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Abstract

A key to achieving advanced safety in autonomous vehicles is to perceive and under-

stand the surrounding environment using many sensors equipped in the vehicle. However,

because the sensors rely on the visibility of the vehicle, there are limitations to understand-

ing the environment. Therefore, dynamic information sharing among vehicles is important

to achieve sophisticated safety, in addition to the self-perception of the vehicle. Cellular

vehicle-to-everything (C-V2X) using multi-access edge computing has attracted attention

as a method to share information among vehicles and provide centralized safety validation

of traffic. Particularly, in safety uses, such as collision detection at an intersection, it is

essential to predict the uncertain position of vehicles with a probabilistic process, such

as a Markov chain. However, the calculation time of the existing method is too large to

meet real-time requirements. In this paper, we developed a probabilistic collision detection

method for an edge-computing environment with a cellular system. For this purpose, we

modified the existing probabilistic collision detection method. We reduced the calculation

time to predict the probability distribution of a vehicle state by utilizing the prediction

error between the current state and the predicted state. Furthermore, we implemented

a simple simulation to evaluate the capacity of the edge server to handle vehicles and

demonstrate that our method can handle more vehicles. Finally, we implement a MEC-

based collision detection system with private 5G and driving simulator to evaluate the

collision detection performance. As the evaluation result, the proposed method notifies all

of the potential collision risks beforehand which is enough to stop the vehicles, whereas

the existing method fails to notify more than 80% of the risks.
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1 Introduction

With the advancements in machine learning and its underlying computing equipment, self-

driving vehicles have attracted significant attention. According to Ref. [1], there are six

levels of vehicle autonomy, including no automation, driver assistance, and full automation.

A key to achieving advanced safety in autonomous vehicles is to perceive and understand

the environment surrounding a vehicle using sensors, such as cameras and LiDAR equipped

in vehicles [2]. However, because sensors rely on visibility from the vehicle, there are

limitations in understanding the environment, for example, a blind intersection with poor

visibility [3]. Therefore, information sharing among vehicles is important for achieving

sophisticated safety in addition to the self-perception of the vehicle [4–6].

In particular, in safety use cases, dynamic information, such as vehicle position and

velocity, must be transmitted and processed at low latency [7]. The combination of multi-

access edge computing (MEC) and cellular vehicle-to-everything (C-V2X) is considered

a method to realize real-time requirements [8]. C-V2X using MEC is a system in which

vehicles exchange information through a cellular system. A typical application of C-V2X

using MEC is collision detection, in which vehicles send information about their position

and velocity to an edge server located at the edge of the cellular system [9]. The edge

server analyzes the information from many vehicles, calculates the crash probability of

vehicles, and then sends the probability back to the vehicles if necessary [10]. The problem

with C-V2X using MEC is the increase in processing delay at the edge server owing to

limited computing resources [11]. In Ref. [12], the collision detection algorithm running

on an edge server was proposed based on a linear prediction of vehicle trajectories [12].

That is, the edge server detects collisions between vehicles, assuming that vehicles are

moving at the same velocity within the prediction horizon. Although the computational

complexity of the algorithm is O(n), where n is the number of vehicles that the edge server

handles, the behavior of actual vehicles is not always linear owing to their acceleration and

braking by human drivers or by unmanned/self-perceiving vehicles. To realize collision

detection considering the behavior of actual vehicles, it is necessary to predict the future

position of a vehicle based on its acceleration and braking tendencies. As the position

of vehicles differs according to various factors, such as the degree of acceleration and/or
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road geometry, we take a probabilistic approach based on the Markov chain to predict

the position of an actual vehicle. In this approach, the probability distribution of vehicle

positions is calculated based on a model that represents how a vehicle changes acceleration

and braking and is useful because the crash probability is easily calculated based on the

probability distribution of vehicle positions.

In this paper, we developed a probabilistic collision detection method with a low pro-

cessing delay for an edge computing environment with a cellular system. For this purpose,

we modified the existing probabilistic collision detection method proposed in Ref. [13].

The existing method was developed for autonomous vehicles, which always have a planned

trajectory, to detect other vehicles on the planned trajectory. In our scenario, collision

detection is not executed on an autonomous vehicle but on an edge server. This dis-

cretization level causes a problem in that the execution time of the existing method is too

long to detect collisions between vehicles because the number of vehicles an edge server

handles is larger than that of an autonomous vehicle. To solve this problem, we propose a

method for reducing the execution time of collision detection. We reduced the calculation

time to predict the probability distribution of a vehicle state by utilizing the prediction

error between the current state and predicted state. Then, we implement MEC-based

collision detection system with private 5G and driving simulator and evaluate the collision

detection method of our method.

The remainder of this paper is organized as follows: In Section 2, we describe the

MEC-based collision detection application used in this study. In Section 3, we describe the

existing/proposed method for predicting the probability distribution of a vehicle position.

In Section 4, we describe the existing method to represent future collision risk, the problem

of the method, and propose a method to solve the problem. In Section 5, we evaluate the

proposed method with driving simulator and MEC environment based on private 5G. In

Section 6, we present the conclusions of this paper.
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2 MEC-Based Collision Detection

A MEC-based collision detection application is used to prevent collisions between vehicles

at an intersection with poor visibility in the base station area. A centralized analysis of

traffic on the edge server enables the detection of the potential threat of collision outside

the vehicle’s sensor range. Vehicles running in the base station area provide the edge

server with state information via a cellular network in a constant period. The details of

the application are as follows.

2.1 Vehicle-Side Behavior

Once a vehicle enters the base station area, it starts to send state information to the edge

server. State information includes the position and velocity of the vehicle. The vehicle

sends state information every Ts [s]. When the vehicle is on a collision course with another

vehicle, the vehicle receives a warning message from the edge server and avoids collision.

For the avoidance behavior, only braking is assumed for simplicity because the scope of

this study is to develop a probabilistic collision detection method that has a sufficiently

low latency to be compatible with a MEC-based collision detection application. A more

complicated coordinated avoidance algorithm using the predicted probability distributions

of vehicle positions is a future work.

2.2 Edge-Server-Side Behavior

The edge server receives state information from all vehicles in the base station area. On

the edge server, collision detection is executed at every Tc [s] based on state information.

The targets of collision detection are vehicles approaching each intersection within LC [m].

The collision probability is calculated based on the state probability distribution, which

is calculated using existing or proposed methods. When a collision is detected, a warning

message is sent to the vehicle during the collision course.
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Figure 1: Definition of transition probability

3 Tracking Probabilistic Vehicle Position at MEC

3.1 Overview Of Probabilistic Prediction With MEC

The probability distributions of vehicles in the base station area are calculated and prevent

vehicles from colliding with each other since a vehicle comes into the base station area

until it goes out of the area. When a vehicle enters the base station area, the vehicle

starts to send state information to the edge server and the probability distribution is

calculated. After that, the vehicle keeps on sending the state information in a constant

interval, and the probability distribution is updated with the prediction error. When the

vehicle approaches an intersection in the base station area, collision detection is executed

on the edge server, and the warning message is sent to the vehicle if a collision is detected.

3.2 Spatio-temporal Distributions for Probabilistic Vehicle Positions

The crash probability between vehicles is derived by the probability of a spatiotempo-

ral overlap of vehicle positions. The probabilistic spatiotemporal distributions of vehicle

positions are calculated using a Markov chain model that considers the acceleration and

braking of vehicles. The probabilistic spatiotemporal distributions of vehicle positions

represent stochastic reachable sets of vehicles within the prediction horizon and are useful

for determining an unsafe set for each vehicle and coordinating the vehicle’s behavior.
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3.3 Calculation of Probabilistic Vehicle Positions with Markov-Chain

The probability distribution of a vehicle is calculated for discrete time tk (k = 1, 2, · · · , f)

where T = tk+1 − tk is the time step of the Markov chain, t0 is the time when the vehicle

sends information about the position and velocity of the vehicle in the path coordinate

axis, and tf is the time to predict. Note that the lateral perturbations of a vehicle are not

calculated with a Markov chain but are given as a pre-defined distribution. The state of

the vehicles is represented by a pair of positions and vehicles in the Markov chain, and

the state vector at tk+1, p(tk+1), is

p(tk+1) = Γ · Φ(T ) · p(tk). (1)

Here, Γ is the transition matrix of the acceleration input that models how the acceleration

input changes. Γ is calculated for each state and models human driver or vehicle system

does not change the acceleration input sharply. Input transition probability differ from a

road to another because of road geometry such as curvature. Each element in the matrix

represents the transition probability of the acceleration input. Φ is the state transition

matrix of a vehicle that models how the position and velocity of the vehicle change. Figure

1 shows the definition of state transition probability. The transition probability between

a state to another is defined as the propotion of the intersection between the reachable set

of the current state and next state.

Eq. 1 is repeatedly calculated until the autonomous vehicle obtains p(tf ). For collision

detection, The probability distribution for the time interval p([tk, tk+1]) is also calculated

using Eq. 2.

p([0, tk+1]) = Φ([0, T ]) · p(tk) (2)

Then, the probability distributions of vehicle position in the path coordinate is ex-

tracted. The probability that a vehicle is in a discrete position or path segment Se is

calculated as the summation of state probabilities whose position field is Se using Eq. 3.

ppathe ([tk, tk+1]) :=
∑
m

P (s ∈ Se, v ∈ Vm, t ∈ [tk, tk+1]) (3)

Finally, the probabilistic spatiotemporal distributions of vehicle positions are obtained

by integrating the distribution ppath calculated above and the lateral distribution pdev
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defined as a constant piecewise function. The probability that the vehicle center is at

path segment Se and lateral segment Df is calculated using Eq. 4.

pposef ([tk, tk+1]) = ppathe · pdevf (4)

3.4 Updating Probabilistic Vehicle Positions with Prediction Error

The calculation of the probability distribution should be executed in a low processing

delay. However, this method requires a large processing time. Therefore, we developed a

method to update a probability distribution with the prediction error.

Our basic idea of modifying C-V2X is to update the state probability from the previ-

ously calculated state probability. When the existing method is applied to C-V2X, upon

receiving the position and velocity of the vehicle, Eq. 1 is repeatedly calculated until

the time reaches tf . Let us assume that the edge server calculates and holds [p(tk), · · ·,

p(tk+f )] at tk−1. When the edge server receives the latest position and velocity p′(tk) at

tk, the state probability is updated as

p′(tk+m) = p(tk+m) + (Γ · Φ(T ))m · (p′(tk)− p(tk)), (5)

for m=1, . . ., f , and p′(tk+f+1) is calculated as Γ · Φ(T ) · p′(tk+f ). Fig. 2 describes

the compaction process in Eq. 5. The terms p′(tk) − p(tk) in Eq. 5 represents the

prediction error at tk. Subsequently, the state probability in the future is compensated by

the prediction error using Eq. 5. Because (Γ · Φ(T ))m can be calculated in advance, the

computational complexity of Eq. 5 is much lower than that of the existing method.
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Figure 2: Compensatation of state probability using prediction error
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Figure 3: A scenario in our evaluation

4 Collision Detection with Probabilistic Vehicle Position

4.1 Crash Probability

The concept of the existing crash probability is a two-dimensional integral of the joint

probability distributions of two vehicle positions in the range of the overlapping region.

However, vehicle position distributions are calculated as discrete probability distributions;

therefore, the summation of the joint probabilities is used instead of the integral.

pcrash([tk, tk+1]) =
∑

{e,f,g,h}∈Ω

p̂pose,f ([tk, tk+1]) · pposg,h([tk, tk+1]) (6)

p̂pose,f ([tk, tk+1]) represents the probability that the vehicle’s center is in path segment Se

and lateral segment Df . The hat symbol is used to distinguish the vehicle from another

vehicle. Ω represents the pairs of segments; that is, the two vehicles’ bodies intersect each

other when the vehicle center is in Se and Df , and the other of vehicle center is in Sg and

Dh.
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Table 1: The experimental environment

OS Ubuntu 20.04 LTS

CPU Intel(R) Core(TM) i9-11900K @ 3.50GHz

Memory 32 GB

Table 2: Discretization levels

(1) (2) (3)

time step [s] 0.5 0.25 0.125

path segment length [m] 5.0 2.5 1.25

lateral segment width [m] 0.57 0.28 0.14

collision time [s] 6.25 6.125 6.0625

4.2 Collision Detection using Crash Probability

4.2.1 Tradeoff between Discretization-Level and Processing Delay

Let us consider what discretization level is the most effective for collision detection us-

ing the proposed method before the experiment to evaluate the MEC compatibility of

the proposed method in terms of processing delay. Generally, the accuracy of collision

detection increases as the discretization level becomes finer. However, the calculation

time is also expected to increase, so it is essential to optimize the discretization level for

the collision detection performance. To measure the tradeoff between the discretization

level and processing delay, we executed collision detections under the three different dis-

cretization levels listed in Tab. 2. The time prediction horizon tf is set to 10 [s]. The

state information used in collision detection was generated based on two simple vehicle

trajectories that collide with each other. Fig. 2 shows the scenario in our evaluation: two

vehicles enter the intersection simultaneously. The trajectories represent vehicles A and B

moving at a velocity of 16 [m/s]. The specifications of the PC regarded as an edge server

are summarized in Tab. 1. The toolbox, COntinuous Reachability Analyzer (CORA) in

MATLAB [14] was used for implementing our method.

We plot the crash probabilities calculated using the state information (x(t), v(t)),

14
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Figure 4: The probability distributions of Vehicle A and B calculated with the state

information (x(0), v(0))

t={1, 2, 3, 4, 5, 6} [s] in Fig. 5. This result shows the finer the discretization level is,

the larger the crash probability calculated with the same state information. This state

information represents the position and velocity of the two vehicles on the collision course

and is accurate for detecting collisions. Therefore, this implies that finer discretization

enables the perception of collision risk more accurately.

Fine discretization contributes to the accuracy of collision detection because it enables

the accurate expression of the vehicle position. Fig. 4 shows the probability distributions of

Vehicles A and B calculated using state information (x(0), v(0)). As can be seen from the

figure, the probability distribution calculated under fine discretization levels can describe

accurately where the vehicles are likely to be. The crash probability calculated under

15
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Figure 5: Comparison of the accuracy of crash probability calculated under three dis-

cretization levels: The crash probability at each time t is calculated with the state infor-

mation (x(t), v(t))

discretization level (3) is most accurate, but the difference in crash probabilities between

(2) and (3) is less than 5% at 3.5 s, the deadline considering the braking time until collision.

Considering this tradeoff, discretization level (2) is expected to be the most effective for

collision performance.

4.2.2 Sensitivity of Crash Probability for Collision Risk

Crash probability, the summation of joint probabilities where the segments of two vehicles’

position overlap, is a way to evaluate collision risk. However, its sensitivity is low because

the joint probability is the product of two probabilities, and the segments that overlap

each other are a part of all segments. As shown in Fig. 5, crash probability is much

lower than 100% using with the state information at 5 [s], which is only 1 [s] before the

collision occurs. Therefore, we introduce another metric for capturing the collision risk in

the following section.

16



�����������	
�������	�	
	��

�	����	�������	����	���
��������������	
�����������
��
�������
�

����������	
�����������
��
�������
�

Figure 6: Collision area of Vehicle B.

4.3 Collision Detection using Overlapping Probability

In this paper, we developed a method that calculates the overlapping probability that the

two vehicles exist at the same time at the place where the collision can occur, which we

call the collision area.

First, we calculated the crossing probability of having one vehicle in the collision area

and the other. The crossing probability was calculated as the summation of the discrete

probabilities of the vehicle position in the collision area in Eq. 7.

pcrossing([tk, tk+1]) =
∑

{g,h}∈E
pposg,h([tk, tk+1]) (7)

A sample calculation of crossing probability in the merging scenario is shown in Fig. 6.

The figure on the left-hand side shows the probability distributions of having two vehicles.

In this scenario, the collision area represents the repulsion that intersects with each other.

Therefore, the crossing probability of Vehicle B is calculated as the summation of the

discrete probabilities of the discrete segments indicated by the points in the figure on

the right-hand side. We then calculated the overlapping probability by multiplying the

crossing probabilities in Eq. 8.

poverlap([tk, tk+1]) = p̂cross([tk, tk+1]) · pcross([tk, tk+1]) (8)

17
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Figure 7: Comparison of the accuracy of overlapping probability

4.4 Sensitivity Of Overlapping Probability

We plot the overlapping probabilities calculated with the state information (x(t), v(t)), t =

{1, 2, 3, 4, 5, 6} [s] in Fig. 7. This result shows that the finer the discretization level, the

larger the overlapping probability calculated with the same state information as the crash

probability. Furthermore, the overlapping probability has a better sensitivity to collision

risk than crash probability. In particular, the overlapping probability at 5 [s] is 20% greater

than the crash probability at 5 [s], which implies that the sensitivity is increased by the

overlapping probability.

4.5 Simple Simulation of MEC-Based Collision Detection

We evaluated the effect of the reduction in processing delay and the capacity of the pro-

posed method for an MEC-based collision detection application.
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4.5.1 Implementation

As evaluation metrics, we used the elapsed time from a vehicle starting communication

with the edge server until the collision between the two vehicles is detected. To measure

the elapsed time, we implemented a collision detection application that detects collisions

between vehicles on a simple vehicle simulator using the scenario shown in Fig. 3. We

did not use the actual cellular system, and the network latency was set to 50 [ms] in our

current evaluation. The vehicle simulator simulates the simple behavior of vehicles that

move at a constant speed of 16 [m/s] and collide with each other in a few seconds. Each

vehicle sends the state information at Ts = 500 [ms]. The edge server updates the state

probability using Eq. 5 and calculates the overlapping probability of all vehicle pairs every

Tc = 1000 [ms] under discretization level (2). The state information is generated based on

the trajectories of vehicles, and the trajectories are prepared such that vehicles crash 6 [s]

after the beginning of the scenario.

4.5.2 Evaluation of Proposed Method

Fig. 8 shows the overlapping probability of vehicles depending on the elapsed time cal-

culated under discretization levels (1) and (2) when the number of vehicles is 2. In these

figures, the elapsed time 0 is set as the time when collision occurs between vehicles. The

dashed line in the figure represents the deadline for detecting the collision to start the

braking system to avoid an actual crash at time 0. The deadline is the sum of the one-way

communication delay and braking time. The braking time is given by a simple physical

equation, Td = vmax
2µg + Tr is the maximum speed of a vehicle constricted by the regula-

tion, µ is the coefficient of dynamic friction, g is the gravitational acceleration, and Tr

is the reaction time of the human driver. vmax, µ, g and Tr are set to 16 [m/s], 0.7, 9.8

[m/s2], and 1 [s], respectively. Fig. 8a shows the probability transition calculated under

the discretization level (1) when the number of vehicles is two. Comparing the overlapping

probability calculated with the existing and proposed methods, the proposed method can

detect collision risk around 2 [s] earlier than the existing method. Moreover, the overlap-

ping probability at the deadline is 10 % higher than that of the existing method, which

shows better sensitivity. Fig. 8b shows that the collision detection using the existing
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Figure 8: Comparison of overlapping probability at the edge server

method missed the deadline under the discretization level (2). Note that, in the case of

discretization level (3), the overlapping probability is not obtained until the deadline even
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with our method. When the overlapping probability was calculated using the existing

method, its calculation was not completed at the deadline of collision detection because

of its processing delay. The proposed method reduces the processing delay, senses the

collision 4 [s] earlier than the existing method, and enables the calculation of the over-

lapping probability until the deadline arrives. Moreover, the calculation of overlapping

probability with the proposed method meets the deadline even when the number of ve-

hicles becomes 4 in a single thread computation, while the counterpart of the existing

method is 2. This means the number of vehicles an edge server can handle is doubled by

the proposed method.

Fig. 8b shows that the collision detection with the existing method finally missed

the deadline. This implies that it is difficult to detect collisions in real time under the

discretization level (2) because of the processing delay. Considering the real-time re-

quirements, the collision detection performance under the discretization level (1) was the

highest.
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Figure 9: Overview of MEC-based collision detection in Driving Simulation

5 Evaluations of MEC-Based Collision Detection Using Driv-

ing Simulator

5.1 MEC-Based Collision Detection System for Intersection Accidents

in Driving Simulator

To evaluate the collision detection performance of the proposed method for the vehicle

traffic more similar to the real world, we use the driving simulator and implement the

collision detection system for preventing collisions in a simulation. Figure 9 shows the

overview of the system. The simulation server simulates vehicle traffic and send the

vehicles’ state information to the edge server. The edge server execute collision detection

with the information and send warning message if any collision risk found.

5.2 Implementation

In the real situation, collision detection is performed for preventing actual vehicles from

colliding with each other. In our evaluation, vehicles in the driving simulator which has

communication functions are substituted for actual vehicles. The vehicles communicate

with the edge server via the driving simulator communication function. The wireless

network between the edge server and the mobile devices is 5G cellular network as same as

actual situation.
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Table 3: Driving simulation server environment

OS Ubuntu 20.04 LTS

CPU Intel(R) Core(TM) i9-11900K @ 3.50GHz

GPU NVIDIA GTX 2080 @ 33MHz

Memory 96 GB

Table 4: Edge server environment

OS Windows 10

CPU Intel(R) Core(TM) i7-7820HQ, 2.90GHz

Memory 16 GB

Figure 10: The network diagram of MEC system

5.2.1 MEC-Based Collision Detection Environment

Figure 10 shows the network diagram of MEC system. The driving simulation server and

edge server communicate with each other via our private 5G system. The private 5G

system runs in SA (Stand Alone) mode and the UPF (User Plane Function) is connected

with the edger server. The driving simulation server accesses the private 5G network via

5G mobile router. Table 3 and 4 show the driving simulation server environment and the

edge server environment respectively.
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Figure 11: The time difference of real time and simulation time

5.2.2 Driving Simulator: CARLA

We choose CARLA (Car Learning to Act) [15] as the simulator for the measurement of col-

lision detection performance of our method. CARLA is an open-source driving simulator

for autonomous driving research. CARLA architecture is a server-client type simulator.

The server simulates CARLA world physics and actors’ behavior with Unreal Engine. The

client request the world’s information, spawning specified actors, changing actors’ behavior

from the server. This feature helps us to validate our collision detection system in terms of

real time collision detection and avoidance because collision detection can be executed in

real time based on extracted vehicles’ state information and the collision-detected vehicles’

behavior can be changed in real time.

In our evaluation, Traffic Manager (TM) in CARLA is used to generate vehicle traffic.

TM simulates random traffic in a town where the path of the town is closed, and the

vehicles circulate the town until the simulation is ended. If a vehicle under the TM

control approaches an intersection in the town, TM decides which direction for the vehicle

to go randomly. Therefore, the vehicle traffic generated by TM becomes random.
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Figure 12: Adjusting simulation time to real time

5.2.3 Realtime Simulation in CARLA

CARLA is not a real time simulator, which means that the simulation time of a CARLA

world is passed earlier than real time in default settings. This is because a step in a

simulation proceeds earlier than time interval in a step in real time as shown in Figure 11.

To realize real time simulation, the simulation is run in server-client synchronous mode

and forced the simulation does not tick until the time interval in a simulation step passed

in real time with the client-side Python script as shown Figure 11.

5.2.4 Communication between Vehicles in Driving Simulator and Edge Server

In actual situation, vehicles communicate with the edge server via a cellular network; vehi-

cles send its state information to the edge server and the edge server send warning message

back to the vehicles. In our implementation, the driving simulator and the communica-

tion modules is substituted to actual vehicles. The communication modules consists of

two modules, state information sender and warning message handler implemented with

Python. The data flow among modules is described in Figure 13. The state information
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Figure 13: The data flow between driving simulator and edge server

sender sends the state information of all the vehicle in the simulation in a constant period

Ts. The state information sender generates state information with the extracted velocity

and position of a vehicle from the CARLA server via CARLA client . The warning mes-

sage handler receives warning messages from the collision detector and make the warned

vehicles take some actions such as braking. The action is defined beforehand and the

warning message handler make the vehicle out of TM’s control and request the action to

the CARLA server via the carla client. After the collision risk becomes low, the warning

message handler receives no warning message for the vehicle so set the vehicle under the

TM’s control. The information/action request in the both communication modules is per-

formed with Python API of CARLA. The communication modules run in a thread for a

module, so state information and warning messages are sent and received concurrently.

5.3 Evaluation of Proposed method

5.3.1 Evaluation Metrics

As evaluation metrics of collision detection performance, we use the overlapping probability

and the distance d [m] between the vehicles on collision course at the timing of a vehicle

approaching the intersection within L [m]. The distance d [m] represents the difference

of the timing entering the intersection; if the vehicle enters the intersection at the same

timing, the distance becomes about
√

2(L+ l) [m], l [m] is the distance between the start
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Figure 14: T-intersection used for our evaluation
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Figure 15: The preset map of CARLA used for our evaluation

point of intersection and the intersecting point of the two vehicles’ trajectories. Therefore,

when d [m] is nearer to L [m], the collision risk is desirable to be evaluated higher because

the timing of entering the intersection is the same.
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5.3.2 Evaluation Scenario

As evaluation scenario, we assume the collision detection for an intersection with bad

visibility. In this scenario, collision detection is performed for a collision between a merging

vehicle and a vehicle running in another lane within 120 [m] from the intersection. The

collision detection period in the edge server, Tc is set to 0.5 [s], and time step of Markov

chain T to 0.5 [s]. For this scenario, the preset map of CARLA which includes a T-

intersection is used. The map and the intersection shown in Figure 14 and 15.

The traffic density k is set to 7 [vehicles/km]. CARLA has no function to set traffic

density, so traffic density is set by spawning as many vehicles as the number of vehicles

when the traffic density is k in the map where the total length of the all lane 6.4 [km].

This is valid because all the vehicles keep on running in the closed map and the number

of vehicles does not change through a simulation.

The speed restriction of the road is set to 60 [km/h], the general speed regulation of

Japanese road. The distance L [m] is set to 15 [m], the distance which takes for a vehicle

running at 60 [km/h] to slow down to yield speed 20 [km/h]. This is calculated with a

simple physics equation v2 − v2
0 = 2ax for a moving object, v0 is the first velocity, v is

the changed velocity, a is the acceleration, x is the distance which takes the object change

velocity v0 to v. A straight vehicle at yield speed can stop in 1 [m] and avoid collision with

a merging vehicle even if it recognize the merging vehicle after entering the intersection.

For the same reason, the target of collision detection is limited for vehicles whose speed is

over yield speed. Moreover, overlapping probability and distance between vehicles at over

yield speed is recorded for evaluation.

5.3.3 Evaluation Result

Figure 16 and 17 shows the overlapping probabilities and the distance d [m] between a

merging vehicle and a straight forward vehicle comming from right side of Figure 15 at

the timing of a merging vehicle approaching the intersection within L [m]. In this case,

l is 8.5 [m] so
√

2(L + l) is 33.2 [m]. Figure 16 repsresents when the proposed method is

applied, Figure 17 shows when the proposed method is apllied.

The blue plot represents the overlapping probability for the distance d received from
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Figure 16: The relationship between the distance and overlapping probability when the

existing method is applied

Figure 17: The relationship between the distance and overlapping probability when the

proposed method is applied

the edge server, and the red plot represents the case when the overlapping probability

is not received from the edge server at the distance L [m] from the intersection. The
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figures show our proposed method notifies all of the potential collision risks beforehand

which is enough to stop the vehicles, whereas the existing method fails to notify more

than 80% of the risks. With the proposed method, there are no samples whose d is around

33.2 [m] which implies that merging vehicles receive the warning message when there is

approaching vehicles in another lane within 120 [m] over yield speed.

Note that there are two points of blue plots locate around 0 even though around 33.2

[m] even with the proposed method. These plots represents that the vehicles braked more

than L [m] away from the intersection for some reasons such as avoiding collision with a

leading vehicle and the overlapping probability is calculated lower. Moreover, overlapping

probability is higher as d gets close to 33.2 [m], which means our method can evaluate

collision risk higher if the time difference of vehicles entering the intersection is smaller.
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6 Conclusion

In this paper, we developed a probabilistic collision detection method with lower pro-

cessing delay than the existing method for an edge computing environment. Our method

reduces the processing delay of the probabilistic collision detection method by utilizing the

prediction error. We evaluate the effect of our method with a simple vehicle simulator with

an intersection scenario. The results show that our method reduces the calculation time

by 85%, which enables to detect a collision 3.5 seconds before the crash with a sufficient

probability.

Moreover, we implement MEC-based collision detection system for intersection acci-

dents in the driving simulator using private 5G, and evaluate the collision detection method

of our method in the situation similar to the situation in real world. Then, we evaluate

the collision detection performance in terms of the approaching distance and overlapping

probability received by the vehicles on collision course. With the proposed method, all

of the collision risk is received by vehicles before they enter the intersection, while not

received with the exisiting method. In addition, the proposed method vehicles to receive

the collision risk corresponding to the time difference of entering the intersection.

In this paper, the probability distribution is used only to assess the collision risk. Our

future work is to coordinate the vehicle traffic with probability distributions of vehicles’

state in centralized way, and assign the celular resources for an urgent communication

from MEC server to vehicles.
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