefined target value.

In this thesis, we consider a µDDC where network resources can be shared among

multiple applications to achieve efficient network resources. In this environment, commu-
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nication between a pair of resources has an impact on the communication of another pair

of resources that share the same network resources; if a pair frequently exchanges a large

amount of data, the delay on the links passed by the data increases. The above existing

methods did not consider such impacts. Some of them assume that the links between

the resources are reserved and cannot be used by other applications. The others consider

only the available bandwidths even if they allow links shared by multiple applications.

In this thesis, we model the delay within a network in a µDDC by using the queueing

theory and propose a method to allocate the resources considering the time required to

complete the processes in each application. In addition, the resources for an application

are allocated when the request to start the application arrives. However, the allocated

resources may affect the allocation of the resources to the request that will arrive in the

future; even if there are enough computation and memory resources, the network resources

required to connect them may be already used by the previous requests. This impact was

not considered in the existing methods. Therefore, we propose an approach to avoiding

using the resources that may be required for the accommodation of the future application.

In this thesis, we achieve this by defining an allocation cost for each resource including

computation, memory, and network resources based on the importance of the resource,

and allocating resources based on the costs.
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3 Disaggregated micro data center

The overview of a µDDC in this thesis is shown in Figure 2.

Figure 2: The overview of a disaggregated micro data center in this thesis

In this µDDC, CPUs, GPUs, remote memory, storage, NICs, task dispatchers, and

allocators are connected by a DC network. The NICs are used to communicate with end

devices and the cloud to provide services to users.

3.1 Components of a µDDC

3.1.1 Resources

In the µDDC, resources such as the CPU or remote memory and modules such as the

task dispatcher or allocator are connected by a network.

Computing resource (CPU, GPU) Each CPU has multiple CPU cores. Each CPU

core is allocated to an application. That is, we regard a CPU core as the unit of computing

resource. In this thesis, we assume that each CPU core has a small amount of local memory

as cache memory and uses a paging system. That is, if required data cannot be found

in the local memory, the CPU obtains the page that contains the required data from

the remote memory. When the cache becomes full, some pages are moved to the remote

memory.

Each GPU is allocated to an application. That is, we regard a GPU as the unit of

computing resource. GPUs are another type of computation resource. In the µDDC, if an
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application requires GPUs, GPUs are allocated to the application. We regard one GPU

as the unit of computation resources.

Remote memory Remote memory is a device that stores the data required by the

computational resources. In this thesis, we divide each memory into blocks and allocate

each block to an application. That is, we regard each block as a unit of memory.

Storage Storage stores the data needed to deploy the application. For example, for

an AI application, the machine learning model is copied from storage to remote memory

when the application is deployed.

NIC NICs are used to communicate with the external network. When providing a

service, it sends the processing request from the end device to the task dispatcher and

returns the processing result to the end device. Also, if the process needs to work with

the cloud, it communicates with the cloud through the NIC.

Task dispatcher A task dispatcher is deployed for each service and relays the requests

for the service to the corresponding computational resources of the service. A task dis-

patcher is allocated from the computational resources in the µDDC and is dynamically

configured as the service is provided.

Allocator The allocator has information about the µDDC network, and each time a

service deployment request arrives, it allocates resources to perform the task dispatch

process and resources to execute the application corresponding to the requested service.

3.1.2 µDDC network

The µDDC network is a network that connects resources in a µDDC. This network is con-

structed of switches and multi-core optical fibers. A multi-core optical fiber has multiple

optical fiber cores as shown in Figure 3. Each optical fiber core is regarded as a link.

That is, we have multiple links between the switches connected by a multi-core optical

fiber. In this thesis, each optical fiber core is allocated to an application but can be shared
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by multiple applications. In addition, if required, multiple fiber cores between the same

nodes can be allocated to an application.

Figure 3: The overview of multicore fiber

Switch The switch relays the packets based on the configured path for each resource pair

allocated to each application. Each switch is connected to the next switches by multi-core

optical fibers. Each optical fiber core is connected to each port of each switch. That is, a

switch relays packet by relaying it to the optical fiber core connected to the next switch

on the path.

Each switch has a buffer and can cut-through switching. That is, if the next port is

available, the switch immediately relays the packet to the next port before receiving the

whole packet. If the next port is busy, the switch stores the packet in the buffer and wait

for the next port to become ready.

In this thesis, we allow multiple fiber cores allocated to an application. In this case, if

one of the fiber cores is available, the packets are relayed to the available fiber core. Thus,

the delay in the switch can be reduced by allocating multiple fiber cores.

3.2 Allocation request

The allocation request is sent to the allocator when deploying a new service, or when

the number of users increases and more resources such as CPU and remote memory are

required to provide the service. The requests include the information of the required

resources, the process to complete each task in the application, and the acceptable process

time of the application. The allocator allocates the resources so that the process of the

application can be completed within the acceptable process time. Then the program and
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data required in this application are deployed to the allocated resources and the service is

started.

3.3 Service delivery form in µDDC

Once the application is started, the process of the application is performed as follows.

Services are provided after the application is allocated. The flow of service is :

1. A task request from the end device arrives. The request is forwarded to the task

dispatcher.

2. The task dispatcher finds available computational resources that can perform the

requested task and sends the command to the computational resources.

3. The computational resources perform the task by cooperating with the other re-

sources allocated to the application.

4. After completing the task, the computational resource sends back the results to the

end device via the NIC.

In this thesis, we assume that the deployed applications remain unless the applications

become no longer used. That is, the resources are allocated only before the application is

used for the first time. By doing so, each application can perform tasks immediately.
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4 Resource allocation method

4.1 Model of disaggregated micro data center

In this subsection, we model a µDDC network and an allocation request. Table 1 shows

notations used in this model and Table 2 shows parameters used in this model

Table 1: Notations in µDDC network and allocation requests

µDDC network

Gs(N s, Es) Set of nodes and links in the µDDC network

Cs
n Set of available computational resources located at node n ∈ N s

M s
n Set of available remote memories located at node n ∈ N s

Allocation requests

a Requested application

Sa Set of tasks in application a

Gv(Nv, Ev) Set of nodes and links in a resource graph

Gp(Np, Ep) Set of nodes and links in a process graph

cpp Index of the node corresponding to a computational resource to execute the process p on a resource graph

mp
p Index of the node corresponding to a remote memory to execute the process p on a resource graph

4.1.1 Model of disaggregated micro datacenter network

A µDDC network is represented as a graph Gs(N s, Es). N s and Es are the set of nodes

and the set of links in the µDDC network, respectively.

Node In this model, we have three types of nodes, nodes with computational resources,

nodes with memory resources, and switches. Cs
n is the set of available computational

resources on n and M s
n is the set of available memory resources on n. In addition, we

define the property of each resource. For each computational resource c ∈ Cs
n, we define

the performance value Kc defined by the number of floating-point operations per second,

and clock frequency Fc. We also define the page size of the computational resource c as

Pc.

We also define the property of switching capability. We define two properties; the

processing delay TN
n to relay a packet to the next node by cut-through, and the delay TQ

n

to send the whole packet to the next node. If the node n does not has switching capability,

we set TN
n = ∞ and TQ

n = ∞.
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Table 2: Parameters in µDDC network and allocation requests

µDDC network

TQ
n The delay to send the whole packet to the next node in node n ∈ N s

TN
n the processing delay to relay a packet to the next node by cut-through in node n ∈ N s

B Network bandwidth

Kc FLOPS of computational resource c

Fc Clock frequency of computational resource c

TP
e Propagation delay of link e ∈ Es

λs
e,n The arrival rate of packets passing through link e ∈ Es from node n ∈ N s

N core
e The number of fiber cores contained by link e ∈ Es

Wr Cost of a resource r.

We Cost of a link e ∈ Es

Pc Page size of computational resource c

Allocation requests

Ta,t Time constraints of task t ∈ Sa

λr
p Arrival rate of packets from remote memory

λw
p Arrival rate of packets to remote memory

σc
c,p The clock counts to execute process p in computational resource c

σpf
p The number of page faults to execute process p

σpn
p The number of pages transmitted per page fault to execute process p

Link In this thesis, we allocate optical fiber cores to the communication between the

resources allocated to applications. We also allow the communication between a resource

pair in an application to use multiple fiber cores. In this model, we regard all candidates

of links between nodes, including each available optical fiber core and available group of

multiple optical fiber core, as links.

Each link e ∈ Es has the following properties, the number of fiber cores N core
e and the

propagation delay of e by TP
e . All fiber cores have the same bandwidths B.

4.1.2 Model of allocation request

An allocation request is given in two graphs showing the relationship between the com-

putational resources (hereafter we call a resource graph) and showing the relationship

between the processes to execute a task of requested application (hereafter we call process

graph), as shown in Figure 4.

A resource graph is given in a graph structure Gv(Nv, Ev) where Nv and Ev are the

set of nodes and the set of links. In this graph, each node corresponds to the required
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computational or memory resources. The links are added between the nodes that require

the exchange of information.

A process graph is given in a directed graph structure Gp(Np, Ep), where Np and Ep

are the set of nodes and the set of links. Each node p ∈ Np represents a process that

is required to execute a task and has the property, the number of page faults, and the

number of pages transmitted per page fault that are obtained in advance by monitoring

the application in a test environment. By using them, we obtain the arrival rate of the

packets from the memory λr
p and the arrival rate of packets to the memory λw

p in the

process corresponding to node p ∈ Np. In addition, the resource request includes the

information on the mapping between the resource graph and the process graph. cvp and

mv
p indicate the pointer to the computational and memory resources in the resource graph

corresponding to the node p ∈ Np. Each link e ∈ Ep is a directed link indicating the order

of the process. Each path from the first process to the final process indicates the processes

required to complete the task. We denote the set of all possible paths by Sa. We call each

t ∈ Sa a task. For each task t, the information of the acceptable execution time is defined.

That is, the resources should be allocated so that all tasks can be completed within the

acceptable execution time.

18



Figure 4: The overview of resource graph and process graph

4.2 Resource allocation probelem

We propose an approach to avoiding using the resources that may be required for the

accommodation of future applications. In this thesis, we achieve this by defining an

allocation cost for each resource including computation, memory, and network resources

based on the importance of the resource. In this subsection, we define the costs of resources

and formulate the problem to allocate resources based on the costs.

4.2.1 Variables

Mapping of computational or memory resources δNi,j denotes the binary variable

indicating the mapping between the requested resources and the resources in the µDDC.

δNi,j = 1 when the resource graph node Nv
i is mapped in µDDC network node N s

j , δ
N
i,j = 0

otherwise.

Mapping of links δEi,j denotes the binary variable indicating the mapping between the

links in the requested resource graph and the links in the µDDC. δEi,j = 1 when the resource
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graph link Ev
i is mapped to µDDC network link Es

j , δ
E
i,j = 0 otherwise.

4.2.2 Costs

In this thesis, we define the costs of memory, links, and computational resources such as

CPUs and GPUs.We set the costs of resources that are required by future requests to large

values.

Cost of a computational resource High-performance computational resources are

important because they can execute applications whose acceptable process time is small

or that require large computational resources. In this thesis, the performance of a compu-

tational resource c is defined as the product of the number of available cores |Cs
Nodec

| and

the performance of the core Kc. Therefore, the cost of the computational resource c is

Wc = (|Cs
Nodec |) ·Kc (1)

where, Nodec is a node with computational resource c in µDDC network.

Cost of a remote memoy A remote memory that has a large number of available

memory blocks can accommodate a resource request that requires a large amount of mem-

ory. Thus, we set the cost of remote memory m based on the number of available remote

blocks in remote memory |M s
Nodem

|.

Wm = |M s
Nodem | (2)

where Nodem is a node with remote memory m in µDDC network.

Cost of a link When a request of application that requires large computational and

memory resources arrives, it requires the computational and memory resources whose costs

defined above are large. In addition, the network resources between the resources are also

required. Thus, we set the costs of the links between the computational and memory

resources with large costs to large values. On the other hand, a link that has already been

allocated as a path for any applications is not able to provide high-speed communication.

Thus, the cost of already allocated links is set minimal value ϵ. We define the cost of the

link e by
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We =


∑

c∈Ccand,m∈Mcand

{(
Npath

c,m (e)

Npath
c,m

)(
Wc ·Wm

shortestHop(c,m)

)}
e /∈ Ealloc

ϵ e ∈ Ealloc

(3)

where Ccand and M cand are the set of available computational resources and remote mem-

ories in the µDDC network, respectively. Ealloc is the set of links that have already been

used in other applications and Npath
c,m and Npath

c,m (e) represent the number of shortest paths

between resources c and m, and the number of shortest paths that pass through the link

e. shortestHop(c,m) is the shortest hop count between resource c and m.

4.2.3 Predicted execution time

The predicted execution time of any task t ∈ Sa of the requested application a can be

calculated as a sum of the predicted time T exe
p to complete the processes corresponding to

the nodes p ∈ Np
t in a process graph of task t. Therefore, predicted execution time T task

t

of task t is

T task
t =

∑
p∈Np

t

T exe
p (4)

T exe
p is the sum of the processing time in the computational resource and communica-

tion delay to obtain the data from a remote memory. That is

T exe
p =

|Ns|−1∑
i=0

{
δNcpp,i · T

calc
csi ,p

+ δNmv
p,i

· T delay
cvp,m

v
p,p

}
where T calc is the processing time in the computational resource and T delay is the com-

munication delay to obtain the data from a remote memory and csi is a computational

resource in Cs
i .

The processing time in computational resource The processing time T calc
c,p for

process p in computational resource c calculated by dividing the expected clock count Lc,p

required to complete the process p by the clock frequency Fc of the computational resource

c.

T calc
c,p =

σc
c,p

Fc
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Communication delay The delay required to obtain the data of one page is the sum

of the time required to obtain the head of the page from the remote memory m and the

transmission delay. That is,

T delay
c,m,p =

|Ns|−1∑
i=0

δNc,i ·
σpn
p · Pcsi

B
+ T latency

Er
c,m,p

 · σpf
p

where Er
c,m is the link between node c and m in the resource graph and T latency is the sum

of the propagation delay and the response time and csi is a computational resource in Cs
i .

T latencye,p can be obtained by the sum of the propagation delay TP and the response

time TR.

T latency
e,p =

|Es|−1∑
i=0

δEe,i

(
T p
i + TR

Ns
e,i
(λs

i,Ns
e,i

+ λr
p, N

core
i , TQ

Ns
e,i
)
)

where N s
e,i is the source node of link i when reading data from remote memory and

TR is response time when buffering occurs.

We model TR by the queuing theory. The processing speed at each switch is fixed. By

allocating multiple optical fiber cores, each packet can be relayed to any of the fiber cores

if it is available. In this thesis, assuming that packets arrive at each switch according to

the Poisson process, we model the response time by the M/D/C queuing model. However,

it is difficult to obtain an accurate response time in the M/D/C queuing model. accurate

derivation of the response time in the M/D/C queueing model is difficult. Thus, we use

the approximation [15]. The approximated response time is

TR
n (λ, c,D) = TN

n +
1

2

{
1 + fQ(λ, c, TQ

n )gQ(λ, c, TQ
n )
}
hQ(λ, c, TQ

n )

where

fQ(λ, c, TQ
n ) =

(
1− λTQ

n
c

)
(c− 1)

(√
4 + 5c− 2

)
16λTQ

n

gQ(λ, c, TQ
n ) = 1− exp

{
− c− 1

(c+ 1)fQ(λ, c, TQ
n )

}
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hQ(λ, c, TQ
n ) =

TQ
n

c
(
1− λTQ

n
c

)


(
λTQ

n

)c
c!
(
1− λTQ

n
c

)
c−1∑

i=0

(λTQ
n )c

i!
+

(
λTQ

n

)c(
1− λTQ

n
c

)
c!

−1


where the packet arrival rate is λ, the number of optical fiber cores is c, and the

processing time of a node is TQ
n .

4.2.4 Definition of the resource allocation problem

Resource mapping constraints A request graph node and a µDDC network node

have a one-to-one relationship. That is

∑m
i=0 δ

N
i,j ≤ 1∑n

j=0 δ
N
i,j = 1

(5)

Each request must be allocated to one of the available resources

|M s
j |+ |Cs

j | −
∑m

i=0 δ
N
i,j ≥ 0 (6)

Time constraints for requested applications All tasks in a requested application

must be executed within an acceptable time.

T task
t ≤ Ta,t ∀t ∈ Sa (7)

Objective In this method, we allocate resources to minimize the allocation cost of re-

sources and links.

minimize
∑|Ns|−1

i=0

∑|Nv |−1
j=0 δNi,j(Wcsj

+Wms
j
) +

∑|Es|−1
y=0

[
1∑|Ev |−1

y=0 δEx,y>0
Wesy

]
(8)

where, 1∑
x∈Ev | δ

E
x,y>0 is 1 when

∑
x∈Ev δEx,y > 0, and 0 otherwise. csj represents available

computational resource in Cs
j and ms

j represents available remote memory in M s
j .

We mesmerize the resource allocation problem as follows.
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Constraints:

∀i ∈ {0, 1, ..., |Nv| − 1}, ∀j ∈ {0, 1, ..., |N e| − 1} | δNi,j ∈ {0, 1} (9)

∀x ∈ {0, 1, ..., |Ev| − 1},∀y ∈ {0, 1, ..., |Es| − 1} | δEx,y ∈ {0, 1} (10)
m∑
i=0

δNi,j ≤ 1 (11)

n∑
j=0

δNi,j = 1 (12)

|M s
j |+ |Cs

j | −
m∑
i=0

δNi,j ≥ 0 (13)

T task
t ≤ Ta,t ∀t ∈ Sa (14)

Objective:

minimize
∑|Ns|−1

i=0

∑|Nv |−1
j=0 δNi,j(Wcsj

+Wms
j
) +

∑|Es|−1
y=0

[
1∑|Ev |−1

y=0 δEx,y>0
Wesy

]
(15)

We allocate resources by solving the above. However, this problem is a nonlinear integer

programming problem and NP-hard. One way to solve such a problem is a meta-heuristic

method. In this thesis, we use Ant Colony Optimization [16].

4.3 Resource allocation method based on ant colony optimization

We allocate resources by solving a resource allocation problem. We use ant colony opti-

mization to solve the problem. Our method is similar to the virtual network embedding

method based on the ant colony optimization (VNE-AE) [16], but is different from the

VNE-AE in the following points; (1) the cost defined in this thesis considers the future

allocation request and is different from the VNE-AE and (2) our method searches the

links so as to minimize the costs because the selection of the used links affects the cost

significantly, though the VNE-AE searches only the locations of virtual machines and uses

the shortest paths. We summarize the notations and parameters used in our method based

on the ant colony optimization as shown in Table 3 and Table 4, respectively.

Our method finds suitable resource allocation by using agents. Each agent performs

the following steps.
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Table 3: Notations used in our resource allocation method based on ant colony optimiza-

tion

Ccalc
i Set of computational resources that are candidates for allocation in agent i

Cmem
i Set of remote memory that are candidates for allocation in agent i

C link
i,n Set of links that are candidates for allocation at agent i in node n

Rbest Set of resources of the best solution for each generation

Ebest Set of links of the best solution for each generation

Table 4: Parameters in our resource allocation method based on ant colony optimization

Nant The number of agents

N itr The number of agent generations

pr Probability that resource r is allocated

pe Probability that link e is allocated

τ Pheromones associated with resources and links

α Pheromone weight

β Cost weight

ρ Pheromone decrease rate

φ Pheromone increase rate

• Resource search phase: The agent searches the available resources to be allocated to

the node in the requested resource graph. After finding resources for all nodes, the

agent goes to the Link search phase.

• Link search phase: The agent searches the links to be allocated to the links in the

requested resource graph. To search the links, the agent generates Nant sub-agents

that search the links. After finding all required links, the agent goes to the Update

phase.

• Update phase: The agent updates the pheromone based on the find resources and

links.

After continuing the above steps N itr times, we find the best allocation whose costs are

25



the smallest.

4.3.1 Resource search phase

In the resource search phase, an agent searches the computational and memory resources.

The agent selects one of the nodes in the requested resource graph whose corresponding

resources are not allocated. Then, the agent selects the resources to be allocated for the

selected node based on the probabilities pc for the computational resource and pm for the

memory. We set pc and pm by

pc =
ταc

(
1

Wβ
c

)
∑

c∈Ccalc
i

[ταc

(
1

Wβ
c

)
]

(16)

pm =
ταm

(
1

Wβ
m

)
∑

m∈Cmem
i

[ταm

(
1

Wβ
m

)
]

(17)

where α and β are the relative importance of pheromone and cost, respectively. In the

resource search phase, the above steps to select resources are repeated until resources for

all nodes are found.

4.3.2 Link search phase

In the link search phase, the agent searches the links between resources selected in the

resource search phase. To search the links, the agent generates Nant sub-agents.

Each sub-agent selects one of the links in the requested resource graph whose corre-

sponding paths in the µDDC have not been found. Then it searches the paths in µDDC

for the selected link. The paths are searched from the source resource; the link from the

source resource is first selected, and then the next link from the destination of the first link

is selected. This process is continued until the link to the destination resource is found.

At each step, the link is selected based on the probabilities pe,n defined for all candidates

links from the node n.

pe,n =
ταe

(
1

Wβ
e

)
∑

e∈Clink
i,n

[
ταe

(
1

Wβ
e

)] (18)

where α and β represent the relative importance of pheromone and cost, respectively.
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4.3.3 Upadate pheromone

After finding the resources, the agent updates pheromone. The pheromone is updated

based on pheromone decrease rate ρ (0 < ρ < 1) . The pheromones of the resources

and links of the best solution for each generation are enhanced based on the pheromone

increase rate φ. The pheromone τr of any resource r in the µDDC network is updated by

τr =


ρτr +

ϕ∑
x∈Rbest Wx +

∑
e∈Ebest We

r ∈ Rbest

ρτr r /∈ Rbest

(19)

The pheromone τe of any link e in the µDDC network is also updated by

τr =


ρτe +

ϕ∑
x∈Rbest Wx +

∑
e∈Ebest We

e ∈ Ebest

ρτe e /∈ Ebest

(20)
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5 Evaluation

In this section, we evaluate our method by simulation.

5.1 Comparison with optimum allocation

In this subsection, we compare the resource allocation by our method with the optimum

resource allocation.

µDDC network We use a small µDDC network shown in Figure 5. Each computational

resource has 5 cores and each memory has 250 memory blocks. Each optical fiber has one

optical fiber core. The other parameters are set to the values shown in Table 5.

Figure 5: 2× 3 grid µDDC network

Table 5: Parameters setting of µDDC network

Parameters Value

CPU FLOPS 13.619GFLOPS

Propagation delay 0.025µs

Switch latency when buffering 3 µs

Cut-through latency 300ns

Page size 4KB

Bandwidth of each core 50Gbps

Resource request In this evaluation, we generate three types of resource requests

shown in Table 6. We generate the sequence of the resource requests by generating the

requests at each time slot based on the probabilities shown in Table 7.
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Table 6: Parameters setting of resource requests for comparison with optimum allocation

Request 1 Request 2 Request 3

Time constraint 3000ms 500ms 250ms

Required computing resources 3 5 5

Required remote memories 3 5 5

Process 1

Clock count 0.035 0.035 0.035

The arrival rate of the packets to remote memory per 1ms 0.00066 0.004 0.01

The arrival rate of the packets from remote memory per 1ms 0.00066 0.004 0.01

Process 2

Clock count 0.054 0.054 0.054

The arrival rate of the packets to remote memory per 1ms 0 0 0

The arrival rate of the packets from remote memory per 1ms 0.00066 0.004 0.01

Process 3

Clock count 2371.33 1960.36 1960.36

The arrival rate of the packets to remote memory per 1ms 3.74 3.8 3.8

The arrival rate of the packets from remote memory per 1ms 7.42 6.86 6.86

The number of page faults 67543.25 56661.29 56661.29

The number of pages transferred per page fault 5.27 4.84 4.84

Table 7: Parameters setting for generating resource requests

Request sequence p1 p2 p3

Request sequence 1 0.8 0.1 0.1

Request sequence 2 0.4 0.2 0.4

Request sequence 3 0.1 0.1 0.8

Resource allocation methods In this subsection, we run our resource allocation

method by setting the parameter to the values shown in Table 8. We also use a method

to find the optimum solution in addition to our resource allocation method based on the

ant colony optimization. In this method, we find the optimum solution to the problem

formulated in Section 4.2.4 by brute force search.
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Table 8: Parameter settings of proposed resource allocation method

Parameters Value

Number of agents searching for resources 20

Number of agents searching for routes 20

Number of agent generations 20

Pheromone decay rate 0.1

Pheromone enhancement rate 100

Pheromone weight 2

Allocation cost weight 1

Initial pheromone value 1000

5.1.1 Results

Table 9 shows the average number of rejections for each request sequence. Table 10 shows

the maximum and minimum amount of allocated computational resources for each request

sequence

Table 9: Average number of rejections for each request sequence

Request sequence Optimal solution of our Solution derived by Theoretical

resource allocation problem ant colony optimization optimal solution

Request sequence 1 0 0 0

Request sequence 2 0 0 0

Request sequence 3 0 0 0
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Table 10: Maximum and minimum amount of allocated computational resources for each

request sequence

Request sequence Optimal solution of our Solution derived by Theoretical

resource allocation problem ant colony optimization optimal solution

max value min value max value min value max value min value

Request sequence 1 15 13 15 13 15 13

Request sequence 2 15 13 15 13 15 13

Request sequence 3 15 13 15 13 15 13

The results indicate that all methods allocate almost all computational resources with-

out any rejection. That is, our method allocates the resources effectively even though it

uses only the information of the current request. These results also indicate that the

method based on the ant colony optimization achieves similar results to the optimal solu-

tion.

5.2 Evaluation of resource allocation method considering future appli-

cation requests

We evaluate the proposed method by comparing our method with the method that al-

locates resources to achieve the best performance of the requested application without

considering future application requests.

5.2.1 Evaluation environment

µDDC network We use a 3 × 3 two-dimensional torus network as shown in Figure

6. Each computational resource has 18 cores and each remote memory has 250 memory

blocks. Each optical fiber has 4 optical fiber cores. The other parameters are shown in

Table 5.

Resource request Similar to Section 5.1, we generate three types of resource requests

but we change the resources required by each application. In this subsection, we simulate

three cases of the required resources:

• Environment 1: the case that all applications require the same amount of resources
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• Environment 2: the case that request 1 requires a large amount of resources.

• Environment 3: the case that request 3 has a large amount of resources.

We generate the sequence of the resource requests by generating the requests every minute

based on the probabilities shown in Table 7.

In all cases, all applications end 60 minutes after the beginning of the application. We

evaluated the cases that the probability of a request arriving per minute is 15% and 30%.

Figure 6: 3× 3 two-dimensional torus µDDC network

Table 11: Parameters setting of resource requests

Request 1 Request 2 Request 3

Time constraint 3000ms 500ms 150ms

Required computational resources(Environment 1/ 2/ 3) 4/7/4 4/4/4 4/4/7

Required remote memories(Environment 1/ 2/ 3) 4/7/4 4/4/4 4/4/7

Process 1

Clock count 0.035 0.035 0.035

The arrival rate of the packets to remote memory per 1ms 0.000495 0.003 0.0075

The arrival rate of the packets from remote memory per 1ms 0.000495 0.003 0.0075

Process 2

Clock count 0.054 0.054 0.054

The arrival rate of the packets to remote memory per 1ms 0 0 0

The arrival rate of the packets from remote memory per 1ms 0.000495 0.000495 0.0075

Process 3

Clock count 2371.33 1960.36 1960.36

The arrival rate of the packets to remote memory per 1ms 2.805 2.85 2.85

The arrival rate of the packets from remote memory per 1ms 5.565 5.145 5.145

The number of page faults 67543.25 56661.29 56661.29

The number of pages transferred per page fault 5.27 4.84 4.84
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5.2.2 Compared method

In this evaluation, we simulate this method by changing the cost of our method as follows.

The computational resources with higher FLOPS values have higher performance. There-

fore, this method uses the cost of the computational resources defined by

Wc =
1

Kc

In this evaluation, all remote memory has the same access speed. Therefore, this

method uses the cost of remote memory defined by

Wm = 1

The latency on the link with low utilization is small. Therefore, this method uses the

cost defined by

We,n =
λs
e,n

N core
e

We also obtain the results for this method by using ant colony optimization similar to

our method.

5.2.3 Results

In this evaluation, the application requests whose requirements cannot be satisfied are

rejected. Figures 7 shows the cumulative number of rejections for each environment and

Table 12 shows the number of rejections from the start to the end of the simulation in

a case that the probability of a request arriving per minute is 15%. Figures 8 shows the

cumulative number of rejections for each environment and Table 13 shows the number of

rejections from the start to the end of the simulation in the case that the probability of a

request arriving per minute is 30%.
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(a) Request sequence 1(Envi-
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(b) Request sequence 2(Envi-

ronment 1)
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(c) Request sequence 3(Envi-

ronment 1)
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(d) Request sequence 1(Envi-

ronment 2)
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(e) Request sequence 2(Envi-

ronment 2)
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(f) Request sequence 3(Envi-

ronment 2)
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(g) Request sequence 1(Envi-

ronment 3)
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(h) Request sequence 2(Envi-

ronment 3)
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(i) Request sequence 3(Envi-

ronment 3)

Figure 7: The cumulative number of rejections of our method and compared method

(Request arrival rate per minute: 15%)
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(d) Request sequence 1(Envi-

ronment 2)
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(e) Request sequence 2(Envi-

ronment 2)
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ronment 2)

0 50 100 150 200 250 300
Timeslot

0

10

20

30

40

50

Cu
m

ul
at

iv
e 

re
je

ct
io

ns

Resource allocation considering future requests
Resource allocation considering current request performance

(g) Request sequence 1(Envi-

ronment 3)

50 100 150 200 250 300
Timeslot

0

10

20

30

40

50

Cu
m

ul
at

iv
e 

re
je

ct
io

ns

Resource allocation considering future requests
Resource allocation considering current request performance

(h) Request sequence 2(Envi-

ronment 3)
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(i) Request sequence 3(Envi-

ronment 3)

Figure 8: The cumulative number of rejections of our method and compared method

(Request arrival rate per minute: 30%)
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Table 12: The number of rejections of our method and compared method from the start

to the end of the simulation (Request arrival rate per minute: 15%)

Allocation considering future requests Allocation considering only request performance

Request1 Request2 Request3 Request1 Request2 Request3

Environment 1

Request sequence1 0 0 0 0 0 0

Request sequence2 0 0 0 0 0 0

Request sequence3 0 0 0 0 0 0

Environment 2

Request sequence1 0 0 0 0 0 0

Request sequence2 0 0 0 0 0 0

Request sequence3 0 0 0 0 0 0

Environment 3

Request sequence1 0 0 0 0 0 0

Request sequence2 0 0 0 0 0 6

Request sequence3 0 0 0 0 0 7

Table 13: The number of rejections of our method and compared method from the start

to the end of the simulation (Request arrival rate per minute: 30%)

Allocation considering future requests Allocation considering only request performance

Request1 Request2 Request3 Request1 Request2 Request3

Environment 1

Request sequence1 0 0 0 0 0 0

Request sequence2 0 0 0 0 0 0

Request sequence3 0 0 0 0 0 0

Environment 2

Request sequence1 0 0 0 0 0 0

Request sequence2 0 0 0 0 0 0

Request sequence3 0 0 0 0 0 0

Environment 3

Request sequence1 0 0 0 0 0 1

Request sequence2 0 0 6 0 0 16

Request sequence3 0 0 6 0 0 40

The proposed method did not cause any rejection in all environments in the case where

the request arrival rate per minute is 15%. The method without considering future requests
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could not allocate resources to all requests when request 3 requires a large amount of

resources, regardless of the request arrival rate per minute. The rejection of the compared

method was equal to or greater than that of the proposed method in all cases. That is, our

method can allocate resources even in the case that the method that allocates resources

without considering future requests cannot allocate resources. This difference is caused

by the available resources when request 3 arrives. The method without considering future

requests allocates resources to achieve the best performance for the requested application.

As a result, enough resources for request 3 that requires a large amount of resources and

whose acceptable execution time is small do not exist. On the other hand, our method

avoids using the resources that are required by future requests. As a result, our method

can allocate request 3.

The results also indicate that our method also rejects some requests when the appli-

cation 3 requires a large amount of resources and arrives frequently. This is because the

utilization of the resources is quite high and the application request can be accepted only

when some applications end and free the resources. That is, µDDC should be deployed so

that too high utilization of resources can be avoided.

5.3 Impact of sharing links

In this thesis, we allow multiple applications to share the same optical fiber core. In

addition, we also allow one application to use multiple optical fibers if required. We

evaluate the impact of these policies on applications accommodations.

5.3.1 Evaluation environment

µDDC network We use 3×3 two dimensional torus network similar to Section 5.2. We

use the same parameter as Section 5.2.

Resource request We generate three types of requests similar to Section 5.2. Each

type of request requires the resources as shown in Table 11. We generate the sequence of

the resource requests by generating the requests every minute based on the probabilities

shown in Table 7. In all cases, all applications end 60 minutes after the beginning of

the application. We evaluated sharing links in the case that the probability of a request
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arriving per minute is 30%, where many requests arrive because we investigate how the

link usage policy affects the capacity of the network.

Compared policies We compare the following policies.

• Link share and integration: In this policy, we allow multiple applications to share

the same fiber core. In addition, we also allow applications to use integrated links

constructed of multiple optical fiber cores.

• Link sharing without integration: In this policy, we allow multiple applications to

share the same fiber core but we do not construct the integrated links.

• Exclusive: We allow only a single application to use an optical fiber core.

5.3.2 Results

Figures 9 shows the cumulative number of rejections for each environment. Table 14 shows

the number of rejections from the start to the end of the simulation.

38



0 50 100 150 200 250 300
Timeslot

0

5

10

15

20

25

30

35

40
Cu

m
ul
at
iv
e 
re
je
ct
io
ns

Allow link sharing and integration
Link occupancy
Not integrate links

(a) Request sequence 1(Envi-

ronment 1)

50 100 150 200 250 300
Timeslot

0

5

10

15

20

25

30

35

40

Cu
m
ul
at
iv
e 
re
je
ct
io
ns

Allow link sharing and integration
Link occupancy
Not integrate links

(b) Request sequence 2(Envi-

ronment 1)

0 50 100 150 200 250 300
Timeslot

0

5

10

15

20

25

30

35

40

Cu
m
ul
at
iv
e 
re
je
ct
io
ns

Allow link sharing and integration
Link occupancy
Not integrate links

(c) Request sequence 3(Envi-

ronment 1)

0 50 100 150 200 250 300
Timeslot

0

5

10

15

20

25

30

35

40

Cu
m
ul
at
iv
e 
re
je
ct
io
ns

Allow link sharing and integration
Link occupancy
Not integrate links

(d) Request sequence 1(Envi-

ronment 2)

50 100 150 200 250 300
Timeslot

0

5

10

15

20

25

30

35

40

Cu
m
ul
at
iv
e 
re
je
ct
io
ns

Allow link sharing and integration
Link occupancy
Not integrate links

(e) Request sequence 2(Envi-

ronment 2)

0 50 100 150 200 250 300
Timeslot

0

5

10

15

20

25

30

35

40

Cu
m
ul
at
iv
e 
re
je
ct
io
ns

Allow link sharing and integration
Link occupancy
Not integrate links

(f) Request sequence 3(Envi-

ronment 2)

0 50 100 150 200 250 300
Timeslot

0

5

10

15

20

25

30

35

40

Cu
m
ul
at
iv
e 
re
je
ct
io
ns

Allow link sharing and integration
Link occupancy
Not integrate links

(g) Request sequence 1(Envi-

ronment 3)

50 100 150 200 250 300
Timeslot

0

5

10

15

20

25

30

35

40

Cu
m
ul
at
iv
e 
re
je
ct
io
ns

Allow link sharing and integration
Link occupancy
Not integrate links

(h) Request sequence 2(Envi-

ronment 3)

0 50 100 150 200 250 300
Timeslot

0

5

10

15

20

25

30

35

40

Cu
m
ul
at
iv
e 
re
je
ct
io
ns

Allow link sharing and integration
Link occupancy
Not integrate links

(i) Request sequence 3(Envi-

ronment 3)

Figure 9: The cumulative number of rejections for each link usage policy
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Table 14: The number of rejections for each link usage policy from the start to the end of

the simulation

Allowing for link Prohibiting link Prohibiting only

sharing and integration sharing and integration link integration

Request1 Request2 Request3 Request1 Request2 Request3 Request1 Request2 Request3

Environment 1

Request sequence1 0 0 0 22 1 1 0 0 0

Request sequence2 0 0 0 12 1 6 0 0 3

Request sequence3 0 0 0 0 3 23 0 0 16

Environment 2

Request sequence1 0 0 0 27 0 2 7 0 0

Request sequence2 0 0 0 16 0 6 6 0 14

Request sequence3 0 0 0 0 4 22 1 1 18

Environment 3

Request sequence1 0 0 0 19 2 4 0 0 2

Request sequence2 0 0 6 3 1 16 0 1 16

Request sequence3 0 0 6 0 1 24 0 0 15

The results indicate that link sharing increases the number of applications that can be

allocated. That is, the effective use of the network resource is required to accommodate

more applications. In addition, the results indicate that the integrated links also increase

the number of accommodated applications. This is caused by the reduction of latency by

integrating links. As a result, even the requests whose acceptable execution time is short

can be accepted.

5.4 Impact of using multi-core fibers

In this thesis, we regard each core as an independent link. But multi-core fibers can be

used as a link with large bandwidth. In this section, we investigate the impact of the

usage of multi-core fibers.

5.5 Evaluation environment

µDDC network We use the same network structure as Section 5.2. But we change the

number of optical fiber cores in each multi-core fiber and bandwidth of each optical fiber

core as shown in Table 15. The total bandwidth of each multi-core optical fiber is the
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same for all cases.

Resource request We generate the same resource requests as Section 5.3.

Compared environment The four cores of the multicore fiber of the evaluation net-

work in Figure 6 are compared for the following cases:

• Environment in which all four cores can be controlled independently

• Environment in which two cores in a multicore fiber are bundled together and the

number of links between each node is 2.

• Environment in which all cores are used together as a single high bandwidth link

Table 15: Bandwidth and the number of links between each node in each evaluation

environment

Network with Network with Network with

4 links between nodes 2 links between nodes 1 link between nodes

The number of links between nodes 4 2 1

Bandwidth 50Gbps 100Gbps 200Gbps

Figure 10 shows the cumulative number of rejections for each environment and Table 16

shows the number of rejections from the beginning to the end of the simulation.
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Figure 10: The cumulative number of rejections for each environment
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Table 16: The number of rejections for each environment from the start to the end of the

simulation

4 links between nodes 2 links between nodes 1 links between nodes

Request1 Request2 Request3 Request1 Request2 Request3 Request1 Request2 Request3

Environment 1

Request sequence1 0 0 0 0 0 1 10 2 7

Request sequence2 0 0 0 5 3 17 16 6 26

Request sequence3 0 0 0 1 0 44 1 4 64

Environment 2

Request sequence1 0 0 0 46 0 4 62 0 5

Request sequence2 0 0 0 15 3 23 20 6 31

Request sequence3 0 0 0 1 3 46 2 3 66

Environment 3

Request sequence1 0 0 0 0 0 7 10 2 7

Request sequence2 0 0 6 1 1 26 8 4 31

Request sequence3 0 0 6 1 1 58 0 2 72

The results indicate that a large number of optical fiber cores increases the number of

accommodated applications even if the bandwidth of each fiber core is small. Even if a

bandwidth of a link becomes large, if each optical fiber has only one core, all applications

that use the fiber share the same link. On the other hand, if we have multiple fiber cores,

an application that requires low latency communication can use a different link from the

other applications that do not require low latency communication.
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6 Conclusion

We proposed a resource allocation method that avoids the use of resources that may be

required for the accommodation of future applications. In this method, we defined an

allocation cost for each resource based on the importance of the resource and allocate

resources based on the costs.

We evaluated our resource allocation method by simulation. The results showed that

our method can allocate requested resources even in the case that the method that allocates

resources without considering future requests cannot allocate more than 10% of requested

resources. We also demonstrated that we can accommodate more applications by allowing

multiple applications to use the same optical fiber core and allowing each communication

to use multiple optical fibers if necessary. By allowing them, we could reduce the number

of requests whose requirements cannot be satisfied by 2/3.

In our evaluation, we used a small 2-D torus network in evaluation. Evaluation of our

method in a large µDDC is one of our future work. In addition, the network topology

affects the performance of µDDC. Thus, we will also investigate the structure of µDDC

including the network topology and the location of resources, considering the resource

allocation in our future work.

44



Acknowledgments

We would like to thank Professor Masayuki Murata of the Graduate School of Information

Science and Technology at Osaka University. He took time for me and gave me good advice

and suggestions for my research. It has been a great help to me in my research. I would

like to thank him again.

I would also like to express my sincere appreciation to Associate Professor Yuichi

Ohsita of the Graduate School of Information Science and Technology, Osaka University.

He advised me not only on my research but also on many other aspects as a researcher. I

could not have completed this thesis without his advice.

I would also like to show great appreciation to Associate Professor Shin’ichi Arakawa

of Graduate School of Information Science and Assistant Professor Daichi Kominami of the

Graduate School of Information Science and Technology, Osaka University and Assistant

Professor Tatsuya Otoshi of the Graduate School of Economics, Osaka University. Their

support in conducting my research daily was essential to me. I received a lot of support

in various aspects of my research.

Finally, I would like to thank all the members of the Advanced Network Architec-

ture Research Laboratory at the Graduate School of Information Science and Technology,

Osaka University, for creating a comfortable daily research environment and for their

discussions and advice.

45



References

[1] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, “Potentials, trends, and prospects

in edge technologies: Fog, cloudlet, mobile edge, and micro data centers,” Computer

Networks, vol. 130, pp. 94–120, Jan. 2018.

[2] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker, “Network support for

resource disaggregation in next-generation datacenters,” in Proceedings of the Twelfth

ACM Workshop on Hot Topics in Networks, Nov. 2013, pp. 1–7.

[3] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Ratnasamy,

and S. Shenker, “Network requirements for resource disaggregation,” in Proceedings of

12th USENIX Symposium on Operating Systems Design and Implementation (OSDI

16). Savannah, GA: USENIX Association, Nov. 2016, pp. 249–264.

[4] A. Ikoma, Y. Ohsita, and M. Murata, “Impact of remote memory and network per-

formance on execution performance of disaggregated micro data centers,” in Proceed-

ings of 2021 International Conference on Emerging Technologies for Communications,

Dec. 2021, pp. C2–2.

[5] R. Lin, Y. Cheng, M. D. Andrade, L. Wosinska, and J. Chen, “Disaggregated data

centers: Challenges and trade-offs,” IEEE Communications Magazine, vol. 58, no. 2,

pp. 20–26, 2020.

[6] G. Zervas, H. Yuan, A. Saljoghei, Q. Chen, and V. Mishra, “Optically disaggregated

data centers with minimal remote memory latency: Technologies, architectures, and

resource allocation [invited],” Journal of Optical Communications and Networking,

vol. 10, no. 2, pp. A270–A285, 2018.

[7] A. D. Papaioannou, R. Nejabati, and D. Simeonidou, “The benefits of a disaggregated

data centre: A resource allocation approach,” in Proceedings of 2016 IEEE Global

Communications Conference (GLOBECOM), Dec. 2016, pp. 1–7.

[8] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in

optical technologies for data centers: a review,” Optica, vol. 5, no. 11, pp. 1354–1370,

46



Nov 2018. [Online]. Available: http://www.osapublishing.org/optica/abstract.cfm?

URI=optica-5-11-1354

[9] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient memory disaggre-

gation with infiniswap,” in 14th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 17). Boston, MA: USENIX Association, Mar. 2017, pp.

649–667.

[10] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso, “Strom: Smart remote

memory,” in Proceedings of the Fifteenth European Conference on Computer Systems,

ser. EuroSys ’20. New York, NY, USA: Association for Computing Machinery, 2020.

[11] S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and A. Bhattacharjee, “Mind:

In-network memory management for disaggregated data centers,” in Proceedings of

the ACM SIGOPS 28th Symposium on Operating Systems Principles, ser. SOSP

’21. New York, NY, USA: Association for Computing Machinery, 2021, p. 488–504.

[Online]. Available: https://doi.org/10.1145/3477132.3483561

[12] Y. Kwon and M. Rhu, “A disaggregated memory system for deep learning,” IEEE

Micro, vol. 39, no. 5, pp. 82–90, 2019.

[13] Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-memory processing

architecture for embeddings and tensor operations in deep learning,” in Proceedings

of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, ser.

MICRO ’52. New York, NY, USA: Association for Computing Machinery, 2019, p.

740?753. [Online]. Available: https://doi.org/10.1145/3352460.3358284

[14] Z. Zhu, G. Di Guglielmo, Q. Cheng, M. Glick, J. Kwon, H. Guan, L. P. Carloni,

and K. Bergman, “Photonic switched optically connected memory: An approach

to address memory challenges in deep learning,” Journal of Lightwave Technology,

vol. 38, no. 10, pp. 2815–2825, 2020.

[15] T. Kimura, “Approximations for multi-server queues: System interpolations,” Queue-

ing Systems, vol. 17, pp. 347–382, 1994.

47



[16] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “VNE-AC: Virtual network

embedding algorithm based on ant colony metaheuristic,” in Proceedings of 2011

IEEE International Conference on Communications (ICC), Jun. 2011, pp. 1–6.

48


