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Abstract: Recently, artificial intelligence (AI) based on IoT sensors has been widely used, which has
increased the risk of attacks targeting Al. Adversarial examples are among the most serious types of
attacks in which the attacker designs inputs that can cause the machine learning system to generate
incorrect outputs. Considering the architecture using multiple sensor devices, hacking even a few
sensors can create a significant risk; an attacker can attack the machine learning model through the
hacked sensors. Some studies demonstrated the possibility of adversarial examples on the deep
neural network (DNN) model based on IoT sensors, but it was assumed that an attacker must access
all features. The impact of hacking only a few sensors has not been discussed thus far. Therefore,
in this study, we discuss the possibility of attacks on DNN models by hacking only a small number
of sensors. In this scenario, the attacker first hacks few sensors in the system, obtains the values of
the hacked sensors, and changes them to manipulate the system, but the attacker cannot obtain and
change the values of the other sensors. We perform experiments using the human activity recognition
model with three sensor devices attached to the chest, wrist, and ankle of a user, and demonstrate
that attacks are possible by hacking a small number of sensors.

Keywords: adversarial examples; generative adversarial networks; multimodal sensors

1. Introduction

Artificial intelligence (AI) based on deep neural networks (DNNs) has significantly
impacted human lives by making them more secure, efficient, automated, and accurate.
Currently, Al is widely used in many areas, such as smart nations [1], agriculture [2],
medicine [3], industry [4], and human activity recognition (HAR) [5]. Many Internet of
Things (IoT) sensor devices are used to achieve accurate recognition of the real world.
Observations from these devices are collected via the Internet or a network managed by the
service provider. The machine learning model then recognizes the current situation using
the collected observations as its input. For example, an autonomous vehicle recognizes the
surroundings using multimodal sensors, such as cameras, radar, LiDAR, global navigation
satellite system (GNSS), gyroscopes, and magnetometers [6]. Many sensors have been used
in HAR. Ichino et al. used accelerometers, gyroscopes, magnetometers, and electrocardio-
gram sensors to recognize human activities [7]. Debauche et al. also proposed a model to
recognize human activities based on accelerometer and gyroscope signals [8].

Although we celebrate advances in Al and sensors, state-of-the-art DNNs are vulnera-
ble to adversarial examples [9]. Adversarial examples are inputs designed by an adversary
that cause a machine learning system to generate incorrect outputs [10]. By creating an
incorrect output, an attacker can degrade the service that is based on Al If the service is
related to users’ health, the degradation of the service may have a significant impact on the
users’ health. By attacking such services, an attacker may consider users as hostages. Some
studies have demonstrated that an attacker can fool machine learning models for HAR,
which is closely related to healthcare [11-13].
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Considering an architecture using multiple sensor devices, hacking a small number of
sensors creates a significant risk. As the number of sensor devices in a system increases,
the risk of attack by hacking some of these sensors increases. Some sensors may be located
near people. As a result, attackers may easily access them, find vulnerabilities, or replace
them. In fact, an attack on wearable sensors has already been demonstrated [14].

The attacker may attack the machine learning model using the hacked sensor. Even if
an attacker can hack only a small part of the sensor, the sensor may have a large impact on
the machine learning model. However, the impact of hacking a small part of the sensor has
not been discussed thus far. Some papers demonstrated that adversarial examples on the
DNN model based on IoT sensors are possible, but with the assumption that an attacker
can access all features of the model.

Therefore, we discuss the possibility of attacks on DNN models by hacking a small
number of sensors through experiments. In this experiment, we assume that the attacker
first hacks the sensor device. The attacker can obtain the values of the hacked sensors and
change them but cannot obtain and change the values of the other sensors. In this study,
we demonstrate that an attacker can manipulate a DNN model, even in this case.

To demonstrate the attacks, we introduce a generator that generates adversarial exam-
ples when a small number of sensor devices are hacked. The generator uses the values from
the hacked sensors as inputs and generates perturbations so that the features, including the
perturbations, are classified into the target class by the target model.

In our experiments, we use an open dataset for HAR based on three sensor devices
attached to the chest, wrist, and ankle of the subjects and demonstrate that the attacker can
change the output of the target model by hacking only one of those devices.

In summary, our main contributions are as follows:

e  We formulate the adversarial example by monitoring and changing the values of a part
of the sensors.

e  We demonstrate that adversarial examples are possible even if the attacker can monitor
and change only a part of the sensors.

The rest of this paper is organized as follows. We discuss the work related to our
research in Section 2. In Section 3, we describe the attack definition and how to generate
the attacks. Section 4 presents adversarial attack examples for deep learning models using
multimodal sensors. The results are discussed in Section 5. Finally, we conclude the paper
in Section 6.

2. Related Work

Szegedy et al. coined the phrase “adversarial example,” and since then the number of
publications related to adversarial examples has increased exponentially.

Several methods for generating adversarial examples have been proposed, as shown in
Table 1, such as the fast gradient sign method (FGSM) [9], basic iterative method (BIM) [15],
saliency map method [16], FGSM [9], and Carlini-Wagner method (C&W) [17] and Adv-
GAN [18]. FGSM and BIM are examples of white-box attacks that access an entire target
model. Gradient-based attack methods, such as FGSM, determine the maximum con-
strained max-norm perturbation of ¥’ = x + e.signV,{(x,y) by computing the gradient of
the input’s loss function V. ¢(x,y) by multiplying a small chosen constant ¢ by the gradi-
ent’s sign vector. Carlini and Wagner attacks [17] and other optimization-based methods
optimize adversarial perturbations, subject to several constraints. This method focuses
on the Ly, Ly, and Lo distance metrics and generates perturbations by minimizing the
loss function under the constraint that the distance metrics of the perturbations are less
than a predefined threshold. Although optimization-based methods generate adversarial
perturbations that fool the target model without violating the constraints, they take a long
time because the optimization problem must be solved to generate each perturbation.



Sensors 2022, 22, 8642

30f17

Table 1. Advantages and disadvantages of previous methods.

Name of the .
Researchers Proposed Method Advantages Disadvantages
Goodfellow et al. [9] FGSM One of the first attack methods in the All features are required; low
domain of adversarial examples attack success rate
Kurakin et al. [15] BIM Higher attack success ratio than FGSM All features are required;

many iterations are required

Papernot et al. [16]

Saliency map

Attack with a small perturbation

All features are required;
computationally expensive

Higher attack success ratio than FGSM,

All features are required;

Carlini and Wagner [17] C&W BIM, and saliency map computationally expensive
Higher attack success ratio than FGSM
Xiao et al. [18] and C&W in the case that adversarial .
dial et al. [19] training is used to protect the target All features are required;
Jandial et al. GAN § 18 used to protect the targe training is required before

Liu et al. [20]
Kim et al. [21]

model; the perturbations can be
generated immediately by using the
pre-trained generator.

generating the attack

This paper

The attack can be generated even when
the attacker can monitor only a part of
the features; the perturbations can be
generated immediately by using the
pre-trained generator

Training is required before

Trained generator generating the attack

Another approach for generating adversarial examples is to train the generator.
Xiao et al. [18] proposed adversarial examples using GAN architecture to efficiently gen-
erate more realistic adversarial examples. This was followed by [19-21]. They proposed
training a feed-forward network that generates perturbations to create diverse adversarial
examples and a discriminator network to ensure that the generated examples are realistic.
Once the generator is trained, adversarial perturbations can be efficiently generated.

In this study, we used a method based on the generator. However, we assume that
an attacker can obtain only the values of the hacked sensors, whereas existing studies
assume that all features can be used as the input of the generator, as shown in Table 1.

Potential adversarial examples have also been discussed in many critical applications.
Table 2 shows the papers demonstrating adversarial examples. Finlayson et al. demon-
strated the danger of adversarial attacks in the medical domain [22]. By taking input from
the vision sensor and adding adversarial noise to a dermatoscopy image, they success-
fully changed the patient’s diagnosis from benign to malignant or vice versa. Han et al.
demonstrated an attack on a deep learning model based on a raw signal electrocardiogram
(ECG) [23]. Benegui et al. successfully attacked a DNN model for user identification based
on motion sensors and converted a discrete three-axis raw signal sensor into a grayscale
image representation [12]. Sah et al. demonstrated attacks on a machine learning model
for HAR based on multiple wearable sensors [13]. They generated adversarial examples
at the raw-signal level and discussed their transferability. In this study, we use the same
dataset as Sah et al. to demonstrate the possibility of an attack, but the attack scenario is
different; we assume that the attacker can only access the hacked sensors, whereas Sah et al.
assumed that the attacker could access all raw signals directly.
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Table 2. The advantages and disadvantages of demonstrated adversarial attacks using existing methods.

Researchers Methods are Used to Target Features Required to Be Detail
Generate Attacks Features Monitored and Changed
Demonstration of adversarial
Finlayson et al. [22] BIM Images All examples against medical
Al systems

Demonstration of adversarial

examples on raw EEG signals;

Han et al. [23] FGSM and BIM Raw sensor All the generated signals cannot be
T values distinguished from original ECG

signals and can fool the target

DNN model
The first study attempts to
. FGSM and saliency quantify the effect 9f advers.arlal
Benegui et a. [12] Images All assaults on machine learning
map .
models used for motion
sensor-based user identification
Demonstration of the
Raw sensor transferability of adversarial
Sah et al. [13] FGSM and BIM All examples on machine learning
values
models based on
wearable sensors
Demonstrates adversarial
. . Raw sensor examples for the case that only
This paper Trained generator values Part a part of the features is

monitored by the attacker

3. Definition of Adversarial Examples by Hacking a Small Number of Sensors
3.1. Definition of Attack

We focus on a system that gathers values from multiple sensors and performs classi-
fication tasks based on a machine learning model. An attacker against this system hacks
some sensors; the attacker may hack sensors with the same vulnerabilities but cannot hack
other sensors. An attacker can obtain the values of the hacked sensors and change them.

The objective of the attack is to cause misclassification by changing the values of the hacked
sensors, as shown in Figure 1.

- "\
Adversarial Exmples . -
—— Misclassified.
Generator —
Machine Learning Model

Examples the attacker hacked O
a small of sensors.

Figure 1. Overview of the attacks.

Hereafter, we define f(x(.) as a function of the target model; xo.; = (xo, x1,...,X¢) is
the input of the target model constructed from the sensor values obtained from time 0 to
time t'; and x; is the vector corresponding to the sensor values at time t. f(xg;) indicates
the classification result at time f; we denote the jth element of the output of the model by

fi(x0:t), and f;(xo.+) indicates the probability that the situation at time # is classified into the
ith class.
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The attacker can monitor and change the features from the hacked sensors. We define
the vector B = (by, by, ..., by ) indicating the features from the hacked sensors; b; = 1 if the
ith feature is from the hacked sensor. Using B, the features monitored by the attacker at
time f are x; = B o x;, where o indicates the element-wise product.

The attacker generates the perturbations so that the classification results become
the target class. That is, the objective of the attacker is argmax; fi(x'o;) = C, where
x'o4 = (x'o, x'1,...,x'¢) is the input feature after adding the perturbation at time ¢ and C is
the target class.

The attacker generates perturbations based only on the features from the hacked
sensors. That is, the attacker uses x;. We denote xg.; = (jco, X1,.-., Jkt). We define a function
G(x0:) whose inputs are the features monitored by the attacker and whose outputs are the
generated perturbations. By adding perturbations generated by the generator G (x.), the
features that include the attacks become x} = x; + B x G (%)

In this study, we assume that the attacker has enough information about the target
model and some knowledge of the sensors. The attacker can obtain the same model if the
target uses an open model. Even if the model is not open, the information on the model
can be extracted by conducting a model extraction attack [24], which steals the architecture,
parameters, and hyperparameters of the target by monitoring the model’s output if the
attacker can use the model. This paper assumes the case after obtaining accurate infor-
mation on the target model. However, the stolen model may include estimation errors.
The demonstration of the attacks in the case that the information of the target model is
inaccurate is one of our future works.

On the other hand, knowledge of the sensors can be obtained through generally known
knowledge. If it is generally known that values of a sensor correlate with the other sensors’
values, attackers can use this knowledge. If the attackers can buy and use the same type
of sensors, they can perform experiments to obtain the knowledge of the sensors. In this
paper, we model the knowledge of the sensors by an estimator £; = S(x) whose input is
the feature that can be monitored by the attacker and whose output is all features.

3.2. Generation of Attack

In this study, the attack is generated using the generator G (X ), as shown in Figure 2a.

Examples input features from hacked Adversarial Exmples

Target model

and unhacked sensors. Generator
(a)
@
----------- S S(0D;,) G Xe—>» f Misclassified
Examples input features
from hacked sensors.
Estimator model Adversarial Exmples Target model
Generator

Figure 2. Overview of architecture generated an adversarial example in multimodal sensors. Figure
(a) shows generated an adversarial attack using a generator model, and figure (b) process trained
the generator.

The generator G (560;,5) is trained in advance. The attacker can monitor the features
of the target from the hacked sensors. We denote the dataset monitored from the hacked
sensors as M. The attacker also has some knowledge of the other sensors and can estimate
the values of the other sensors using the estimator S(x(), although the estimation may
be inaccurate. Using the dataset M and estimator S(jctzo), the attacker can generate the
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dataset that can be used to train the generator. Hereafter, we denote the generated training
data as M. Each element of M can be generated by:

= 5<5C(M)t:0), 1)

where X(M)o;t = (Jt(M)o, X(M)l, e, x(M)t), and X(M)t is an element of data in the dataset M.

Figure 2b shows the process to train the generator using the dataset M. When training
the generator, the attacker has the information on the target model f(). Using f(), the
attacker trains the generator by minimizing the following loss function:

E{:dv = Ext [gf(f(xAt +Bo G(QO:L‘))r Ct)]l (2)

where %0 = (%0, %1,..., %), ¢ f(y, C) is the loss function of the target model when the
output of the target model is y, the target class is C, and C; is the target class at time ¢. By
generating the perturbation using the generator trained to minimize this loss function, the
features after the attack can be classified into the attacker’s desired class.

4. Experiments
4.1. Target Scenario
4.1.1. Overview

In this scenario, we use as a target model a machine learning model that identifies
human activities from three sensors. This model is used to recognize human activities
for healthcare, smart-home environment, and so on. In this model, the user wears three
sensor devices on the chest, left ankle, and right wrist. All three sensor devices have 3D
accelerometers. Moreover, the sensor device on the chest has an ECG sensor, and the
other sensor devices have 3D gyroscopes and 3D magnetometers. The sensor devices send
their monitored values to the server with the machine learning model based on a DNN.
The server recognizes the user’s current activity by handling time-series data sent from
the sensors.

In this experience, we focus on specific subjects as the target and generate perturbations
so that the activities of the specific subjects are identified as the target classes, which are
different from the ground-truth classes.

To generate the perturbations, we assume that the attacker has hacked one of the
sensor devices, the ankle sensor. The attacker can access and change the sensor values of
the ankle sensor but cannot access the values of the other sensors. By changing the sensor
values sent to the server, the attacker attempts to change the activity recognized by the
machine learning model.

In this study, we assume that the attackers use their knowledge to train the attack
generator. In this scenario, we simulate the attacker’s knowledge using an estimator trained
by a dataset without the target subjects. By changing the amount of dataset used to train
the estimator, we simulate the various cases—from the case that the attacker has accurate
knowledge to the case in which the attacker has inaccurate knowledge.

4.1.2. Dataset

We used an open dataset called the MHealth dataset [25]. This dataset includes
12 physical activities (standing, sitting, lying down, walking, climbing stairs, bending
forward, lifting arms forward, knees, cycling, jogging, running, and jumping back and
forth) for ten subjects. They used wearable sensor devices located on the subject’s chest,
right wrist, and left ankle, and recorded the sensor values with a sampling frequency of
50 Hz. Table 3 lists the sensors used in the dataset.
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Table 3. Description of sensors.
Sensor Locate Abbreviated
Acceleration from the chest sensor (X axis) Acx
Acceleration from the chest sensor (Y axis) Acy
Acceleration from the chest sensor (Z axis) On Chest Acz
Electrocardiogram signal (lead 1) EL1
Electrocardiogram signal (lead 2) EL2
Acceleration from the left-ankle sensor (X axis) Alax
Acceleration from the left-ankle sensor (Y axis) Alay
Acceleration from the left-ankle sensor (Z axis) Alaz
Gyro from the left-ankle sensor (X axis) Glax
Gyro from the left-ankle sensor (Y axis) On Ankle Glay
Gyro from the left-ankle sensor (Z axis) Glaz
Magnetometer from the left-ankle sensor (X axis) Mlax
Magnetometer from the left-ankle sensor (Y axis) Mlay
Magnetometer from the left-ankle sensor (Z axis) Mlaz
Acceleration from the right-lower-arm sensor (X axis) Arlax
Acceleration from the right-lower-arm sensor (Y axis) Arly
Acceleration from the right-lower-arm sensor (Z axis) Arlz
Gyro from the right-lower-arm sensor (X axis) Grlax
Gyro from the right-lower-arm sensor (Y axis) On Wrist Grlay
Gyro from the right-lower-arm sensor (Z axis) Grlaz
Magnetometer from the right-lower-arm sensor (X axis) Mrlax
Magnetometer from the right-lower-arm sensor (Y axis) Mrlay
Magnetometer from the right-lower-arm sensor (Z axis) Mrlaz

The Mhealth dataset includes the time-series of sensor values. From this dataset, we
extract the data with a length of 500 used for training and validation by using a sliding
window. The number of extracted data for each subject and each class is shown in Table 4.

Table 4. The number of data for each class and subject used in our experiments.

Subject Class

. . Wai;t Fr{mtal Knees Jump
Standing  Sitting ]]5}:)1?\/% Walking ¢ éltl;?rlsng Blg:r_s t]isoivgf Bend-  Cycling Jogging Running F:ggt

ward Arms ng Back

1 3072 3072 3072 3072 3072 3072 3072 3379 3072 3072 3072 1075
2 3072 3072 3072 3072 3072 3174 3328 3430 3072 3072 3072 1024
3 3072 3072 3072 3072 3072 3226 3379 3175 3072 3072 3072 1024
4 3072 3072 3072 3072 3072 3328 3277 3123 3072 3072 3072 1024
5 3072 3072 3072 3072 3072 2765 2868 2714 3072 3072 3072 1024
6 3072 3072 3072 3072 3072 2202 2099 2304 3072 3072 3072 1024
7 3072 3072 3072 3072 3072 3072 2765 2816 3072 3072 3072 1024
8 3072 3072 3072 3072 3072 2151 3021 2560 3021 3072 3072 1024
9 3072 3072 3072 3072 3072 2867 2867 2969 3072 3072 3072 1075
10 3072 3072 3072 3072 3072 2458 2765 2867 3072 3072 3072 1024

Among ten subjects, we used subjects 9 and 10 as the target subjects. The data from
the other subjects were used to train the target model and the estimator, but the data from
the target subjects were not used to train the target model and estimator. When training
the generator, we used the data of the target subjects but only the features of the hacked
sensors, assuming that the attacker can access the values of the hacked sensors of the target
subjects. The values of the other sensors used to train the generator are obtained using

the estimator.
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generator
output

dense

re lu

4.1.3. Target Model

This paper uses a model based on the long short-term memory network (LSTM)
architecture proposed for HAR [26]. Figure 3 shows the architecture of the target model
used in this study.

batch dense S Istm { dense ] [ dense J
> normalization || re lu ™ normalization sigmoid 1 re_lu > softmax

Figure 3. The architecture of the target model.

We built the target model on top of TensorFlow and Keras and trained it using multiple
NVIDIA Quadro RTX 5000. We trained the model to minimize the cross-entropy of the
outputs and the corresponding labels in the training data using the Adam optimizer with
a learning rate of 0.001, batch size of 32, and 100 epochs. Data from eight subjects were
used to train the model. The data from the remaining subjects were used to evaluate the
target model and the attack. To train the target model, we used time-series data generated
by dividing the time-series data included in the training data into small sets of time-series
data with lengths of 500 using the sliding-window technique.

4.1.4. Estimator

In this study, we constructed an estimator to simulate the attacker’s knowledge.
Estimator S estimates sensor values that are not obtained by the attacker from the values of
the hacked sensors. In this study, we used the conditional-GAN training technique [27] to
train estimator S, as shown in Figure 4.

dense Istm [ dense ] [ dense ]
ﬁ—}ln ut —> dense ﬁ—)concatenate estimated output
re_lu TanH g re_lu g re_lu _> P

(a)

estimated
output dense Istm [ dense ] [ dense ] [ dense J
concatenate —> —> —> —» ———— output
re_lu TanH re_lu re_lu sigmoid
[ tebel J——?
(b)

Figure 4. Estimation model architecture: estimator model on (a) and discriminator model on (b).

In this technique, the discriminator D is introduced. The discriminator D distinguishes
the output of the estimator from the training dataset. By training S to generate values that
cannot be distinguished by discriminator D, we construct S to estimate the original values.

The discriminator D and the estimator S are trained alternatively. When training
discriminator D, the parameters of discriminator D are updated to minimize the loss
function, indicating the accuracy of the classification using the original values and the
values generated by S as the training dataset. However, when training estimator S, we
input the features of the hacked sensors of the training data to S, obtain the output from S
indicating the estimated features, including the values of the other sensors, and use the
output from S as the input for D. Finally, the output from D is obtained. Based on the
output from D obtained by this process, the parameters of S are updated to minimize the
same loss function of D by setting the target class of the generated values to the class for
the original data.
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We use LSTM in the estimator and discriminator to handle the time-series data. Figure 4
also shows the structures of the estimator and discriminator used in this demonstration.
In the estimator, the values of the other sensors were estimated using the CNN-LSTM
structure. Then, at the final layer, the estimator estimates the features of all the sensors,
including the values of the hacked sensors, by concatenating the estimated sensor values
and the values that can be monitored.

In this study, TensorFlow and Keras with multiple NVIDIA Quadro RTX 5000 were
used. We trained the estimator and discriminator using 50 iterations with a learning rate
of 0.002 and a batch size of 128. To train them, binary cross-entropy was used as the loss
function. The data used to train the estimator and discriminator were generated by dividing
the long time-series data using the sliding-window technique.

4.1.5. Generator

In this section, we use the generator based on 1D CNN and LSTM to handle the
time-series data of the hacked sensors as inputs. Figure 5 shows the generator used in
this study.

covnid ] covnid ] Lcovmd_transpose Lcovnm_transpose Istm l
s e —> dense concanate f
T m 5

—>
re_lu re_lu re_lu re_lu re_lu

[ covnid ]

estimator
ouput

Targ ei model

Figure 5. The architecture of the generator model.

We trained the generator using features estimated by the estimator from the values of
the hacked sensors of the target subjects. We used Adam optimization and set the batch
size to 256, learning rate to 0.002, epochs to 1, and epsilon ¢ to 0.3. Similar to the target
model and estimator, we divided the time-series of features into time-series features with
a sliding-window size of 500 and used the divided time-series features to train the generator.

4.2. Property of the Target Model

Before demonstrating the attacks, we investigated the properties of the target model
by comparing it with a similar model using only one sensor device. In this comparison, we
used precision and recall as metrics. Precision and recall are defined as

.. tp
Precision =——— 3)
tp+fp
__tr
Recall = fp+ 4)

where true positive (fp) is the number of data that can be classified correctly, false positive
(fp) is the number of data that are classified into a class but whose correct class is different.
False negative (fn) is the number of data not classified into a class but whose correct class
is the class.

Table 5 lists the precision and recall values for each class. This table shows that the
model using only a single sensor device cannot recognize some classes. For example,
the chest sensor cannot distinguish between standing and sitting states. The recall result
shows that the wrist sensor cannot accurately recognize the walking class. The ankle
sensor has high precision and recall compared with other sensors. However, even the ankle
sensors achieve only 88% recall in the standing class. In contrast, the target model using all
three sensors can recognize any class. In other words, multiple sensor devices are required
for HAR.
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We also investigate the impact of each sensor on the classification results. We use
an integrated gradient [28]. The integrated gradient is a method for evaluating the impact
of each feature on the results of a machine learning model.

The integrated gradient of the ith feature of the input x on the class j is defined as

: ; 1 of; -
IntegratedGradsij(x) n= (x(’) - x’(l)) X / rfax (x=x))

o P de 0O

where x’ represents the baseline input, x() is the ith feature of x, and « is the interpolation
constant. The features whose integrated gradient is far from zero have a significant impact
on the output of the model. We calculate the integrated gradient for data of the target
subject and calculate the average of them for each class.

Table 5. Complete results of the three other models with the target model using different training data.

Precision Recall

Ground-Truth Class g;;ﬁj Wrist Ankle Chest g;;ﬁztl Wrist Ankle Chest
Standing 100 96 96 41 100 100 88 48
Sitting 100 99 98 54 100 96 97 54
Lying down 100 96 99 100 100 98 99 100
Walking 100 94 99 99 100 53 99 98
Climbing stairs 99 79 98 98 100 97 99 100
Waist bends forward 100 83 96 100 100 94 99 94
Frontal elevation of arms 98 100 89 87 100 99 97 75
Knees bending 100 76 99 100 96 80 97 66
Cycling 96 98 98 76 100 100 98 98
Jogging 98 99 98 87 93 100 93 94
Running 94 97 93 92 97 99 98 89
Jump front and back 95 97 92 100 97 89 94 94

Figure 6 shows the integrated gradient for 12 classes. The vertical axis in Figure 6 is
the integrated gradient for each feature. A large positive integrated gradient means that
the feature has a strong positive correlation to the class, and a large negative integrated
gradient means that the feature has a strong negative correlation. If the integrated gradient
is close to 0, the corresponding feature does not contribute to the classification.

Figure 6a indicates that Mlax from the ankle sensor and Arly, Mrlax, and Mrlaz from
the wrist sensor have a strong correlation to the classification into Standing class and have
alarge impact on the classification results. Similarly, the other figures in Figure 6 indicate the
features that contribute to the classification. From this figure, multiple sensors contribute
to classification into any classes in the target model. Namely, our target model identifies all
classes based not only on specific sensor devices, but also on multiple sensor devices.
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4.3. Property of the Estimator

In Table 6, we show the results of the estimator trained using five and three subjects.
In this table, we evaluate the accuracy of the estimator using the mean square error (MSE)
as a metric. The MSE is defined as

)
YOOV (X — R
MSE — t=14-ie{ilo; 1}( t,i t,z) ) ©)
n
where x;; and £ ; are the actual and estimated values of the ith feature at time t, and n
is the length of the validation data. The smaller the MSE value is, the more accurate the

prediction results are.

Table 6. Results of the MSE on the model estimator using five and three subjects.

Ground-Truth Five Subjects Three Subjects
Standing 25.57 28.18
Sitting 19.11 26.31
Lying down 22.08 26.01
Walking 21.75 25.38
Climbing stairs 21.74 25.50
Waist bends forward 28.69 3591
Frontal elevation of arms 22.30 28.54
Knees bending 22.24 33.81
Cycling 20.06 26.04
Jogging 22.71 35.52
Running 20.00 35.61
Jump front and back 21.76 34.13

In this study, we trained the estimator using three and five subjects and then evaluated
the accuracy of the data using data from two subjects that were not included in the training
dataset for the target model and the estimator. Table 6 shows that the evaluation errors
increased as the number of subjects used to train the estimator decreased. In the remainder
of this section, we investigate whether attackers with these estimators can succeed in
the attack.

4.4. Demonstration of the Attack
In this section, we describe the attacks. To evaluate the generated attacks, we introduce
a metric called the attack success ratio, which is defined as
NSMCCESS

Nattack ’

where N7k jg the total number of time slots, including the attacks, and N*#°®*% is the
number of time slots in which the results of the target model are the attacker’s desired
classes. Figure 7 shows the results. The rest of this subsection discusses the results.
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Figure 7. (a) Results of attacks on ankle sensors using full knowledge; (b) results of success attack rate
using five subjects; and (c) results of success attack rate on ankle group sensor using three subjects.
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4.4.1. Case That the Attacker Has Full Knowledge of All Sensors

Before discussing the results of the impact of the attacker’s knowledge, we first
investigate the case in which the attacker has sufficient knowledge. In this case, we use the
actual values of all the sensors to train the generator instead of using the estimated values.
Note that even in this case, the attacker does not have the values of the other sensors during
attacks but can monitor only the features from the hacked sensors.

Figure 7a shows the results that the attack success ratio depends on the ground truth
and target classes. For example, all attacks from frontal elevation of arms to knee bending
succeeded, whereas the attack success ratio of attacks from jogging to running was low.
However, even in the case with the lowest success ratio, more than half of the attacks
succeeded. That is, the attacks succeeded by changing the values of the ankle sensors,
although the other sensors also have a large impact on the classification results.

We discuss the property of the generated attacks in Section 4.5.

4.4.2. The Impact on the Attacker’s Knowledge

Figure 7b,c show the attack success ratio for the cases in which the attacker has the
estimator trained by five and three subjects, respectively. As discussed above, as the
number of subjects used to train the estimator decreases, the estimation errors increase.
Consequently, the attack success ratio also decreases.

Figure 7c also indicates that the attacks for some classes succeeded even if the attacker
did not have accurate information on the other sensors. For example, the attacks from
frontal elevation of arms to walking succeeded with a high attack success ratio, while most
attacks from frontal elevation of arms to jogging or jumping front and back failed. We
discuss the cause of these differences in the results in Section 4.5.

4.5. Property of the Generated Attacks

In this section, we discuss the properties of the generated attacks. We calculate the IGs
of the generated attacks. Figure 8 shows examples of the average integrated gradients of
the attack generated for data whose ground-truth class is frontal elevation of arms.

In Figure 8, compared with Figure 6, the features that include attacks that have a large
impact on the classification are very different from the data without attacks. This is because
the generator does not generate the perturbation to make the input of the model similar to the
normal data whose class is the target class. However, the generator generates the perturbations
to minimize the loss function of the target model. As a result, the features are very different
from the original data but are classified into the target class by the target model.

Figure 8 also shows that the features of the sensors that are not hacked have a large
impact on the classification results in some cases. In this case, by changing the features
from the hacked sensor, the attacker moves the features to a location corresponding to the
target class in the feature space. Among the changed features, the features from the other
sensors contribute to the classification of the target class. However, to succeed in this type
of attack, the attacker must know the impact of the features from the other sensors on the
classification results. That is, accurate information from other sensors is required.

However, as shown in Figure 7, even if the attacker’s knowledge is inaccurate, attacks
on certain classes succeed. One example is the attack from frontal elevation of arms to
walking. Figure 8d shows the average IGs of the data with attacks generated in the case
with the estimator trained with three subjects. Figure 8d indicates that the features from
the ankle sensor have the largest impact on the classification results; therefore, this attack
succeeded even if the attacker does not have accurate knowledge of the other sensors. In this
case, the attacks cause the classification into the target class by increasing the contributions
of the features of the hacked sensors for the target class. The attacker can determine and
change the values of the features of the hacked sensors. That is, the attacker can accurately
calculate the contributions of the features of the hacked sensors and change the features to
increase the contributions. As a result, this attack succeeds even if the attacker does not
have sufficient information from other sensors.
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Figure 8. Integrated gradients of the inputs that include attacks. (a) Ground Truth: Frontal elevation
of arms, Target: Walking (case with full knowledge). (b) Ground Truth: Frontal elevation of arms,
Target: Jogging (case with full knowledge). (c) Ground Truth: Frontal elevation of arms, Target:
Jump front and back (case with full knowledge). (d) Ground Truth: Frontal elevation of arms, Target:
Walking (case with estimator trained by three subjects).

5. Discussion

In this study, we demonstrate that attacks that cause misclassification in target models
are possible even if the attacker hacked a part of the sensors. In particular, if the attacker
has sufficient knowledge of the other sensors, the attack succeeds with a high probability,
although the attacker cannot monitor the current values of the other sensors. We also
demonstrate that the attacks succeed in some cases, even if the attacker does not have
sufficient knowledge of other sensors.

In our experiment, we focus on one model as a target model. However, our approach
is not based on any assumptions about the target model. Thus, this kind of attack is possible
in the other models, though demonstration using the other models and a different dataset
is one of our future research topics.

In this study, we assume that the attacker has some knowledge of the legitimate
sensors and we simulated this knowledge by using the estimator. By using the estimator
trained by a limited amount of dataset, we simulated the case that the attacker’s knowledge
is inaccurate. In the actual situation, the attackers may obtain knowledge of the legitimate
sensors by using generally known knowledge of the sensors or performing experiments
using the same sensor by themselves. However, if the target has properties that are quite
different from the knowledge obtained by the attackers, the attacks become more difficult,
the evaluation of the attacks in the case that the properties of the target are quite different
from the attackers” knowledge.

In this study, we also assume that the attacker has enough information on the target
models. The attacker, however, may have only insufficient information on the target model.
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Especially, the target model may become different if it is updated. The adversarial examples
in the case that the attacker does not have information on the target models have also been
discussed [29], and the attacks combining the approach in this paper with such methods
are possible. Demonstrating such attacks is one of our future research topics.

Though we need further research to demonstrate the attack in the other cases, the
results of this study indicate that the service provider using a machine learning model based
on multiple sensors should consider the case in which some of the sensors may be hacked
by the attacker. By considering these attacks, we may be able to construct robust models.
One of the approaches to constructing robust models is to use the adversarial training,
considering the attacks [9]. However, the robustness of adversarial training against such
attacks has not yet been discussed, and further research is required. Another approach
against an attack from a part of the hacked sensor is to utilize the properties of this attack.
Because the attacker cannot access the other sensors, the generated signals may include
some inconsistency between the signals from the other sensors. These countermeasures
will be a future research topic.

In this study, we investigated the properties of generated attacks. The results indicate
that the attacker does not need to generate input signals that are similar to the actual
features of the target class. However, these results do not indicate that the signals generated
by hacking a small number of sensors are different from the actual features. By training
the generator, considering the difference from the actual features of the target class, it may
be possible to generate attacks that are difficult to detect based on the difference from the
normal features of the target class. Therefore, further research is required to clarify the
properties of attacks that cannot be avoided by attackers.

6. Conclusions

In this study, we discussed the possibility of attacks on DNN models by hacking
a small number of sensors. In this scenario, the attacker first hacks few sensors; then, the
attacker can obtain the values of the hacked sensors and change them, but the attacker
cannot obtain and change the values of the other sensors.

In this study, we introduced a generator that generates adversarial examples when
a small number of sensor devices are hacked. The generator uses the values from the
hacked sensors as inputs and generates perturbations so that the features, including the
perturbations, are classified into the target class by the target model.

We demonstrated the attack using an open dataset for HAR based on three sensor
devices located on the chest, wrist, and ankle of the subjects. We then clarified that the
attacker can change the output of the target model by hacking only one of the three devices.

Our future research topics include further research on the properties of attacks, such
as countermeasures against attacks.
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