Understanding Update of Machine-Learning-Based Malware Detection by Clustering Changes in Feature Attributions

Yun Fan

Advanced Network Architecture Research Laboratory Graduated School of Information Science and Technology Osaka University

Background

- In a malware detection (ML) system, the statistical characteristics of malware change over time, causing the detection performance degrades
- The classification models in malware detection systems need updates to improve the detection performance
 - update: add new data to the training dataset and re-train the model
- After updates, the new model needs to be validated before deployment
 - accuracy
 - the area under the curve (AUC)
 - **.** . . .

2

Purpose

- Common validation methods only calculate the detection accuracy or AUC scores
- When the detection performance is not satisfying after model update, we need more information to determine the cause
 - why performance changed?
 - what changes in the update affect performance?

Purpose:

Get detailed information about model changes to understand the model updates in ML-based malware detection systems.

Proposed Method

- Machine learning (ML) models are often used in malware detection systems,
 and feature attributions are typically used to explain the ML models
- We use the **feature attribution changes** to analyze model changes
- Proposed method

 We divide the samples into clusters based on their feature attribution changes.

4

Feature Attribution

- We use Shapley additive explanations (SHAP) to calculate the feature attributions
- SHAP is a consistent feature attribution method
 - When the model has changed and a feature has higher impact on the model, the importance of that feature <u>cannot</u> be lower
- SHAP explains the output as a sum of the effects of each feature

• Consistency enables comparison of attribution values across models

SHAP Value Changes

 We calculate an increasing rate of SHAP values (I) to measure a feature's attribution change in an update

$$I_{x_i} = \frac{v2_{x_i} - v1_{x_i} + c_1}{\min\left(\left|v1_{x_i}\right|, \left|v2_{x_i}\right|\right) + c_2}, \quad where \ c_2 > 0, c_1 = \begin{cases} c_2, \ when \ v2_{x_i} - v1_{x_i} \ge 0, \\ -c_2, \ when \ v2_{x_i} - v1_{x_i} < 0. \end{cases}$$

l > 0 Feature attribution is higher Samples are more likely to be classified as **positive**

I < 0 \rightarrow Feature attribution is lower Samples are more likely to be classified as **negative**

- When $|I| \approx 0$, the feature's effect to the model update is very low
- Identify features with high increasing rate by |I| ≥ k and analyze samples containing those features

6

Clustering

- To make the output more clearer for the operators, we divide the samples into clusters based on their feature attribution changes.
- We use Jaccard similarity to measure the similarity, and divide samples
 with high similarity as the same cluster.

$$J(A,B) = \frac{|A\cap B|}{|A\cup B|} = \frac{|A\cap B|}{|A|+|B|-|A\cap B|}$$

• After clustering, we selected the clusters whose average predictions changed to do the evaluation.

Experimental Setup

- Dataset
 - Android application files: AndroZoo*
 - 90% benign samples and 10% malicious samples
- Updates:

('a' represents the firrst half of the year, 'b' represents the second half of the year)

	_	Tra	in		Test		
Update 1	Pre-update	2016a	2016b	2017a	2017b	2018a	2018b
	Post-update	2016a	2016b	2017a	2017b	2018a	2018b
			Tra	in		Test	6
Update 2	Pre-update	2016a	2016b	2017a	2017ь	2018a	2018Ь
	Post-update	2016a	2016b	2017a	2017b	2018a	2018b
				Tra	in		Test
Update 3	Pre-update	2016a	2016b	2017a	2017b	2018a	2018b
	Post-update	2016a	2016b	2017a	2017b	2018a	2018b

*AndroZoo: Allix, K, etc.: Androzoo: Collecting millions of android apps for the research community.(2016)

Model Update

- To simulate successful and failed updates, we used <u>biased</u> and <u>unbiased</u> datasets to re-train the model.
 - Unbiased: random sampling
 - Biased-Time: only use the latest data
 - Biased-Family: only use malware from major families
 - Biased-Antivirus: only use malware easily detected
- Un-biased datasets are always used for pre-update training datasets

Classification Performance

• We used the testsets to investigate the classification performance:

"Unbiased" and "Biased-Time" → successful

"Biased-Family" and "Biased-Antivirus"-> not successful

Experimental Results

- We divide the samples into different clusters based on their feature attribution changes to make the output more clearer
- Number of cluster/features and maximum order of SHAP:

		# clusters	# features in each cluster	Max. order of SHAP
	Unbiased	5	7–10	39-487
TT. 1.4. 1	Biased-Time	4	1-10	39 - 142
Update 1	Biased-Family	3	2-8	22 - 110
	Biased-Antivirus	3	3-9	53-218
	Unbiased	1	6	64
II. d. t. 0	Biased-Time	6	3-8	24 - 190
Update 2	Biased-Family	3	4-10	24 - 428
	Biased-Antivirus	0	-	-
	Unbiased	5	2-10	31-371
TT 1 . 0	Biased-Time	6	3-10	55-371
Update 3	Biased-Famliy	2	3-10	371
	Biased-Antivirus	1	2	198

Evaluation

- We mainly use the cluster number and cluster size to evaluate the model undates
- The main causes of a failed model update are overfitting and noneffective update.
- The results can be analyzed in three perspectives:
 - > learning a few families
 - > overlooking some families overname
 - > noneffictive updates

Evaluation

the number of clusters --> learning a few families

	Unbiased	Biased-Time	Biased-Family	Biase-Antivirus
Update 1	5	4	3	3
Update 2	1	6	3	0
Update 3	5	6	2	1

- The cluster numbers of "Biased-Family" and "Biased-Antivirus" are always less than the results of other updates
- The bias of the dataset causes a lack of variety and influences the update as a result

13

Evaluation

(the number of samples whose predictions become true) - (the number of samples whose predictions become false) ->noneffictive updates

	Unbiased	Biased-Time	Biased-Family	Biased-Antivirus
Update 1	103	122	31	25
Update 2	70	104	-17	0
Update 3	78	131	-27	12

 The performance of "Unbiased" and "Biased-Time" improve after update, and the performance of "Biased-Family" and "Biased-Antivirus" have very limited change or no change after update

15

Conclusion and Future Works

- Conclusion
 - Our method can identify the unexpected model changes such as overfitting or noneffective update caused by the biased.
 - Our method can identify the important features relevant to the performance change.
- Future works
 - We need a user study.

Evaluation

clusters whose predictions change from true to false

--> overlooking some families

	Unbiased	Biased-Time	Biased-Family	Biase-Antivirus
Update 1	0	0	0	0
Update 2	0	0	1	0
Update 3	0	0	2	0

- Only the results of "Biased-Family" have such clusters
- We can also identify important features related to the changes:

Features	Mean rate Orde	r of SHAP
com.qihoo.util.appupdate.appupdateactivity	-25.66	None
com.qihoo.util.startactivity	-25.06	None
com.switfpass.pay.activity.qqwappaywebview	-17.20	None
com.alipay.sdk.auth.authactivity	-15.54	None
blue.sky.vn.api	-14.66	None
landroid/telephony/smsmanager.sendtextmessage	-14.23	33
blue.sky.vn.mainactivity	-11.85	None
blue.sky.vn.webviewactivity	-10.42	None
blue.sky.vn.gamehdactivity	-10.33	None
com.qihoo.util.commonactivity	-8.09	None

1

Summary

• The evaluation result of all updates:

		Learning a few families	Overlooking some families	Noneffective update
	Unbiased	×	×	×
II. J. d. 1	Biased-Time	×	×	×
Update 1	Biased-Family	✓	×	✓
	Biased-Antivirus	×	×	✓
	Unbiased	✓	×	×
II. 1.4. 0	Biased-Time	×	×	×
Update 2	Biased-Family	✓	✓	✓
	Biased-Antivirus	✓	×	✓
Update 3	Unbiased	×	×	×
	Biased-Time	×	×	×
	Biased-Family	✓	✓	✓
	Biased-Antivirus	✓	×	√

16