
Master’s Thesis

Title

Protection of Confidential Information

in Supply Chain System

Based on Public Permissionless Blockchain

Supervisor

Professor Masayuki Murata

Author

Takio Uesugi

February 3rd, 2022

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Protection of Confidential Information in Supply Chain System

Based on Public Permissionless Blockchain

Takio Uesugi

Abstract

Rapid growth of supply chains has caused serious problems, such as counterfeit prod-

ucts and delays in product tracking. To remedy these problems, it is an urgent issue to

ensure the product traceability at a high level. Recently, blockchain-based supply chain

systems have been proposed. These systems use a blockchain as a shared database to

manage distribution information of the supply chain. Blockchain is a transparent and

tamper-resistant database, which ensures the integrity of the distribution information.

Thanks to these features, blockchain-based supply chain systems can track the product

distribution, thereby ensuring the traceability. Considering the entry of new businesses

and the growth of secondary markets, it is desirable to design a system to allow any-

one to register and verify distribution information at any time. To realize such a supply

chain system, it is the optimal choice to use a public permissionless blockchain. However,

this supply chain system discloses confidential information, such as business-to-business

relationships and transactions information between individuals. Therefore, in this thesis,

we propose a supply chain system that can protect confidential information and ensure

traceability, using a public permissionless blockchain. We realize the protection of confi-

dential information by hiding the distribution information via attribute-based encryption.

We also use zero-knowledge proof to ensure the distribution between legitimate owners

and recipients while hiding ownership information. In addition, the proposed system can

express aggregation, assembling and packing, hence track relationship between a product

and its part as well as the distribution in a grouped unit such as cardboard boxes and

shipping containers. We implement the proposed system with smart contracts and eval-

uate its usage cost based on transaction fees. The result shows the transaction fee is at

1

most 2.6× 106gas units per distribution. Although the price of the transaction fee varies

depending on the blockchain, the lowest fee is 4.5 USD, which indicates that the proposed

system can be applied to various products.

Keywords

Public Permissionless blockchain

Confidential protection

Attribute-based encryption

Zero-knowledge proof

Supply chain

Traceability

Ethereum

2

Contents

1 Introduction 6

2 Related Work 9

2.1 Blockchain . 9

2.2 Blockchian-based Supply Chain Systems . 11

3 Design Goals 13

3.1 System Prerequisites . 13

3.2 Product Distribution Control . 14

3.3 Information Access Control . 14

4 Proposed System for Protection of Confidential Information 16

4.1 Hiding Ownership Information using Attribute-Based Encryption 16

4.2 Ownership Authentication using Zero-Knowledge Proof 18

4.3 Product Tracking . 25

4.4 Design Details . 26

5 Evaluation 38

5.1 Implementation . 38

5.2 Scenarios . 39

5.3 Results . 42

5.4 Discussion . 50

6 Conclusion 52

Acknowledgments 54

References 55

3

List of Figures

1 Information recorded on a tag attached to the product. 13

2 Product distribution using the proposed system 16

3 Proving ownership in receiving process . 19

4 Proving ownership in Method A . 22

5 Updating owner information in Method A 23

6 Packing process of Method B . 24

7 Tracking product P1 by manufacturer M1. 25

8 Product distribution in Scenario 1 . 39

9 Result screen of Scenario 5 . 48

10 Transaction fees for each process executed in Scenario 1 48

11 Relationship between transaction fees and the number of products to be

packed . 49

4

List of Tables

1 Permission control of the proposed method. 13

2 Access control of the proposed method. 14

3 The number and size of proofs in Method A/B 21

4 Variables for managing manufacturer information 26

5 Variables for managing product information 27

6 Variables for managing product/container information 27

7 Variables for managing ownership authentication 28

8 Product/Container and their EPCs in the scenarios 38

9 Entities and their addresses in the scenarios 38

10 Data recorded in PMC at Step 1 of Scenario 1 42

11 Data recorded in PMC at Step 2 of Scenario 1 42

12 Data recorded in PMC at Step 3 of Scenario 1 43

13 Data recorded in PMC at the end of Scenario 1 43

14 Manufacturer information of product P1 obtained in Scenario 2 44

15 Ownership history of product P1 obtained in Scenario 4 45

16 Ownership history of container C1 obtained in Scenario 4 46

17 Ownership history after decryption in Scenario 4 47

18 Plain text of ownership history in Scenario 4 47

5

1 Introduction

In recent years, supply chains have become increasingly larger and more complex. This has

led to serious problems, especially regarding product traceability. For example, the amount

of international trade of counterfeit products is estimated to be 446 billion USD in 2019,

which is equivalent to 2.5% of world trade [1]. Furthermore, since it was difficult to track

ingredients contaminated with Escherichia coli, there was an outbreak of food poisoning

that spread to a total of 60 people across 14 states in the U.S. [2]. These problems are due

to the difficulty in verification of the product’s manufacturer and fast product tracking. In

the supply chain, there are multiple businesses even in the primary distribution from the

manufacturer to the consumer. In addition, secondary markets have also been growing in

recent years due to the ease of transactions using apps to trade used stuff. Against this

background, it has become increasingly difficult to manage supply chain information. As

a provisional measure, each business has managed distribution information by building its

own database. However, each business may use different identifiers and data structures to

manage the same product. It cannot be denied that this structure may lead to delays and

distortions of the information when someone tracks a product. In other words, product

traceability is not ensured at a high level.

One of the solutions to these problems is to unify the management of supply chain

information among multiple businesses. As a system to realize it, blockchain-based supply

chain systems have been proposed [3–7]. In these systems, product distribution informa-

tion, i.e., ownership history, is recorded in a blockchain. A blockchain is a decentralized

and time-series ledger. Multiple nodes in the blockchain network independently verify and

update the data based on a common logic, and then store the data in the blockchain. By

verifying the stored data against each other, invalid data is automatically detected and

eliminated. Thus, the data on the blockchain is extremely difficult to tamper with and

has high availability. Accordingly, the distribution information stored in the blockchain

cannot be lost due to invalid changes or system failures. It is also possible to prevent the

recording of invalid distribution information by using smart contracts to set appropriate

conditions for recording and updating distribution information.

There are processes such as assembly and packing in the supply chain. In order to

6

ensure high traceability, the supply chain system should be able to express the operation

of aggregation and dis-aggregation. Note that aggregation means to group multiple things

into one thing, and dis-aggregation, which is the inverse process of aggregation, means to

retrieve the multiple things from the one thing grouped by aggregation. Aggregation makes

it possible to track manufacturing processes, thus improving product safety. Suppose that

a component of a certain product has a defect. The relationship between the product

and the component is recorded through aggregation. In this case, it is possible to quickly

identify the product with the defective component, thereby preventing the spread of the

defective product. Aggregation and dis-aggregation are also necessary from the perspective

of efficiency. When products are distributed in the supply chain, they are packed in

cardboard boxes, etc., and then further loaded onto trucks or shipping containers. This

means that multiple products are distributed together as a single unit. If the operation of

aggregation is not available, the distribution of all the products must be managed one by

one, which can be difficult in practice. If it is available, distribution of multiple products

can be managed in a grouped unit.

Supply chains are likely to become increasingly larger and more complex as new busi-

nesses enter markets and secondary markets flourish. In order to cope with this situation,

it is desirable to have an open system, i.e., a system where anyone can register and ver-

ify distribution information. This provides a variety of benefits. In such a system, new

businesses can freely register distribution information, which does not hinder the establish-

ment of new distribution relationships. General consumers can also register distribution

information, making it possible to track transactions between individuals in secondary

markets. Furthermore, it is possible to add extra value to products because general con-

sumers can view the distribution information of supply chains. For example, if you can

confirm the origin of crops or the manufacturer of products, you can be sure of its safety.

Blockchain can be classified as public or private in terms of data access permissions, and

as permissionless or permissioned in terms of data update permissions [8]. A blockchain

that can be accessed and updated by anyone is a public permissionless blockchain. For

the supply chain system, a public permissionless blockchain is desirable.

However, the use of a public permissionless blockchain brings new challenges. One of

the most significant challenges is to prevent the leakage of confidential information [9].

7

A public permissionless blockchain makes all data recorded on it public. That is, even

information that should be kept secret will be made public. To be specific, there are

the following problems in a supply chain system. Businesses invest significant efforts in

investigating business partners and building distribution relationships in order to lower

purchase prices or achieve rapid distribution. If this information were made public, it

would threaten the competitive advantage of the businesses, as their competitors would

be able to identify and establish distribution relationships without investment. As another

example, in secondary markets, transaction information between individuals and product

ownership information can be identified. Therefore, it is necessary to protect distribu-

tion information, such as business-to-business relationships and transactions information

between individuals, as confidential information.

In this thesis, we propose a supply chain system that provides both traceability and

protection of confidential information, using a public permissionless blockchain. We define

traceability as the characteristic that anyone can verify the product manufacturer and

distribution by verifying the public information and the manufacturer can track its own

product distribution. We also define protection of confidential information as data being

hidden and not revealed to anyone except those who have the permission to browse it.

The target of the protection of confidential information is product ownership information

in supply chains. We use attribute-based encryption and zero-knowledge proof to protect

confidential information. Attribute-based encryption ensures that information is only

disclosed to those who have the permission to browse it. Zero-knowledge proof is to

prove that one knows a certain knowledge without revealing any information about that

knowledge. We use zero-knowledge proof to prove the knowledge that one is the product

owner and has the right to distribute it, without revealing it. This allows for the hiding

of distribution information while preventing unauthorized distribution. Therefore, we can

realize a supply chain system that satisfies both traceability and protection of confidential

information.

The rest of this thesis is organized as follows. Section 2 introduces related works. The

design goals of the proposed system are described in Section 3. Section 4 explains the

proposed method that can protect confidential information and ensure traceability and

Section 5 evaluates it. Lastly, our conclusions and future work are presented in Section 6.

8

2 Related Work

2.1 Blockchain

2.1.1 Bitcoin and Blockchain

Bitcoin [10] is the world’s first cryptocurrency, which started the operation in 2009. Bitcoin

has attracted a great deal of attention because it is a system that allows the transfer of

data with monetary value without the need for a central administrator. The method

proposed to realize this system is blockchain.

Blockchain has a data structure in which a unit of data, called a block, is connected

like a chain by having a hash value of the previous block. The block consists of a block

header and transaction data. The block header consists of a hash value, a nonce and a

timestamp. The hash value is the one generated from the previous block header to point to

the previous block, thereby realizing the chain structure. The timestamp is the time when

the block is created. The nonce is the value required to execute the consensus algorithm,

which is explained later. Even if an attacker tries to tamper with a transaction, the hash

value of the block containing the transaction changes, causing a discrepancy of the hash

value the next block has. In other words, the chain structure of the blockchain has been

broken. Thus, transaction tampering can be easily detected.

A transaction is the smallest unit of data in a blockchain. In the case of Bitcoin,

a transaction represents a history of asset transfers. The transaction is added a digital

signature by the creator of the transaction, thus it provides validity and non-repudiation.

Blockchain is managed in a decentralized manner through P2P networks. The data of

the blockchain is shared by all nodes in the blockchain network. Thus, it provides zero-

downtime and semi-permanent operation.

Blockchain needs a mechanism to synchronize data across the entire blockchain net-

work. Consensus algorithms realize this mechanism, and Bitcoin utilizes an algorithm

called Proof of Work (PoW). The only block generated according to PoW is adopted as

the valid one. Block creators, called miners, calculate a cryptographic hash value from the

nonce, the previous block’s hash value and the current block’s transaction data. The hash

value needs to be less than or equal to a target value. The target value is automatically

9

adjusted so that the nonce is found once every 10 minutes in the environment where all

miners calculate the hash simultaneously. Since cryptographic hash values have preim-

age resistance, the miners need to repeat calculating hashes while changing the nonce in

small increments. Thus, a huge amount of computation power is required to generate a

block. Furthermore, Bitcoin adopts the so-called longest chain rule where the chain with

the most block is adopted in the blockchain network. In order to tamper with a transac-

tion, an attacker would need to recalculate it again for all blocks from that point to the

present. This would be impossible if the attacker did not possess overwhelming computing

power. In reality, however, such an attacker does not exist. These mechanisms provide

the blockchain with tamper-resistance.

The blockchain used in Bitcoin is a public permissionless blockchain. Blockchains can

be classified into public or private in terms of data access permissions, and permissionless

or permissioned in terms of data update permissions. Public blockchains allow anyone

to access the data, while private blockchains allow only verified participants to reference

the data. Permissionless blockchains allow anyone to update the data, while permissioned

blockchains allow only verified participants to update the data. Considering the scalability

of supply chains and the participation of general consumers, we use public permissionless

blockchain in the proposed system.

2.1.2 Turing-Complete Blockchain

Bitcoin has a stack-based programming language, but it is not Turing-complete. In order

to perform more complex and general-purpose operations, blockchains with a Turing-

complete execution environment have emerged. Such blockchains can execute arbitrary

programs, and this mechanism is called a smart contract.

Ethereum [11] is one of the leading blockchains with smart contracts. There are two

types of accounts in Ethereum. One type of account, EOA (Externally Owned Accounts),

has a pair of public and private keys. EOA is represented by an address, which is a value

obtained from the hash value of the public key. Transactions can be issued by signing

it with the private key. The transactions are used to transfer ETH, the Ethereum base

currency, and also used to send messages to execute smart contracts. The other account,

CA (Contract Accounts), manages arbitrary programs and storage. When it receives a

10

message from another CA or EOA, it executes a specific function in the program using

the message contents as arguments. The result of the program execution is stored in the

CA’s storage or used as a message to another CA. Since this account is managed by the

blockchain, the program can be executed in a decentralized manner.

In this thesis, we use Ethereum, a public permissionless blockchain with smart con-

tracts.

2.2 Blockchian-based Supply Chain Systems

Several blockchain-based systems have been proposed to improve the product traceability

in supply chains.

Some researchers have proposed supply chain systems based on a permissioned

blockchain. IBM Food Trust [12] is designed to secure food traceability. Bryatov et al. [13]

proposed a system to prevent the distribution of counterfeit drugs in pharmaceutical sup-

ply chains. Agrawal et al. [14] proposed a system to prevent the spread of defective drugs

and to recall them. Maouchi et al. [15] proposed a traceability system for preserving

privacy by setting appropriate permissions for browsing data. However, only verified par-

ticipants can use these systems. This makes it difficult to widely promote supply chain

systems and hinders the unified management of distribution information. Thus, it is dif-

ficult to secure product traceability at a high level. In addition, since general consumers

cannot participate in these systems, it is practically impossible to apply the system to

secondary markets.

Supply chain systems using a public permissionless blockchain have also been proposed.

Toyoda et al. [3] proposed a system for using blockchain to manage product ownership

transfers to prevent the distribution of counterfeit products in the post supply chain. Kim

et al. [4] proposed a system for tracking products from the materials stage through re-

peated consumption and production of traceable resource units. Huang et al. [5] proposed

a system for applying off-chain technologies to food-supply chains, which feature high-

frequency distribution. Santos et al. [6] proposed a system to guarantee food safety by

representing food with a non-fungible token. Westerkamp et al. [7] proposed a system

that can trace manufacturing processes by defining how tokens are created. These supply

chain systems are expected to become widely used because anyone can freely participate

11

in the supply chain and browse information. This promotes uniform management of dis-

tribution information and contributes to securing product traceability. However, none of

these methods consider confidential information, so transaction and ownership informa-

tion will be widely disclosed. In addition, since the operations such as aggregation and

dis-aggregation are not available, these systems inefficiently manage the supply chain.

12

Figure 1: Information recorded on a tag attached to the product.

Table 1: Permission control of the proposed method.

Manufacturer Current owner Next owner Others

Manufacturing a product ✓

Packing products ✓

Unpacking a container ✓

Shipping a product/container ✓

Receiving a product/container ✓

3 Design Goals

This section introduces the system model assumed in the proposed method. Then we

explain the design goals in terms of controls of product distribution and information

access.

3.1 System Prerequisites

We assumed that a tag such as an RFID is attached to each product. As Figure 1 shows,

the tag includes an electronic product code (EPC) in the SGTIN-96 format. SGTIN-96

includes a company prefix that identifies the product manufacturer and a serial number

that identifies the product. The proposed system uses the EPC to manage product in-

formation. We assume that manufacturers can freely create EPCs and write them to the

tags, and that EPCs are correct, that is, the manufacturer’s company prefix and the prod-

13

Table 2: Access control of the proposed method.

Manufacturer Previous owner Current owner Next owner Others

Browse manufacturer ✓ ✓ ✓ ✓ ✓

Browse previous owner ✓ ✓ ✓

Browse current owner ✓ ✓ ✓ ✓

Browse next owner ✓ ✓ ✓

Browse ownership history ✓

uct’s unique serial number are correctly recorded. We also assume that EPCs attached to

products cannot be altered by replacing or tampering with the tag.

The systems proposed in [3–7] manage product ownership information with blockchain

addresses. In these systems, it can be assumed that a certain mechanism is provided to link

blockchain addresses with real-world entities in order to track product owners. Therefore,

we also assume that blockchain addresses are linked to real-world entities by the same

mechanism as public key certificates.

3.2 Product Distribution Control

The proposed system tracks product distribution by processing enrollments and repeating

shipment and receipt processes for the product. In the distribution process, products

may be packed and unpacked. To prevent unauthorized product distribution, we control

permissions for each process as shown in Table 1. The table shows the processes that can

be executed by the corresponding parties. In the table, “manufacturer” is the party that

manufactured the product, “current owner” is the party that currently owns the product,

and “next owner” is the party that will receive the product from its current owner.

3.3 Information Access Control

In the proposed system, we protect confidential information by restricting information

browsing. We control information access as shown in Table 2. “Previous owner” is the

party that shipped the product to the current owner, and the rest is the same as in Table 1.

The proposed system allows anyone to browse product manufacturers at will, allow-

ing them to confirm that products were manufactured by a legitimate manufacturer and

14

preventing distribution of counterfeit products. However, only manufacturers can browse

ownership histories, because the manufacturer is responsible for its products. Manu-

facturers can immediately identify owners to recall products and prevent their further

distribution when problems occur. No other parties have reasonable grounds for browsing

ownership histories. Since the previous owner and the current owner were in a relation-

ship to distribute a product, they can verify identity with each other. On the other hand,

the previous owner and the next owner cannot verify the identity of each other because

they are not in a relationship of product distribution. Thus, the proposed system protects

confidential information through appropriate permission management for browsing that

information.

15

𝑃1 Owner𝑃2 Owner

…𝑃𝑛 Owner

𝐸𝑛𝑐(𝐴𝐷, 𝑀1)𝐸𝑛𝑐(𝐴𝐷, 𝑀2)
…𝐸𝑛𝑐(𝐴𝐷, 𝑀𝑛)

𝐸𝑃𝐶𝐶
𝐴𝑀1𝐴𝑀2
…𝐴𝑀𝑛𝐶 Owner

𝐸𝑃𝐶𝐶
𝐸𝑛𝑐(𝐴𝑅 , 𝑀1⋯𝑀𝑛)

𝐸𝑛𝑐(𝐴𝑅 , 𝑀1⋯𝑀𝑛)𝐸𝑛𝑐(𝐴𝑅 , 𝑀1⋯𝑀𝑛)
…𝐸𝑛𝑐(𝐴𝑅 , 𝑀1⋯𝑀𝑛)

𝐸𝑛𝑐(𝐴𝑋1 ,𝑀1)𝐸𝑛𝑐(𝐴𝑋2 , 𝑀2)
…𝐸𝑛𝑐(𝐴𝑋𝑛 , 𝑀𝑛)

Unpacking Process

Container 𝐶

Retailer 𝑅

Container 𝐶

Consumer 𝑋1
Consumer 𝑋2

Consumer 𝑋𝑛

Packing Process

Distributer 𝐷

Container 𝐶

Product 𝑃1
Product 𝑃2

Product 𝑃𝑛

Product 𝑃1
Product 𝑃2

Product 𝑃𝑛

Manufacturer 𝑀1
Manufacturer 𝑀2

Manufacturer 𝑀𝑛

Product 𝑃1
Product 𝑃2
Product 𝑃𝑛

Product 𝑃1
Product 𝑃2
Product 𝑃𝑛

Blockchain

Figure 2: Product distribution using the proposed system

4 Proposed System for Protection of Confidential Informa-

tion

In this thesis, we propose a system to protect confidential information of product owner-

ship. As mentioned above, the proposed system assumes that real-world entities can be

uniquely identified by their blockchain addresses. Therefore, the proposed system records

the encrypted blockchain addresses in the blockchain. This hides the blockchain addresses

of product owners and ensures the confidentiality of the ownership information. The man-

ufacturer can obtain the blockchain addresses by decrypting the encrypted ones, and track

the distribution of the product. Product owners and recipients share a secret token and

demonstrate that they know it using zero-knowledge proof. The proposed system thereby

guarantees distribution between correct owners and recipients while concealing blockchain

addresses.

4.1 Hiding Ownership Information using Attribute-Based Encryption

The proposed system hides the ownership and distribution relationships information by

recording the encrypted blockchain addresses. Only the manufacturer can browse the

ownership information of its products. Thus, if there is a problem with a product, the

16

manufacturer can immediately identify the owner and recall the product to prevent further

distribution. The proposed system manages not only single products but also containers

like C in Figure 2. Therefore, we use attribute-based encryption in the proposed system.

Attribute-based encryption is a cryptographic scheme that allows multiple users to decrypt

by specifying a set of attributes [16]. Attribute-based encryption consists of the following

algorithms;

• Setup: Generate a public parameter pk and a master secret key msk based on a

security parameter.

• KeyGen: Generate a secret decryption key skU from the master secret key msk and

a set of attributes U .

• Encryption: Output a ciphertext ct by taking a random number s, a message m, a

policy W and the public parameter pk as input.

• Decryption: If a set of attributes U satisfies the policy W , output message m by

taking the secret decryption key skU and the ciphertext ct as input.

Let us illustrate with the example in Figure 2. Assume that manufacturer Mi (i ∈

{1..n}) has been assigned attribute ui and owns the decryption key skui . Cipher-

text Enc(AD,M1) is generated as m = AD,W = {u1}. Manufacturer M1 can decrypt

the ciphertext and obtain distributor D’s address AD as plaintext because attribute u1

satisfies the policy W . Ciphertext Enc(AR,M1 · · ·Mn) is generated as m = AR,W =

{u1 ∨ u2 ∨ · · · ∨ un}. In the case of a container that contains multiple products, the at-

tributes of the manufacturer of the included products are specified and encrypted, as in

W = {u1 ∨ u2 ∨ · · · ∨ un}. Manufacturer M1 can also decrypt the ciphertext and obtain

retailer R’s address AR as plaintext because attribute u1 satisfies the policy W . Man-

ufacturers M2, · · · , and Mn can also decrypt ciphertext Enc(AR,M1 · · ·Mn) as well. In

the example in Figure 2, for simplicity, we use the recipient’s address as the message m.

In practice, however, we use the exclusive-OR of the owner’s address and the recipient’s

address as the message m. In other words, in the distribution from manufacturer M1

to distributor D, the proposed system records ciphertext Enc(AM1 ⊕ AD,M1) instead of

ciphertext Enc(AD,M1). Moreover, a random number s is used for encryption. We use

17

s as a secret token. In the proposed system, the owner specifies the recipient with that

ciphertext. By using a random number s as a secret token, the owner and the recipient

can generate the same ciphertext. Therefore, the recipient can verify that the owner has

not specified an invalid ciphertext.

In the proposed system, since only manufacturers decrypt the ciphertexts, we assign

attributes only to the manufacturers. Attribute-based encryption can assign any string as

an attribute. Thus, a manufacturer’s name, etc. can be used as an attribute. However,

if there are duplicates, there is a possibility of unexpected decryption. The attribute,

therefore, needs to be a string unique to the manufacturer. We apply the manufacturer’s

company prefix used in EPC as an attribute.

Setup and KeyGen must be performed by a trusted third party. As described in detail

in Section 4.4.2, we assume an administrator who manages manufacturers’ information.

Secret decryption keys are also manufacturers’ information. Therefore, we assume that

the administrator is in charge of Setup and KeyGen.

4.2 Ownership Authentication using Zero-Knowledge Proof

The proposed system allows the owner to execute processes on a product by authenticating

a secret token only known to the legitimate owner. To authenticate this secret token, we

use a zero-knowledge proof. As we use a zero-knowledge proof, there is no information

that is disclosed except that the process was executed by the legitimate owner.

Although there are several zero-knowledge proof methods, we use zk-SNARKs in the

proposed system. Zk-SNARKs is a non-interactive zero-knowledge proof method, which

is widely used in blockchains in terms of proof size, execution time and computational

complexity. Zk-SNARKs allows us to specify the knowledge to be proved in the form

f(x) = y. The x is the knowledge that a prover wants to prove, and the prover generates

proof information for the result of giving x to the function f . We use this proof information

and y to verify that f(x) = y is satisfied. In the proposed system, we use a cryptographic

hash function for the function f , and the x is a secret token. Therefore, y is the hash

value of the secret token. Zk-SNARKs requires a trusted setup between the prover and the

verifier, where the proving and verification keys are generated. The trusted setup needs

to be given a function f as input, and the keys depend on the function f . Therefore, the

18

Owner 𝐸𝑛𝑐(𝐴𝑂 , 𝑀)
Recipient -

Hash[st] -

vk 𝑣𝑘𝑅
Owner 𝐸𝑛𝑐(𝐴𝑂 , 𝑀)
Recipient 𝐸𝑛𝑐(𝐴𝑅 ,𝑀)
Hash[st] 𝐻𝑠𝑡
vk 𝑣𝑘𝑅

Owner 𝐸𝑛𝑐(𝐴𝑅 ,𝑀)
Recipient -

Hash[st] 𝐻𝑠𝑡
vk 𝑣𝑘𝑅

Blockchain

Step 2.

Set 𝐸𝑛𝑐 𝐴𝑅, 𝑀 in the recipient field,𝐻𝑠𝑡 in the hash value field,𝑣𝑘𝑅 in the verification field

Step 5.
Send the proof to blockchain

Step 6.

Blockchain verifies the proof with 𝑣𝑘𝑅
Step 7.

Change the owner to 𝐸𝑛𝑐(𝐴𝑅, 𝑀)

Owner

(Address: 𝐴𝑂)

Step 1.
Generate a secret token,
proving key and verification key

Recipient

(Address: 𝐴𝑅)

Step 4.
Generate a proof based on
zero-knowledge proof

Step 3.
Share the secret token and the proving key

Figure 3: Proving ownership in receiving process

keys cannot be diverted to prove other knowledge. The prover uses the proving key to

generate a proof, and the verifier uses the verification key to verify the proof.

4.2.1 Ownership Authentication of Single Product

We describe the ownership authentication for a single product. The process that requires

this ownership authentication is shipping and receiving processes. In the proposed system,

the owner shares a secret token with the recipient to ensure that the shipping/receiving

process is executed by the legitimate owner/recipient. The proposed system allows the

owner/recipient to execute the shipping/receiving process by authenticating this secret

token at runtime.

Figure 3 illustrates the overview of shipping and receiving processes. Note that M

represents the manufacturer of the product in distribution.

1. The owner generates a secret token, and proving and verification keys by a trusted

setup.

2. The owner records the encrypted recipient’s address Enc(AR,M), the secret token’s

hash value Hst and the verification key vkR in the blockchain.

3. The owner shares the secret token and the proving key with the recipient by a secure

19

method, then ships the product.

4. The recipient uses the shared proving key to demonstrate knowledge of the secret

token based on a zero-knowledge proof.

5. The recipient sends the proof to the blockchain.

6. The blockchain verifies that the proof is valid using Hst and vkR.

7. The blockchain updates the owner to Enc(AR,M).

The steps above ensure that the one who executes the receiving process is the legitimate

recipient. In practice, when the owner executes the shipping process in step 2, the proposed

system also verifies that the one who executes the shipping process is the legitimate owner.

The secret token and the proving/verification keys used in the shipping process are the

same as those used in the distribution with the previous owner. In zk-SNARKs, a random

number is used to generate a proof. Even if the same proving key is used, the generated

proof will be different than before. Therefore, we can use the same secret token and

proving/verification keys. Note that since proofs that have been used once are public, the

system verifies that previous proofs aren’t diverted.

4.2.2 Ownership Authentication of Multiple Products

We describe the ownership authentication for multiple products. The process that requires

this ownership authentication is the packing process. The system verifies that the one who

executes the packing process is the owner of products to be targeted by the packing process.

We use secret tokens to authenticate as well.

The following steps is a naive method for proving the ownership in the packing process.

Let n be the number of products targeted in the packing process. We explain the packing

process of n products as an example of the packing process executed by distributor D in

Figure 2.

1. Distributor D sends n proofs to the blockchain at once.

2. The blockchain updates the ownership information for n products and a container

when all proofs are successfully verified.

20

Table 3: The number and size of proofs in Method A/B

The number of proofs The size of each proofs

Method A n O(1)

Method B 1 O(n)

In step 1, each of the n proofs proves the ownership of each product. This method verifies

n proofs and updates the ownership information for n products and one container at once.

However, we found that the maximum number of n is limited to 22. In the proposed

system, we use Ethereum blockchain. In Ethereum, there is an upper limit of transaction

fees per block called the block gas limit. The higher the amount of data and computation

required for execution, the higher the transaction fee. With this method, the transaction

fee reaches the block gas limit when n is 22. It is difficult to represent a real-world supply

chain with such a packing process. Therefore, we consider two methods, Method A and

Method B, to increase the maximum number of n. Method A reduces the transaction fee

required for each execution by splitting the execution that used to be done at once into

multiple executions, thereby increasing the maximum number of n. Method B reduces

the transaction fee and increases the maximum number of n by aggregating n proofs of

ownership into a single aggregated proof.

Table 3 illustrates the number of proofs and proof sizes for each method. Method A

requires proofs for the number of n products, thereby the number of proofs is larger than

that of Method B. Method B requires only one proof, thereby the proof size is larger than

that of Method A.

We discuss a trade-off between Method A and Method B based on the evaluation

results in Section 5.

Method A

In Method A, distributor D prepares a password and its hash value. Before executing

the packing process, distributor D proves the ownership for each of the n products inde-

pendently. At this time, the proposed system records the hash value of the password so

that it can be verified that this prover and the executor of the packing process match.

21

𝑃1 Owner

Hash[st]

Hash[pw]

𝐸𝑛𝑐(𝐴𝐷 , 𝑀1)𝐻𝑠𝑡1
𝐸𝑛𝑐(𝐴𝐷 , 𝑀2)𝐻𝑠𝑡2

𝐸𝑛𝑐(𝐴𝐷, 𝑀𝑛)𝐻𝑠𝑡𝑛

𝐸𝑛𝑐(𝐴𝐷 , 𝑀1)𝐻𝑠𝑡1𝐻𝑝𝑤𝐶𝐸𝑛𝑐(𝐴𝐷 , 𝑀2)𝐻𝑠𝑡2𝐻𝑝𝑤𝐶
𝐸𝑛𝑐(𝐴𝐷, 𝑀𝑛)𝐻𝑠𝑡𝑛𝐻𝑝𝑤𝐶

𝑃2 Owner

Hash[st]

Hash[pw]

𝑃𝑛 Owner

Hash[st]

Hash[pw]

𝐸𝑛𝑐(𝐴𝐷 , 𝑀1)𝐻𝑠𝑡1𝐻𝑝𝑤𝐶𝐸𝑛𝑐(𝐴𝐷 , 𝑀2)𝐻𝑠𝑡2

𝐸𝑛𝑐(𝐴𝐷, 𝑀𝑛)𝐻𝑠𝑡𝑛

𝐸𝑛𝑐(𝐴𝐷 , 𝑀1)𝐻𝑠𝑡1𝐻𝑝𝑤𝐶𝐸𝑛𝑐(𝐴𝐷 , 𝑀2)𝐻𝑠𝑡2𝐻𝑝𝑤𝐶
𝐸𝑛𝑐(𝐴𝐷, 𝑀𝑛)𝐻𝑠𝑡𝑛

1-2.
Verify 𝑃𝑟𝑜𝑜𝑓𝑃1,
then record 𝐻𝑝𝑤𝐶

2-2.
Verify 𝑃𝑟𝑜𝑜𝑓𝑃2,
then record 𝐻𝑝𝑤𝐶

n-2.
Verify 𝑃𝑟𝑜𝑜𝑓𝑃𝑛,
then record 𝐻𝑝𝑤𝐶

1-1.
Send 𝑃𝑟𝑜𝑜𝑓𝑃1 and 𝐻𝑝𝑤𝐶

Distributor 𝐷
2-1.
Send 𝑃𝑟𝑜𝑜𝑓𝑃2 and 𝐻𝑝𝑤𝐶 n-1.

Send 𝑃𝑟𝑜𝑜𝑓𝑃𝑛 and 𝐻𝑝𝑤𝐶
Blockchain

Figure 4: Proving ownership in Method A

When executing the packing process, distributor D enters the password, and the proposed

system compares the hash value of this password with the recorded hash value to verify

the match between the executor of the packing process and the prover of ownership.

We use Figure 4 and 5 to illustrate the steps in detail. We assume that distributor D

in Figure 2 has received the products from manufacturers M1,M2, · · · ,Mn. Accordingly,

distributor D possesses secret tokens st1, st2, · · · , stn, and the blockchain records its hash

value Hst1 ,Hst2 , · · · ,Hstn . In Figure 4 and 5, Owner represents the field that records the

product owner, Hash[st] represents the field that records the hash value of a secret token,

and Hash[pw] represents the field that records the hash value of a password for the packing

process.

1. Distributor D prepares a password pwC and its hash value HpwC .

2. Distributor D proves ownership of n products using secret token.

1-1. For product P1, distributor D generates a ownership proof ProofP1 using secret

token st1, then sends ProofP1 and hash value HpwC to the blockchain.

1-2. The blockchain verifies ProofP1 using Hst1 and records hash value HpwC if the

22

Distributor 𝐷
3. Send 𝑝𝑤𝐶

4. Verify 𝑝𝑤𝐶,
then update

owner information

𝑃1 Owner

Hash[st]

Hash[pw]

𝑃2 Owner

Hash[st]

Hash[pw]

𝑃𝑛 Owner

Hash[st]

Hash[pw]

𝐸𝑛𝑐(𝐴𝐷 , 𝑀1)𝐻𝑠𝑡1𝐻𝑝𝑤𝐶𝐸𝑛𝑐(𝐴𝐷, 𝑀2)𝐻𝑠𝑡2𝐻𝑝𝑤𝐶
𝐸𝑛𝑐(𝐴𝐷, 𝑀𝑛)𝐻𝑠𝑡𝑛𝐻𝑝𝑤𝐶

𝐸𝑃𝐶𝐶𝐻𝑠𝑡1
𝐸𝑃𝐶𝐶𝐻𝑠𝑡2

𝐸𝑃𝐶𝐶𝐻𝑠𝑡𝑛

Blockchain

Figure 5: Updating owner information in Method A

proof is valid.

2-1. For product P2, distributor D generates a ownership proof ProofP2 using secret

token st2, then sends ProofP2 and hash value HpwC to the blockchain.

2-2. The blockchain verifies ProofP2 using Hst2 and records hash value HpwC if the

proof is valid.

...

n-1. For product Pn, distributor D generates a ownership proof ProofPn using secret

token stn, then sends ProofPn and hash value HpwC to the blockchain.

n-2. The blockchain verifies ProofPn using Hstn and records hash value HpwC if the

proof is valid.

3. Distributor D sends pwC to the blockchain.

4. The blockchain generates a hash value from pwC , compares the hash value with HpwC

23

Distributor 𝐷

𝑃1 Owner

Hash[st]𝑃2 Owner

Hash[st]

𝑃𝑛 Owner

Hash[st]

𝐸𝑛𝑐(𝐴𝐷 , 𝑀1)𝐻𝑠𝑡1𝐸𝑛𝑐(𝐴𝐷, 𝑀2)𝐻𝑠𝑡2
𝐸𝑛𝑐(𝐴𝐷, 𝑀𝑛)𝐻𝑠𝑡𝑛

𝐸𝑃𝐶𝐶𝐻𝑠𝑡1𝐸𝑃𝐶𝐶𝐻𝑠𝑡2
𝐸𝑃𝐶𝐶𝐻𝑠𝑡𝑛

Blockchain

2. Verify 𝑃𝑟𝑜𝑜𝑓𝑃1,𝑃2,…,𝑃𝑛,
then update

owner information

1. Send 𝑃𝑟𝑜𝑜𝑓𝑃1,𝑃2,…,𝑃𝑛

Figure 6: Packing process of Method B

in Hash[pw] of P1, P2, · · · , Pn, and if they match, the blockchain updates Owner of

products P1, P2, · · · , Pn with container C’s EPC.

In Method A, when there are n products to be packed, it is necessary to perform the

ownership proof n times. Each proof is a proof of knowledge of a single secret token.

Therefore, as shown in Table 3, the proposed system requires n proofs, and the size of

each proof is O(1).

Method B

In Method B, we use a single aggregated proof, which aggregates the proofs of each secret

token. If the system verifies this proof as valid, it updates the ownership information.

We use Figure 6 to illustrate the steps in detail. We also assume that distributor D

in Figure 2 has received the products from manufacturers M1,M2, · · · ,Mn. Accordingly,

distributor D possesses secret tokens st1, st2, · · · , stn, and the blockchain records its hash

value Hst1 ,Hst2 , · · · ,Hstn .

1. Distributor D generates an aggregated proof ProofP1,P2,···,Pn using secret to-

kens st1, st2, · · · , stn, then sends it to the blockchain.

24

𝐸𝑛𝑐(𝐴𝑀1⊕𝐴𝐷 , 𝑀1)
Decrypt using 𝑀1’s private key

𝐴𝐷
𝐴𝑀1 ⨁𝐴𝐷

𝐴𝑅
𝐴𝐷 ⨁𝐴𝑅

𝐴𝑋1
𝐴𝑅 ⨁𝐴𝑋1

𝐸𝑛𝑐(𝐴𝐷⊕𝐴𝑅 , 𝑀1⋯𝑀𝑛) 𝐸𝑛𝑐(𝐴𝑅 ⊕𝐴𝑋1, 𝑀1)

𝐴𝑀1 ⊕ ⊕ ⊕
Figure 7: Tracking product P1 by manufacturer M1.

2. The blockchain verifies ProofP1,P2,···,Pn using Hst1 ,Hst2 , · · · ,Hstn , and if the proof

is valid, the blockchain updates Owner of products P1, P2, · · · , Pn with container C’s

EPC.

Distributor D generates an aggregated proof taking all the secret tokens of n products

as input. The aggregated proof shows that the hash values of the inputs match the hash

values used to verify this proof. By using the hash values Hst1 ,Hst2 , · · · ,Hstn for the

verification of this proof, the system can verify ownership of all n products at once.

In Method B, when there are n products to be packed, a single proof shows that one

knows n secret tokens. Therefore, as shown in Table 3, the proposed system only needs

one proof, but the size of the proof is O(n).

4.3 Product Tracking

We explain how manufacturers track their products in the distribution example in Figure 2.

Figure 7 shows a diagram of how manufacturer M1 tracks product P1. As described

in Section 4.1, we use the exclusive-OR of the owner’s address and the recipient’s address

as a message for encryption. Therefore, we can get the following ownership history of

product P1: AM1 , Enc(AM1 ⊕ AD,M1), EPCC , Enc(AR ⊕ AX1 ,M1). Moreover, we

can get the following ownership history of container C: Enc(AD ⊕ AR,M1 · · ·Mn). All

25

Table 4: Variables for managing manufacturer information

Variable Description

companyPrefix Manufacturer’s company prefix used in EPC

companyName Manufacturer’s name

of the ciphertexts in these histories have manufacturer M1 specified as the entity who

can decrypt. Therefore, manufacturer M1 decrypts these ciphertexts and obtains the

following values: AM1 ⊕ AD, AD ⊕ AR, AR ⊕ AX1 . Manufacturer M1 then calculates the

exclusive-OR of AM1 and AM1 ⊕ AD to obtain address AD. Manufacturer M1 further

calculates the exclusive-OR of AD and AD ⊕ AR to obtain address AR. By repeating

this, manufacturer M1 can finally identify the following ownership history of product P1:

manufacturer M1, distributor D, retailer R, consumer X1.

4.4 Design Details

We explain the details of the processes in the proposed system. In the following, we

explain the information to be recorded in the blockchain in the proposed system. We then

describe the registration of the manufacturer, product manufacturing, product shipping,

product receipt, product packing and product unpacking.

4.4.1 Information Recorded in Blockchain

The proposed system records manufacturer information, product information, and infor-

mation necessary to verify ownership.

Information about manufacturers

In order to manage a supply chain, it is necessary to enroll products in the blockchain.

The proposed system accepts product enrollment only when the manufacturing process is

done by the registered manufacturer. We show the information to record the registered

manufacturer in Table 4. This information is uniquely mapped to the manufacturer’s

blockchain address. A smart contract ManufacturersManagerContract (MMC) manages

this information, and updates the information when the function provided by this smart

26

Table 5: Variables for managing product information

Variable Description

manufacturer Blockchain address of the product manufacturer

owner Encrypted blockchain address of the product owner

recipient Encrypted blockchain address of the product recipient

status Product status

number Block number when the product enrolled

history History of the product owners

Table 6: Variables for managing product/container information

Variable Description

containedItems EPCs of the products contained in a product/container

contract is executed.

Information about products

Table 5 shows the product information that the proposed system manages. Since the

proposed method uses EPC to manage product information, the information in Table 5 is

uniquely mapped to EPC. A smart contract ProductsManagerContract (PMC) manages

this information, and updates the information when the function provided by this smart

contract is executed.

PMC also manages the information of products to realize the manufacturing process or

containers to realize the packing process. In addition to the information in Table 5, the

system manages the information in Table 6. For containers, number in Table 5 records

the block number when the container is started to use. This allows us to get the past

information if the container is reused.

Information about zero-knowledge proofs

Table 7 shows the information that the proposed system manages for ownership au-

thentication. This information is uniquely mapped to the EPC. A smart contract

VerifierContract (VC) manages this information, and updates the information when

27

Table 7: Variables for managing ownership authentication

Variable Description

verifyingKey Verification key of zk-SNARKs

secretTokenHash Hash value of a secret token

verifiedProof Verified proof to prevent diversion

the function provided by this smart contract is executed.

VC also provides a function verifyTx() to verify the proof of the argument. If the

proof is verified as valid, verifyTx() returns True; if it fails, it returns False.

4.4.2 Manufacturer Registration

Algorithm 1 enrollManufacturer(): Enrolling process for a manufacturer’s informa-

tion

Input: The message sender’s address (Amsg), Manufacturer M’s address (AM), company prefix

(companyPrefix), company name (companyName)

1: if Amsg is the address of an Admin then

2: companyPrefix[AM] ← companyPrefix

3: companyName[AM] ← companyName

4: end if

Algorithm 1 shows the process of registering a manufacturer’s information. This infor-

mation is required when executing the manufacturing process. This function is provided

in MMC. We assume an administrator who manages manufacturers’ information. We as-

sume that the administrator is GS1, who manages company prefixes and EPCs. Only the

administrator can execute this process. This function checks if the executor matches the

administrator in step 1. If found to be True, MMC records companyPrefix and companyName

as mapping to the manufacturer’s address AM .

4.4.3 Product Manufacturing

The following are the processes for enrolling a manufactured product. These are provided

in PMC.

28

Algorithm 2 enrollProduct(): Enrolling process of a product

Input: EPC, The message sender’s address (Amsg)

1: if the company prefix in EPC is the same with companyPrefix[Amsg] in MMC then

2: manufacturer[EPC] ← Amsg

3: owner[EPC] ← Amsg

4: status[EPC] ← Owned

5: number[EPC] ← block.number

6: history[EPC] ← Amsg

7: end if

Algorithm 2 shows the process of enrolling a new product simply. This function, in

step 1, checks whether the company prefix in the EPC matches the company prefix of the

executor. If found to be True, PMC records manufacturer, owner, status, number and

history as mapping to the product’s EPC. In step 5, the built-in variable block.number

is used to record the block number when a new product is enrolled.

Algorithm 3 shows the process of registering a new product that consists of multiple

products as parts. As in Algorithm 2, this function, in step 1, checks the company prefix in

the EPC. In step 3, the function checks that status of each element in EPCs is Owned

and that owner is Amsg. If these are found to be True, PMC updates owner of each element

of EPCs to EPC and status to Transformed, and records EPC, which is the owner

of EPCs, to history. PMC records EPCs in containedItems, which shows the parts of

EPC’s product. PMC also records manufacturer, owner, status, number and history

as mapping to the new product’s EPC. If the condition in step 3 is found to be False,

revert() function is executed. The revert() is the built-in function in Ethereum. Once

this function is executed, all data will return to the state before transformProduct() was

executed.

Algorithm 4 shows the process of registering a new product that consists of multi-

ple products as parts, similar to Algorithm 3. These processes differ in status spec-

ified in step 5. This difference in status indicates whether the products used as

parts of the transformed/assembled product can be retrieved. The products enrolled

with transformProduct() cannot be disassembled, while the products registered with

assembleProduct() can be disassembled to retrieve its parts.

29

Algorithm 3 transformProduct(): Enrolling process of a product by transforming prod-

ucts

Input: Array of EPCs to be transformed (EPCs), New Product’s EPC (EPC)

1: if the company prefix in EPC is the same with companyPrefix[Amsg] in MMC then

2: for i = 1→ n do

3: if status[EPCs[i]] = Owned AND

owner[EPCs[i]] = Amsg then

4: owner[EPCs[i]] ← EPC

5: status[EPCs[i]] ← Transformed

6: history[EPCs[i]] ← EPC

7: else

8: revert()

9: end if

10: end for

11: containedItems[EPC] ← EPCs

12: manufacturer[EPC] ← Amsg

13: owner[EPC] ← Amsg

14: status[EPC] ← Owned

15: number[EPC] ← block.number

16: history[EPC] ← Amsg

17: end if

30

Algorithm 4 assembleProduct(): Enrolling process of a product by assembling products

Input: Array of EPCs to be assembled (EPCs), New Product’s EPC (EPC)

1: if the company prefix in EPC is the same with companyPrefix[Amsg] in MMC then

2: for i = 1→ n do

3: if status[EPCs[i]] = Owned AND

owner[EPCs[i]] = Amsg then

4: owner[EPCs[i]] ← EPC

5: status[EPCs[i]] ← Assembled

6: history[EPCs[i]] ← EPC

7: else

8: revert()

9: end if

10: end for

11: containedItems[EPC] ← EPCs

12: manufacturer[EPC] ← Amsg

13: owner[EPC] ← Amsg

14: status[EPC] ← Owned

15: number[EPC] ← block.number

16: history[EPC] ← Amsg

17: end if

31

4.4.4 Product Shipment

Algorithm 5 shipProduct(): Shipping process

Input: EPC, a proof of ownership (Proof), the encrypted recipient’s address (Erec), a hash value

of the secret token (Hst), a verifying key (vk)

1: if status[EPC] = Owned and

Proof is not recorded in VC.verifiedProof[EPC] and

VC.verifyTx(Proof) = True then

2: recipient[EPC] ← Erec

3: status[EPC] ← Shipped

4: VC.verifyingKey[EPC] ← vk

5: VC.secretTokenHash[EPC] ← Hst

6: end if

Algorithm 5 shows the process of shipping a product/container by the owner. This is

provided in PMC. This function checks 3 conditions in step 1. First condition is to check that

status of EPC is Owned. Second condition is to check that Proof is not recorded in VC’s

verifiedProof[EPC], where the proofs verified before are recorded. Third condition is

to check that the executor is the owner by executing verifyTx() of VC with Proof as

input. If these are found to be True, PMC updates recipient of EPC to Erec and that

status to Shipped. In addition, VC updates verifyingKey and secretTokenHash.

4.4.5 Product Receipt

Algorithm 6 receiveProduct(): Receiving process

Input: EPC, a proof of ownership (Proof)

1: if status[EPC] = Shipped and

VC.verifyTx(Proof) = True then

2: owner[EPC] ← recipient[EPC]

3: status[EPC] ← Owned

4: history[EPC] ← owner[EPC]

5: VC.verifiedProof[EPC] ← Proof

6: end if

Algorithm 6 shows the process of receiving the product/container shipped with

32

shipProduct(). This is provided in PMC. This function checks 2 conditions in step 1.

First condition is to check that status of EPC is Shipped. Second condition is to check

that the executor is the recipient by executing verifyTx() of VC with Proof as input.

If these are found to be True, PMC updates owner of EPC with recipient and that

status to Owned. PMC also adds a new owner to history. In addition, VC adds Proof

to verifiedProof.

4.4.6 Product Packing

We proposed two methods of the packing process, Method A and Method B. The following

functions are provided in PMC. In the proposed system, we can not only pack products but

also pack containers.

Method A

In Method A, the executor of the packing process first executes preparePacking(), which

proves the ownership for each product/container to be packed. The executor then executes

packProductsMethodA(), which is the packing process of Method A.

Algorithm 7 preparePacking(): Pre-process of method A’s packing process

Input: EPC, a proof of ownership (Proof), the hash value of the password (Hpw)

1: if status[EPC] = Owned and

VC.verifyTx(Proof) = True then

2: VC.passwordHash[EPC] ← Hpw

3: end if

Algorithm 7 shows a pre-process for the packing process of Method A. This function

checks 2 conditions in step 1. First condition is to check that status of EPC is Owned.

Second condition is to check that the executor is the recipient of the product by executing

verifyTx() of VC with Proof as input. If these are found to be True, VC records Hpw,

which is the hash value of a password.

Algorithm 8 shows the packing process of Method A. In step 1, this function checks

that status of EPC is NotInUse. If found to be True, in step 3, this function checks

that status of each element in EPCs is Owned. It also checks that passwordHash of VC

matches the hash value obtained from pw. If these are found to be True, PMC updates

33

Algorithm 8 packProductsMethodA(): Packing process of method A

Input: Array of EPCs to be packed (EPCs), the password (pw), Container’s EPC (EPC)

1: if status[EPC] = NotInUse then

2: for i = 1→ n do

3: if status[EPCs[i]] = Owned and

Hash(pw) = VC.passwordHash[EPCs[i]] then

4: owner[EPCs[i]] ← EPC

5: status[EPCs[i]] ← Packed

6: history[EPCs[i]] ← EPC

7: else

8: revert()

9: end if

10: end for

11: end if

12: containedItems[EPC] ← EPCs

13: number[EPC] ← block.number

14: status[EPC] ← Owned

owner of each element in EPCs to EPC and that status to Packed, and adds EPC to

history. PMC records EPCs in containedItems, which shows the products/containers

packed in EPC’s container. PMC also records the block number when the container starts

to use. Finally, PMC records Owned in status with EPC.

Method B

In Method B, the executor of the packing process executes only packProductsMethodB().

Algorithm 9 shows the packing process of Method B. This function checks 2 conditions

in step 1. First condition is to check that status of EPC is NotInUse. Second condition

is to check that the executor is the owner of all elements of EPCs by executing verifyTx()

of VC with Proofagg as input. If found to be True, this function checks status is Owned in

step 3. If found to be True, PMC updates owner of each element in EPCs to EPC and that

status to Packed, and adds EPC to history. PMC records EPCs in containedItems,

which shows the products/containers packed in EPC’s container. PMC also records Owned

in status with EPC.

34

Algorithm 9 packProductsMethodB(): Packing process of method B

Input: Array of EPCs to be packed (EPCs), an aggregated proof of ownership (Proofagg), Con-

tainer’s EPC (EPC)

1: if status[EPC] = NotInUse and

VC.verifyTx(Proofagg) = True then

2: for i = 1→ n do

3: if status[EPCs[i]] = Owned then

4: owner[EPCs[i]] ← EPC

5: status[EPCs[i]] ← Packed

6: history[EPCs[i]] ← EPC

7: else

8: revert()

9: end if

10: end for

11: containedItems[EPC] ← EPCs

12: status[EPC] ← Owned

13: end if

4.4.7 Product Disassembling/Unpacking

The following are the processes for dis-aggregation. These are provided in PMC.

Algorithm 10 shows the disassembling process for an assembled product enrolled with

assembleProduct(). The disassembling process makes it possible to redistribute and

reuse the parts. This function checks 3 conditions in step 1. First condition is to check

that status of EPC is Owned. Second condition is to check that status of the first

element of containedItems is Assembled. This condition makes it possible to check that

EPC’s product is enrolled with assembleProduct() and it consists of the parts. Third

condition is to check that the executor is the owner by executing verifyTx() of VC with

Proof as input. If these are found to be True, PMC updates all the components assembled

in EPC’s product to Owned. It then deletes containedItems and sets EPC’s status

to Destroyed. Disassembled products cannot be reused. Therefore, PMC sets the status to

indicate that the product can no longer be used. Finally, PMC adds Disassembled, which

shows the product was disassembled, to history.

Algorithm 11 shows the unpacking process for a container. This function is similar

35

Algorithm 10 disassembleProducts(): Disassembling process

Input: a proof of ownership (Proof), Product’s EPC (EPC)

1: if status[EPC] = Owned and

status[containedItems[EPC][0]] = Assembled and

VC.verifyTx(Proof) = True then

2: for i = 1→ n do

3: status[containedItems[EPC][i]] ← Owned

4: end for

5: delete containedItems[EPC]

6: status[EPC] ← Destroyed

7: history[EPC] ← Disassembled

8: end if

Algorithm 11 unpackProducts(): Unpacking process

Input: a proof of ownership (Proof), Container’s EPC (EPC)

1: if status[EPC] = Owned and

status[containedItems[EPC][0]] = Packed and

VC.verifyTx(Proof) = True then

2: for i = 1→ n do

3: status[containedItems[EPC][i]] ← Owned

4: end for

5: delete containedItems[EPC]

6: status[EPC] ← NotInUse

7: history[EPC] ← Unpacked

8: end if

36

to Algorithm 10. These processes differ in status specified in step 1 and step 6. Second

condition in step 1 is to check that status of the first element of containedItems is

Packed. This condition makes it possible to check that EPC’s container was processed

with the packing process. In step 6, PMC sets EPC’s status to NotInUse. Containers are

not disposable and are often reused. Therefore, PMC sets the status to indicate that the

container is not currently in use. Finally, PMC adds Unpacked, which shows the product

was unpacked, to history.

37

Table 8: Product/Container and their EPCs in the scenarios

Product/Container EPC

P1 14908973607445703702630439433

P2 14909474007403800299327527434

P3 14909974407361896896024615435

P4 14910474807319993492721703436

C1 00000000000000000000000000001

Table 9: Entities and their addresses in the scenarios

Party Address

Manufacturer M1 0xbCa677ff4eB2DfEC87a103392A356b65377Dc94A

Manufacturer M2 0x48D439Ea70Eae2D06c2DC1F817C41FB18d11b6cD

Manufacturer M3 0xd74ba48c88A0428D1632fFDcB26cF9795cE67e28

Manufacturer M4 0xD7B4a8E0a1452e16aDc36D8fd809723522E229c8

Party X1 0xd2b5Fb8288fCDbFFb0e7373b31dc60F2C60f89Fe

Party X2 0x67e0Ff70C80afdcB568e57ac2bfB6e3b32C00a8b

Party Y1 0x201d10515b77C66670f344c83Bd4aCc73Ac2c931

Party Y2 0x4e1E52A4AB99695e928014cB3C374DF36d238d44

Party Y3 0x0eEfa85FF18d3ab29DAe91294167c89cB0387d55

Party Y4 0x62b03399CfD45e37eC095c5385ead3d4624eA9d0

5 Evaluation

We implemented the proposed system and verified the operations of the proposed system

using the scenarios. We also measured the transaction fees to discuss use cases of the

proposed system.

5.1 Implementation

We implemented the proposed system using Ethereum, a public permissionless blockchain.

We used version 0.8.4 of Solidity [17] to write the smart contracts of the proposed sys-

38

Unpacking Process

Container 𝐶1

Party 𝑋2Product 𝑃1
Product 𝑃2

Product 𝑃4
Product 𝑃3

Manufacturer 𝑀1
Manufacturer 𝑀2

Manufacturer 𝑀4
Manufacturer 𝑀3

Packing Process

Container 𝐶1

Party 𝑋1
Product 𝑃1
Product 𝑃2
Product 𝑃4
Product 𝑃3

Product 𝑃1
Product 𝑃2
Product 𝑃4
Product 𝑃3

Product 𝑃1
Product 𝑃2

Product 𝑃4
Product 𝑃3

Party 𝑌1
Party 𝑌2

Party 𝑌4
Party 𝑌3

Figure 8: Product distribution in Scenario 1

tem. We used OpenABE [18] for the implementation of attribute-based encryption, and

ZoKrates [19], a toolbox of zk-SNARK, for the implementation of zk-SNARKs. We as-

sumed that the parties in the supply chain have secure communication channels.

Table 8 shows the information of products and a container used in this implementation,

and Table 9 shows the information on manufacturers and parties.

5.2 Scenarios

We describe the scenarios used for the operation verification. We used the private network

provided by Ganache [20].

Let us explain the state before the start of the scenarios. The blockchain address and

company prefix of manufacturer Mi(i ∈∈ {1.4}) are registered in MMC. Manufacturer Mi

holds the EPC of its product Pi. The company prefix of product Pi’s EPC corresponds to

manufacturer Mi’s company prefix. In addition to the manufacturers and parties listed in

Table 9, there are also manufacturers M ′ who attempt to distribute counterfeit products

and party Z who are not involved in the supply chain.

5.2.1 Scenario 1: Normal product distribution

In this scenario, we verify that the product distribution can be carried out as designed

in the proposed system. Products P1, P2, P3 and P4 are distributed from Manufactur-

ers M1,M2,M3 and M4 to parties Y1, Y2, Y3 and Y4 as shown in Figure 8. The scenario is

39

shown below.

1. Manufacturer Mi(i ∈ {1..4}) executes the enrolling process for product Pi.

2. Manufacturer Mi executes the shipping process of product Pi with specifying

party X1 as the recipient.

3. Party X1 executes the receiving process of product Pi with a proof that he/she is

the specified recipient.

4. Party X1 executes the packing process of container C1 for products P1, P2, P3 and

P4.

5. Party X1 executes the shipping process of container C1 with specifying party X2 as

the recipient.

6. Party X2 executes the receiving process of container C1 with a proof that he/she is

the specified recipient.

7. Party X2 executes the unpacking process of container C1 and retrieves prod-

ucts P1, P2, P3 and P4.

8. Party X2 executes the shipping process of product P1 with specifying party Y1 as

the recipient.

9. Party Y1 executes the receiving process of product P1 with a proof that he/she is

the specified recipient.

5.2.2 Scenario 2: Confirming the manufacturer

In this scenario, we verify that any party can identify the manufacturer of the product.

After product distribution in Scenario 1, various parties attempt to obtain the manu-

facturer information of the product P1. The scenario is shown below.

• Party X1, which is involved in the supply chain, confirms that the manufacturer of

product P1 is M1.

• Party Z, which is not involved in the supply chain, confirms that the manufacturer

of product P1 is M1.

40

5.2.3 Scenario 3: Hiding the ownership information

In this scenario, we verify that the parties involved in the supply chain cannot know any

more information other than the previous owner and the next owner. We also verify that

no party, which is not involved in the supply chain, can browse any information of the

product owner.

After product distribution in Scenario 1, various parties attempt to obtain the distri-

bution information of product P1. The scenario is shown below.

• Party X1 knows the fact that it received product P1 from manufacturer M1 and

shipped container C1 to party X2, but does not know any other distribution rela-

tionship.

• Party X2 knows the fact that it received container C1 from party X1 and shipped it

to party Y1, but does not know any other distribution relationship.

• Party Y1 knows the fact that it received product P1 from party X2, but does not

know any other distribution relationship.

• Party Z, which is not involved in the supply chain, does not know the distribution

relationship among manufacturer M1, parties X1, X2 and Y1.

5.2.4 Scenario 4: Distribution channel tracking by the manufacturer

In this scenario, we verify that the manufacturer can identify the distribution channel of

its product.

After product distribution in Scenario 1, manufacturer M1 attempts to identify the

distribution channel of product P1. The scenario is shown below.

• Manufacturer M1 obtains the encrypted ownership history from the blockchain.

• Manufacturer M1 decrypts the ownership history to obtain the distribution channel

represented by the blockchain address.

41

Table 10: Data recorded in PMC at Step 1 of Scenario 1

Variable Value

manufacturer 0xbCa677ff4eB2DfEC87a103392A356b65377Dc94A

owner null

recipient null

status Owned

Table 11: Data recorded in PMC at Step 2 of Scenario 1

Variable Value

manufacturer 0xbCa677ff4eB2DfEC87a103392A356b65377Dc94A

owner null

recipient AAABLaETqm/JkYo90QKINYMF89jvNGt6CrIBFaEKQ194NjlmNmJjN6EksqEhAgp1

+PzwFeToZHqIih2UR+3iZzNSFAAMYg9T6zMXkf1uoQZDcHJpbWWhJLKhIQIE0gZq

OfaRyROLuuumZe1ifQPQfuRfuuHvvDe7TeP+7aEKRF94NjlmNmJjN6FEs6FBAhL2

ce0+1QVnap2Je1QIRmQ381lHFM8xPlaGaZbRj9l2F9snkD5pTHsjrtVeuGKzfAKN

vRrTZLrzlFxN43gifIShA19FRKFFHQAAAEBGFjWIR+kCqs+PXQW79D6lyDDUijD3

1tIIes6b1b5Y6uvp0WIJVmX1OF7kMH5H82KhynDrL0BZbb1ip/iJC/IWoQZwb2xp

Y3mhDR0AAAAIeDY5ZjZiYzcAAACDoROqAEaRij3RAog1gwXz2O80a3oKoWyhAkNU

oS8dAAAAKjieiYmSfEdrt9zpAU9RBMzW4qdJ/dEkVPPf+eMxclaGFKFlFfJGLPFF

IqECSVahFR0AAAAQKY0+/weK6AY2FbT/wBilu6EDVGFnoRUdAAAAEL2jL93ojN8d

ixSDGLVEEQM=

status Shipped

5.2.5 Scenario 5: Preventing distribution of counterfeit goods

In this scenario, we verify that a party, which is not a manufacturer, cannot start a product

distribution by pretending as if it is the manufacturer.

Manufacturer M ′ tries to distribute product P1. The scenario is shown below.

• Manufacturer M ′ executes the enrolling process of product P1, but the execution

fails.

5.3 Results

We show the results of running the scenarios and the measured transaction fees.

42

Table 12: Data recorded in PMC at Step 3 of Scenario 1

Variable Value

manufacturer 0xbCa677ff4eB2DfEC87a103392A356b65377Dc94A

owner AAABLaETqm/JkYo90QKINYMF89jvNGt6CrIBFaEKQ194NjlmNmJjN6EksqEhAgp1

+PzwFeToZHqIih2UR+3iZzNSFAAMYg9T6zMXkf1uoQZDcHJpbWWhJLKhIQIE0gZq

OfaRyROLuuumZe1ifQPQfuRfuuHvvDe7TeP+7aEKRF94NjlmNmJjN6FEs6FBAhL2

ce0+1QVnap2Je1QIRmQ381lHFM8xPlaGaZbRj9l2F9snkD5pTHsjrtVeuGKzfAKN

vRrTZLrzlFxN43gifIShA19FRKFFHQAAAEBGFjWIR+kCqs+PXQW79D6lyDDUijD3

1tIIes6b1b5Y6uvp0WIJVmX1OF7kMH5H82KhynDrL0BZbb1ip/iJC/IWoQZwb2xp

Y3mhDR0AAAAIeDY5ZjZiYzcAAACDoROqAEaRij3RAog1gwXz2O80a3oKoWyhAkNU

oS8dAAAAKjieiYmSfEdrt9zpAU9RBMzW4qdJ/dEkVPPf+eMxclaGFKFlFfJGLPFF

IqECSVahFR0AAAAQKY0+/weK6AY2FbT/wBilu6EDVGFnoRUdAAAAEL2jL93ojN8d

ixSDGLVEEQM=

recipient null

status Owned

Table 13: Data recorded in PMC at the end of Scenario 1

Variable Value

manufacturer 0xbCa677ff4eB2DfEC87a103392A356b65377Dc94A

owner AAABLaETqm/Ju+nXa7MJtwGLqo8ioWVdBrIBFaEKQ194NjlmNmJjN6EksqEhAwg1

afC1LXBsqCjUJPNt22Q5vzh9+gpr32Zk5WG1Uzc4oQZDcHJpbWWhJLKhIQIjmKQY

RtoH+9tA6YVqWQPhmOsqEereXjTvvx55SNcM8KEKRF94NjlmNmJjN6FEs6FBAwE/

4F8m3SUZS7kTvhWmPxn6co/RDKOGuTCZjabV4JsrBrV/GxOZOWHmx9bCDJsUwx2y

3JIF7UaL3E7/NSrrTtWhA19FRKFFHQAAAEAJ+Rf3GA3uCLcv3DQhzo4EL6bKswPD

BI5MnpX4yW7VD6Vsmj8CYlhUBImTgQKshvAIftlVD2dIqOtrAXXzDcVRoQZwb2xp

Y3mhDR0AAAAIeDY5ZjZiYzcAAACDoROqAEa76ddrswm3AYuqjyKhZV0GoWyhAkNU

oS8dAAAAKkZJjx+pVzFE5NYBEDSzlRGVNJSybns31KxtdvV/TNnJQqJGz6GCd6IZ

yqECSVahFR0AAAAQGJPuIp5xi2XO8oh4j7cNOaEDVGFnoRUdAAAAEGeLtG+xm4lq

3Gk3cQ2xv64=

recipient null

status Owned

43

Table 14: Manufacturer information of product P1 obtained in Scenario 2

Information Value

Manufacturer’s address 0xbCa677ff4eB2DfEC87a103392A356b65377Dc94A

5.3.1 Scenario 1: Normal product distribution

As a result of scenario 1, the enrollment of product P1 by manufacturer M1 in step 1 was

successful. Table 10 shows the information recorded in PMC at this time. Table 11 shows

the information recorded in PMC when manufacturer M1 executed the shipping process

in step 2. Table 12 shows the information recorded in PMC when party X1 executed the

receiving process in step 3. Finally, product P1 was distributed to party Y1, and we found

the information in Table 13 was recorded in PMC. Therefore, we verified that product P1

was properly distributed starting from manufacturer M1 to party Y1.

5.3.2 Scenario 2: Confirming the manufacturer

As a result of scenario 2, we obtained the manufacturer’s address shown in Table 14,

regardless of the supply chain involvement. In this scenario, we used the EPC of prod-

uct P1 in Table 14 to obtain the manufacturer information. The obtained address matches

manufacturerM1’s address. Therefore, we verified that the parties can identify the manu-

facturer of product P1 is M1.

5.3.3 Scenario 3: Hiding the ownership information

As a result of scenario 3, party X1 could naturally identify the information of manufac-

turer M1 and party X2 because they are in the distribution relationships. However, since

the other information stored in PMC was encrypted, party X1 could not identify the infor-

mation about distribution relationships, in which he/she was not involved. For example,

the ownership information in Table 13 is encrypted, and since party X1 doesn’t have the

decryption key, he/she cannot decrypt and identify the distribution relationship between

X2 and Y1. Similarly, parties X2 and Y1 were able to identify information about the dis-

tribution relationships they were involved in, but not about the distribution they were not

involved in. Since party Z could not decrypt the encrypted ownership information, he/she

44

Table 15: Ownership history of product P1 obtained in Scenario 4

Index Value

1 AAABLaETqm/JkYo90QKINYMF89jvNGt6CrIBFaEKQ194NjlmNmJjN6EksqEhAgp1+PzwF

eToZHqIih2UR+3iZzNSFAAMYg9T6zMXkf1uoQZDcHJpbWWhJLKhIQIE0gZqOfaRyROLuu

umZe1ifQPQfuRfuuHvvDe7TeP+7aEKRF94NjlmNmJjN6FEs6FBAhL2ce0+1QVnap2Je1Q

IRmQ381lHFM8xPlaGaZbRj9l2F9snkD5pTHsjrtVeuGKzfAKNvRrTZLrzlFxN43gifISh

A19FRKFFHQAAAEBGFjWIR+kCqs+PXQW79D6lyDDUijD31tIIes6b1b5Y6uvp0WIJVmX1O

F7kMH5H82KhynDrL0BZbb1ip/iJC/IWoQZwb2xpY3mhDR0AAAAIeDY5ZjZiYzcAAACDoR

OqAEaRij3RAog1gwXz2O80a3oKoWyhAkNUoS8dAAAAKjieiYmSfEdrt9zpAU9RBMzW4qd

J/dEkVPPf+eMxclaGFKFlFfJGLPFFIqECSVahFR0AAAAQKY0+/weK6AY2FbT/wBilu6ED

VGFnoRUdAAAAEL2jL93ojN8dixSDGLVEEQM=

2 00000000000000000000000000001

3 AAABLaETqm/Ju+nXa7MJtwGLqo8ioWVdBrIBFaEKQ194NjlmNmJjN6EksqEhAwg1afC1L

XBsqCjUJPNt22Q5vzh9+gpr32Zk5WG1Uzc4oQZDcHJpbWWhJLKhIQIjmKQYRtoH+9tA6Y

VqWQPhmOsqEereXjTvvx55SNcM8KEKRF94NjlmNmJjN6FEs6FBAwE/4F8m3SUZS7kTvhW

mPxn6co/RDKOGuTCZjabV4JsrBrV/GxOZOWHmx9bCDJsUwx2y3JIF7UaL3E7/NSrrTtWh

A19FRKFFHQAAAEAJ+Rf3GA3uCLcv3DQhzo4EL6bKswPDBI5MnpX4yW7VD6Vsmj8CYlhUB

ImTgQKshvAIftlVD2dIqOtrAXXzDcVRoQZwb2xpY3mhDR0AAAAIeDY5ZjZiYzcAAACDoR

OqAEa76ddrswm3AYuqjyKhZV0GoWyhAkNUoS8dAAAAKkZJjx+pVzFE5NYBEDSzlRGVNJS

ybns31KxtdvV/TNnJQqJGz6GCd6IZyqECSVahFR0AAAAQGJPuIp5xi2XO8oh4j7cNOaED

VGFnoRUdAAAAEGeLtG+xm4lq3Gk3cQ2xv64=

was unable to identify any distribution relationships.

45

Table 16: Ownership history of container C1 obtained in Scenario 4

Index Value

1 AAAC46ETqm/J5NPqzVjg5SXaMVplcxoAr7ICy6ELQ194MTNkZTQzNTWhJLKhIQMkdbEjG

P66GM2Va/muHldThlVLJ2ZjxN2lnhyV9qu+CKELQ194MWE3ZGFmMWOhJLKhIQMS9e5UhB

bJe2CqOOparv8mf0r9VrIzkrerYg9lzO2LuKEKQ194NjlmNmJjN6EksqEhAhClWYiCsyq

kIijalXXC2+4TQNkiEB5lM0ad5zO+6vZOoQpDX3hkM2VkNzhloSSyoSEDDmyyIAM1kjTF

CevW+isNRJGB925aDx66sRSJE5oMQ82hBkNwcmltZaEksqEhAwTI5ji0ZbxISALW47kpK

0wjFX7QmEXJyhfkqGovhbU8oQtEX3gxM2RlNDM1NaFEs6FBAgRUN7BsRZdQlpYlogdAdz

5xBBoJK/gQ3uG/fc2FW9v4F9G1yHvw9MC7JXr413Ru81AJ21zY9Q3Hha217gCDhJehC0R

feDFhN2RhZjFjoUSzoUEDDNMcNsJ6TAHwZzb73YVJCNA8kW59LaHy8T63CynNQf4HBdxv

XbLXNnJf6+OdW4BTRbXfT2P44QKZFv8F0Oc3tKEKRF94NjlmNmJjN6FEs6FBAw4/CNHEl

rbcutouU4QW4VwqJ8/qRFXYhnz4FcpW9UOcEkgxmEjKCBwf++DVsfsXuXoFud3vjaAaOv

VWJBl5rD2hCkRfeGQzZWQ3OGWhRLOhQQIJ0Kkv1oH9ZStjSgefJPZBmUi1/NkejDsc3wV

dIdp5Ixae1JdJC4961XEj6jElutwCCXFaWg6e1eetDJuX5SjGoQNfRUShRR0AAABAWLrF

l6Wz8PcdZYi7cZFMDzwst9SWKjV017EpknYMPpBIYRRG3DOFCvTOFI7EtvfTnBn89oqlo

KZiT5M4krATVqEGcG9saWN5oTMdAAAALng2OWY2YmM3IG9yIHhkM2VkNzhlIG9yIHgxM2

RlNDM1NSBvciB4MWE3ZGFmMWMAAACDoROqAEbk0+rNWODlJdoxWmVzGgCvoWyhAkNUoS8

dAAAAKovLnxW1rMfXExwx+DjhTOp9l75fuvD+TIFIttg3qrQYsqE8yfekWN8ayaECSVah

FR0AAAAQb8/qPpPahbq+o+zsEiBmiqEDVGFnoRUdAAAAEDoJLeUmpMU/vv8GLKpdqSA=

2 Unpacked

46

Table 17: Ownership history after decryption in Scenario 4

Index Value

1 0x6e138c7dc64e0413374634021be90b97f17240b4

2 0xb55504f240f62634e66960971a270ec9f4cf8375

3 0x47fdef21937d3bad267d1364102fc2fc0802c3ba

Table 18: Plain text of ownership history in Scenario 4

Index Value

1 0xd2b5fb8288fcdbffb0e7373b31dc60f2c60f89fe

2 0x67e0ff70C80afdcb568e57ac2bfb6e3b32C00a8b

3 0x201d10515b77C66670f344c83bd4acc73ac2c931

5.3.4 Scenario 4: Distribution channel tracking by the manufacturer

As a result of scenario 4, manufacturer M1 obtained the ownership history of product P1

shown in Table 15. Manufacturer M1 also obtained the ownership history of container C1

shown in Table 16, since the ownership history of P1 records that P1 was packed in

container C1. By using the decryption key held by manufacturer M1, M1 obtained the

values shown in Table 17. Manufacturer M1 computed the exclusive-OR as described in

Section 4.3, and obtained the values shown in Table 18. These values are the plaintext of

product P1’s distribution channel. Therefore, manufacturer M1 could track the product

distribution of product P1.

47

!
34///#655&

)"(*+&!%,#$#-."/.$"(00)"(*+&!7#**".%%8+2$!9:8+2$!;3<'34=;5///>6#&3 3'?.2

34:@.///3336@ 3 34A#:///#:=:&
B.@+- "

!"#$%#&!'!(')"(*+&!%,#$#-."/.$"(00)"(*+&!'.""(".*C'D,'.""("C'".E."!/'

".E."!✔ GH.'!"#$%#&!2($'H#%'@..$'".E."!.*'!('!H.'2$2!2#0'%!#!./'

I.#%($'1"(E2*.*'@J'!H.'&($!"#&!C'K)."L2%%2($'*.$2.*C'($0J'#00(?.*'L#$+A#&!+"."K/✔ B.@+-'!H.'!"#$%#&!2($'!('-.!'

L(".'2$A("L#!2($/'

Figure 9: Result screen of Scenario 5

Manufacture Ship Receive Pack
(Method A)

Pack
(Method B)

Unpack

Process

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
an

sa
ct

io
n

Fe
e

(g
as

 u
ni

ts
)

×106

Figure 10: Transaction fees for each process executed in Scenario 1

5.3.5 Scenario 5: Preventing distribution of counterfeit goods

As a result of scenario 5, manufacturer M ′ failed the enrollment of product P1 due to the

error shown in Figure 9. From the above results, we verified that the proposed system

can protect the distribution information, prevent unauthorized product distribution, and

enable manufacturers to track the distribution channel.

5.3.6 Transaction fees

We measured the transaction fees for each process that is executed in scenario 1. Figure 10

shows the result for transaction fees. The manufacturing process is the process executed by

the manufacturer. In the proposed system, the manufacturer’s blockchain address is not

48

0 20 40 60 80 100 120 140 160 180 200
Number of Products

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Tr

an
sa

ct
io

n
Fe

e
(g

as
 u

ni
ts

)
×107

Method A
Method B

Figure 11: Relationship between transaction fees and the number of products to be packed

encrypted because the distribution information involving the manufacturer is not subject

to protection. In other words, its blockchain address is recorded in the manufacturing

process. In contrast, the ownership information is recorded as ciphertext in all other

processes. The ciphertext is longer than the blockchain address and needs to be recorded

as a string. The method of ownership authentication, which is a condition of execution, is

also different. The manufacturer’s execution can simply use its blockchain address, while

other parties need to authenticate their ownership based on zero-knowledge proofs. The

proof of zero-knowledge proofs has a larger data size than the blockchain address. Thus,

the transaction fee for the manufacturing process is lower than for the other processes. In

addition, we have implemented two packing processes, Method A and B. We can find that

the packing process of Method A has a higher transaction fee than the packing process of

Method B. This is due to the number of executions. In Method A, the number of executions

is equal to the number of products to be packed in order to complete the packing process.

Method B, on the other hand, requires only one execution by aggregating proofs. As a

result, the total transaction fee required for the packing process of Method B is smaller

than that of Method A.

We also calculated the limit of the number of products that can be packed in the

packing processes. Figure 11 shows the relationship between the number of products and

49

the transaction fee. We measured the transaction fee up to 38 products. We calculated

the transaction fees after that are the values predicted by the least squares method from

the transaction fees up to that point. For Method A, the upper limit of the number of

products to be packed is calculated to be 179. This is a limitation due to Ethereum.

Ethereum has a block gas limit, which is the maximum transaction fee for each block.

The higher the amount of data and computation required for execution, the higher the

transaction fee. Therefore, as the number of products to be packed increases, the required

transaction fees also increase. In the current release of Ethereum, the block gas limit is

set to be 1.5 × 107gas units on average, so we calculated the upper limit by assuming

the block gas limit as 1.5 × 107gas units. For Method B, we found that the upper limit

of the number of products to be packed is 38. This is a constraint by ZoKrates that is

used for proof generation in zero-knowledge proofs. Method B requires a single proof that

aggregates ownership of all products to be packed. The larger the number of products

to be packed, the larger the proof size and the larger the computational complexity to

generate the proof. We found that if the number of products to be packed is more than

39, the computational limit is reached and the generation of the proof fails. In addition,

we calculated the upper limit for the case where the generation of proofs does not fail. We

calculated the same method as in Method A. As a result, we found the upper limit of the

number of products to be packed is 117, as shown in Figure 11. Method A reduces the

transaction fee required for each execution by splitting the execution into several parts.

As a result, the upper limit of products to be packed in Method A is larger than that of

Method B.

5.4 Discussion

In one distribution (shipping and receiving), the total transaction fee required for one

party is up to 2.6 × 106gas units. Converted to legal tender using the gas fee as of

January 25, 2022, the date of this evaluation, it is 765.8 USD, which is not cheap. We

then implemented the proposed system to Binance Smart Chain (BSC) [21], a public

permissionless blockchain that can use the same codes as Ethereum. As a result, the

transaction fee required for one party is at most 4.5 USD. Comparing Ethereum and BSC,

Ethereum is more decentralized. The consensus algorithm used by Ethereum allows anyone

50

to become a validator by staking a certain amount of ETH. Validators can hold the right to

propose blocks or to vote on the validity of another node’s block. In contrast, there are only

21 validators in BSC. This means that Ethereum is more decentralized and more secure

than BSC. The products where counterfeiting is a problem are comparatively expensive

products. For such products, it is likely to use Ethereum, which is more secure, even

with higher transaction fees. With the low transaction fees in BSC, the proposed system

can be applied to various products. If the distribution is based on the proposed system,

only the manufacturer can identify the product owner. This allows the manufacturer to

immediately recall products if they have any problems and defects. The transaction fee can

be regarded as a fee for receiving warranty in this case. Thus, by selecting a blockchain

depending on the target product, the proposed system can be applied to products of

various prices.

51

6 Conclusion

Supply chains are growing significantly, and this has caused problems with traceability.

In order to improve supply chain traceability, blockchain-based systems for managing dis-

tribution information have been proposed. It is desirable to use a public permissionless

blockchain for a supply chain system that is available to new businesses and general con-

sumers. However, anyone can browse the information recorded in a public permissionless

blockchain, causing the leakage of confidential information such as transaction relation-

ships between businesses. In this thesis, we proposed a supply chain system to protect the

confidential information of products and track product distribution, using a public per-

missionless blockchain. We realized protection of confidential information by encrypting

the blockchain address that represents the ownership information. We used attribute-

based encryption and assigned unique attributes to manufacturers. In the distribution of

a single product, the single attribute of the manufacturer is used to encrypt the ownership

information. In the distribution of multiple products, the union of the manufacturers’ at-

tributes is used to encrypt the ownership information. These allow the manufacturers to

track the product distribution in various units. We used zero-knowledge proof to hide the

ownership information and ensure distribution between legitimate owners and recipients,

thereby preventing unauthorized distribution. We implemented the proposed system and

found that the transaction fee per distribution is 2.6× 106gas units. This was equivalent

to 765.8 USD for Ethereum and 4.5 USD for Binance Smart Chain (BSC) at the time

of writing (January 25, 2022). Ethereum is more decentralized than BSC, which means

Ethereum is a more secure blockchain. We discussed that the proposed system can be

applied to various products by taking a strategy such as using Ethereum for high-priced

products to prevent counterfeits and using BSC for low-priced products to provide quick

response when problems occur.

As a future work, we need to protect confidential information at the protocol level. In

the proposed system, the blockchain addresses stored in the smart contracts are protected

with encryption at the application level. On the other hand, the blockchain protocol

records the blockchain address of the smart contract executor. In this thesis, we assume

that the product owner and recipient execute the smart contracts, so anyone can identify

52

them from the execution history of the smart contracts. One of the possible solutions is

to introduce an intermediate server that executes smart contracts on behalf of the owner

and recipient, thereby we can avoid the direct execution by them.

53

Acknowledgments

This thesis could not be accomplished without a lot of great support from many peo-

ple. First, I would like to express my sincere gratitude to Professor Masayuki Murata

of Osaka University, for his valuable comments, insights and continuous encouragement.

Furthermore, I would show my greatest appreciation to Mr. Yoshinobu Shijo. He gave

me appropriate guidance and a lot of helpful advices. Without his support, I would not

have accomplished this thesis. Moreover, I would like to sincerely appreciate Associate

Professor Shin’ichi Arakawa, Associate Professor Yuichi Ohsita, Associate Professor Naoto

Yanai, Assistant Professor Daichi Kominami and Assistant Professor Tatsuya Otoshi of

Osaka University, giving me continuous and appropriate advices. Finally, I would like to

thank all the members of Murata Laboratory for their support.

54

References

[1] OECD and European Union Intellectual Property Office, Global Trade in Fakes, Jun.

2021.

[2] Centers for Disease Control and Prevention, “Multistate outbreaks of Shiga toxin-

producing Escherichia coli O26 infections linked to Chipotle Mexican Grill Restau-

rants (final update),” https://www.cdc.gov/ecoli/2015/o26-11-15/index.html, Feb.

2016, [Online; accessed 3-February-2022].

[3] K. Toyoda, P. Takis Mathiopoulos, I. Sasase, and T. Ohtsuki, “A novel blockchain-

based product ownership management system (poms) for anti-counterfeits in the post

supply chain,” IEEE Access, vol. 5, pp. 17 465–17 477, Jun. 2017.

[4] H. M. Kim and M. Laskowski, “Toward an ontology-driven blockchain design for

supply-chain provenance,” Intelligent Systems in Accounting, Finance and Manage-

ment, vol. 25, no. 1, pp. 18–27, Mar. 2018.

[5] H. Huang, X. Zhou, and J. Liu, “Food supply chain traceability scheme based on

blockchain and EPC technology,” in Proceedings of Smart Blockchain, Nov. 2019, pp.

32–42.

[6] R. B. dos Santos, N. M. Torrisi, and R. P. Pantoni, “Third party certification of agri-

food supply chain using smart contracts and blockchain tokens,” Sensors, vol. 21,

no. 16, 2021.

[7] M. Westerkamp, F. Victor, and A. Küpper, “Tracing manufacturing processes using

blockchain-based token compositions,” Digital Communications and Networks, vol. 6,

no. 2, pp. 167–176, 2020.

[8] V. Acharya, A. E. Yerrapati, and N. Prakash, Oracle Blockchain Quick Start Guide: A

practical approach to implementing blockchain in your enterprise. Packt Publishing

Ltd, Sep. 2019.

55

[9] A. Reyna, C. Mart́ın, J. Chen, E. Soler, and M. Dı́az, “On blockchain and its integra-

tion with IoT. challenges and opportunities,” Future Generation Computer Systems,

vol. 88, pp. 173–190, Nov. 2018.

[10] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https://bitcoin.org/

bitcoin.pdf, 2008, [Online; accessed 3-February-2022].

[11] V. Buterin, “Ethereum whitepaper,” https://ethereum.org/en/whitepaper/, 2013,

[Online; accessed 3-February-2022].

[12] “IBM food trust,” https://www.ibm.com/blockchain/solutions/food-trust, [Online;

accessed 3-February-2022].

[13] S. R. Bryatov and A. A. Borodinov, “Blockchain technology in the pharmaceutical

supply chain: Researching a business model based on hyperledger fabric,” in Proceed-

ings of the International Conference on Information Technology and Nanotechnology,

2019, pp. 21–24.

[14] D. Agrawal, S. Minocha, S. Namasudra, and A. H. Gandomi, “A robust drug recall

supply chain management system using hyperledger blockchain ecosystem,” Comput-

ers in Biology and Medicine, vol. 140, p. 105100, Jan. 2022.

[15] M. el Maouchi, O. Ersoy, and Z. Erkin, “Decouples: A decentralized, unlinkable and

privacy-preserving traceability system for the supply chain,” in Proceedings of the

34th ACM/SIGAPP Symposium on Applied Computing, Apr. 2019, pp. 364–373.

[16] S. Rass and D. Slamanig, Cryptography for Security and Privacy in Cloud Computing.

Artech House, 2013.

[17] “Solidity programming language,” https://soliditylang.org/, [Online; accessed 3-

February-2022].

[18] “The openabe library - open source cryptographic library with attribute-based en-

cryption implementations in c/c++,” https://github.com/zeutro/openabe, [Online;

accessed 3-February-2022].

56

[19] “Github - zokrates/zokrates: A toolbox for zksnarks on ethereum,” https://github.

com/Zokrates/ZoKrates, [Online; accessed 3-February-2022].

[20] “Github - trufflesuite/ganache-ui: Personal blockchain for ethereum development,”

https://github.com/trufflesuite/ganache-ui, [Online; accessed 3-February-2022].

[21] Binance.org, “Binance smart chain: A parallel binance chain to enable smart

contracts,” https://www.binance.org/en/smartChain, 2020, [Online; accessed 3-

February-2022].

57

