近赤外画像とサーマル画像を用いた接触検知における マルチバンド画像処理の基礎検討

野口 憲人^{1,a)} 岸野 泰恵^{1,2} 白井 良成² 村田 正幸¹

概要

近年,深層学習を用いた画像処理技術は飛躍的に発展 し,特に複数のバンド帯の動画像を用いたマルチバンド画 像処理により,従来の単一バンドの画像処理では得られな かったさまざまな応用が実現されつつある.マルチバンド 画像処理の活用例としては,人が物体表面に触れた後に残 る熱痕跡をサーマル画像を用いて識別する接触検知が挙げ られ,感染症対策に有効である.本稿では,近赤外画像と サーマル画像を組み合わせた深層学習による接触検知を対 象として,時間方向の畳み込みの有無,入力する動画像の 種類やサイズが認識精度にどのような影響を与えるか基礎 的な検討を行った結果を報告する.

1. はじめに

近年,深層学習を用いた画像・動画認識の研究が盛んに 行われている.特に画像の認識精度は年々大きく高まって おり,現在では製造業や物流業をはじめとしたさまざまな 産業で省人化を目的とした画像認識 AI の導入が進められ ている.また,最近では可視光カメラだけでなくサーマル カメラや近赤外カメラが安価に手に入るようになったため, 機械の異常や野菜の目に見えない不良を検知するなど,目 的に応じてセンサを選択することで課題解決の幅を広げて いる.

一方,2019年末以降新型コロナウイルス感染拡大に伴い,感染症対策への関心が大きく高まっている.感染経路の一つである接触感染は,感染者が接触した箇所に残ったウイルスに非感染者が触れ,体内にウイルスが侵入することにより引き起こされる.これに対して,人の手が触れた接触箇所を可視化することにより,接触の回避や重点的な 消毒行為の促進といった意識改善が期待される.

人が物体表面に触れると体温から伝わった熱が一定時間 残留し,これを熱痕跡と呼ぶ.図1にサーマル画像に写る 熱痕跡およびこの時の近赤外線の画像を示す.この画像は

(a) 近赤外画像(b) サーマル画像と熱痕跡図 1: 接触時の各バンド画像

人が箱を触れた直後の画像であり,(a)の近赤外画像では 人の手のみ写っているが(b)のサーマル画像では人が箱を 触れていた熱痕跡が残っている.本研究では,熱痕跡を検 出することで物体表面への接触を検出しようとしている.

図1で示したように、人はサーマル画像にも可視光画像 や近赤外画像にも出現するが、熱痕跡はサーマル画像にし か出現しないため、サーマル画像単体を用いるよりも可視 光画像や近赤外画像と組み合わせて画像処理を行うことで 熱痕跡の認識精度の向上が図れる.また、熱痕跡は人が画 面内に出現した後にのみ発生し、発生から時間経過ととも に収縮する特性をもつ.そのため、時系列的に連続する複 数の画像に対して同時に画像処理を行うことでも熱痕跡の 認識精度の向上が期待できる.

以上を踏まえ、本研究では、マルチバンド画像処理によ る実世界理解に向け、近赤外画像とサーマル画像を用いた 接触検知を対象として、マルチバンド画像処理に適した深 層学習モデルの検討や、画像サイズや時間の影響を調査す ることを目的とする.本稿では、シンプルに検証が可能な モデルを設計し、時間方向の畳み込みの有無、入力する動 画像の種類やサイズによる認識精度の変化について検証し た結果を報告する.

2. 関連研究

2.1 マルチバンド画像処理および熱痕跡検出に関する研究

近年,複数のバンドの画像を用いた物体認識手法が提案 されている.一般的な画像処理と同様,画像の畳み込みを 活用した CNN (Convolutional Neural Networks) による手 法が主流である.例えば,熱伝導率が低く可視光を透過す

¹ 大阪大学大学院情報科学研究科

² NTT コミュニケーション科学基礎研究所

 $^{^{}a)}$ k-noguchi@ist.osaka-u.ac.jp

図 2: ネットワーク構造

るという特性をもつガラスは,可視光画像とサーマル画像 を同時に CNN に入力することで,単体での入力よりも高 い精度で検出できることが報告されている [1].また接触検 知に関する研究としては,U-Net[2]を用いることでフレー ム毎に熱痕跡・人物・背景にセグメンテーションを行い, 熱痕跡に対しては時間方向の累積和を取ることでサーマル 動画における接触検知の手法が提案されている [3].この ように,複数のバンドの画像を用いて画像処理を行うこと で,従来の可視光の画像処理のみでは検出できなかった応 用が可能になりつつある.

筆者らは,近赤外画像とサーマル画像を用いて画像処 理することにより熱痕跡を可視化するシステムを開発した[4].マルチバンドの画像を用いることで人の目に見え ない温度差の情報を活用し,新型コロナウイルスの感染拡 大防止に役立てようとしている.本稿では,マルチバンド 画像処理によって温度の情報を活用しなければ認識が行え ず,応用としての有用性も高い例として,接触検知を対象 として検討進めることとした.

2.2 3DCNN

行動認識の分野では近年,画像認識に用いる CNN を時間方向に拡張した 3DCNN (3 Dimentional CNN) が注目されている. CNN は画像を一枚ずつ入力するものであったが,3DCNN では複数フレームを同時に入力に用い時間方向にも畳み込みを行うため,時空間的な変化を考慮した画像処理を行えるようになり,精度向上に効果がある.2013年に初めて複数フレームを同時に入力する CNN が提案された [5]. 以降,時間軸を加えた 3 次元で畳み込む C3D[6]および,オプティカルフローと呼ばれる時間方向の移動差分情報を用いた Two-Stream ConvNet[7]の2種類をベースとして,現在に至るまで様々なモデルが提案されている [8][9]. 熱痕跡も人の行動と同様に時間方向の特性をもつため,3DCNN が有効ではないかと考えている.

3. 動画像処理モデルの設計

本節は、本研究で用いる動画像処理の CNN の設計について述べる.本稿で目的としているのは、マルチバンド動 画の入力および時間方向への確報の効果を確認することで

ある.そのためシンプルな構造の CNN を設計し,その効 果を確認する基礎検討を行えるようにした.ネットワーク の構造を2に示す.本稿で扱うマルチバンド画像処理では, 近赤外線領域を撮影した RGB 画像と,LWIR (Longwave Infrared) 領域を撮影したサーマル画像を入力とする.近赤 外画像と撮影領域とサイズを合わせることでサーマル画像 をTとすれば,近赤外画像とサーマル画像は RGB 画像の R,G,Bの各色を3チャンネルの入力とするのと同じよう に NIR とTの2チャンネルを結合して CNN の入力とで きる.時間方向にフレーム数 f 続く画像を入力とし,時空 間方向に3×3×3のカーネルを用いて畳み込み,1×3×3 のプーリング処理を行うことを3回繰り返す.このように して得られた特徴量を3層の全結合層で処理し,最終的に 出力層では熱痕跡有とその他の2状態を推定する.また バッチサイズ bのバッチを用いて処理を進めた.

比較対象であるサーマル画像のみの場合や近赤外画像の みを入力とする場合は、入力データ量は異なるものの、同 じモデルサイズで識別するものとした.時間方向の畳み込 みを用いない 2DCNN の場合も入力データを *f* = 1 とし、 同構造のモデルを用いて評価を行った.

入力動画の領域の広さによる認識性能への影響を調査す るため、画像は縦 m 個、横 n 個のグリッドに分割し、そ の1つの画像のみ f フレーム連結させたものを入力動画と する.画像を分割する例を図3に示す.この例では4×4 に画像を分割しているが、実験ではこの他に2×2に分割 した画像でも性能を調査した.データの分割数を変更して 推論結果を比較することで、推論を行う画像・動画内部に 写っている情報(人や熱痕跡)によって識別結果がどの程 度影響を受けるか確認する.

表 1: カメラスペック

Camera	Band	Image size	Frame rate			
		[pixels]	[fps]			
FLIR Boson 640	NWIR	640×512	60			
Gazo MCM-320	NIR*	640×480	30			
*可視光カットフィルタで近赤外領域のみを撮影						

4. 実験

4.1 データの収集

筆者らがこれまでに構築した熱痕跡可視化システム [4] と同様にして動画の撮影を行った.接触対象としては,紙 でできた箱を用いることとした.紙は,金属やプラスチッ クと比較して熱伝導率が低く,手の熱が物体表面にとどま りやすいため,初期検討に適していると考えたためである. 本実験で使用したカメラのスペックを表1に示す.これら のカメラはフレームレートが異なるため,より低いフレー ムレートである近赤外カメラの各フレーム撮影時刻に最も 近いサーマル画像を対応する画像としている.

データセット作成時には、実世界では人がさまざまな行動をとることを想定し、背景のみ・対象物に接触・接触せず カメラ前を通過・接触せずカメラ前に滞在といった複数の 行動と接触を組み合わせた状況を撮影した.動画は2本撮影し、片方を訓練データ、もう一方をテストデータとした.

4.2 動画の前処理

データセットの動画を再生し、手作業で熱痕跡が存在す る領域を矩形で囲むことによりアノテーションを行った. 現状熱痕跡は明確な定義がないため、熱痕跡は人の手が物 体への接触後完全に熱痕跡と手が離れた時に出現し、熱痕 跡と背景の差が目視で確認できなくなった時を消失とした. 今回の条件下では、温度差はおおむね 0.1 度以下で熱痕跡 が確認できなくなった. 図 3(c) にアノテーションデータの 例を示す. データセットのラベルは、動画内に熱痕跡を含 む画像が1枚でもあれば熱痕跡ありと設定している. 取得 した近赤外動画およびサーマル動画はそれぞれ異なるカメ ラから取得しており位置ずれが発生しているため、本デー タセットでは手動で撮影領域が同じ部分を指定することに より位置合わせを行った. 最終的に得られたデータセット およびパラメータを表 2 に示す.

4.3 実験結果

このようにして得られたデータセットを用い,3章で説 明したモデルを訓練データを用いて学習し,テストデータ で推論を行う実験を行った.2DCNN および3DCNN によ るテストデータセットに対する推論結果を表3に示す.評 価指標として正解率,適合率,再現率,F値を用いた.

表 2: データセットのパラメータおよびデータ数

				Train		Test	
CNN	$m \times n$	f	b	T	F	Т	F
2D	2×2	1	300	9332	13468	5777	7123
	4×4	1	300	26532	65568	12415	39185
3D	2×2	10	10	1909	2691	598	692
	2×2	30	10	396	524	210	210
	4×4	10	10	5430	12980	1287	3873
	4×4	30	10	1128	2552	456	1254

T:熱痕跡有,F:熱痕跡無

5. 考察

5.1 使用するバンドによる影響

当初,サーマル動画または近赤外動画を単体で用いるよ りも両方用いた方が精度が高くなると予想していた.しか しサーマル動画のみを用いた場合は正解率および適合率が 高くなり,近赤外動画のみを用いた場合は再現率および F 値が高くなり,両方を用いた場合では双方のスコアの間の 値を取る結果となった.今回の実験では対象となる物体が 一通りだけであったため,サーマル画像と2種類の画像で の認識精度に差があまり出ず,一方で近赤外画像では箱が 写っている領域に熱痕跡が出ると予測するだけでも一定の 精度が出たと考えられる.箱だけではなく壁や机などバリ エーションに富んだデータセットで追試を行うことで当初 の予想が正しいかを今後確認する予定である.

5.2 時間方向の特徴による影響

熱痕跡は時間経過に伴い消失していく特性があるため, フレーム数が長ければ長いほど精度が高くなると想定して いたが,フレーム数が10の時に最もスコアが高くなる結 果となった.これは,フレーム数が増えるに従って時間変 化を学習する一方,フレーム数が多いと動画内での熱痕跡 が出現するタイミングのバリエーションが増えるため,限 られたデータセットでは学習しきれなかったと考えられ る.今後,より具体的な時間方向の影響を検証するため, 画像を間引いて 30fps よりも低いフレームレートに変換し たデータセットを用いて,入力動画の時間長が学習に及ぼ す影響を確認する予定である.

5.3 分割数による影響

全体的な傾向として2×2よりも4×4に分割した方が 低いスコアとなったことから,熱痕跡を識別する上でより 広範囲の状況を利用した方が認識性能が高くなると考えら れる.従って,より狭いグリッド単位で熱痕跡の有無を識 別するような状況においても,全体の画像の特徴をうまく 利用できるモデルが望ましい.

		2×2			4 × 4		
		Т	NIR	T + NIR	Т	NIR	T + NIR
CNN	Accuracy	0.5307	0.5225	0.5471	0.7327	0.6254	0.7193
	Precision	0,2289	0.4628	0.4712	0.3571	0.3038	0.2721
f=1,	Recall	0.0137	0.4947	0.2337	0.093	0.4314	0.1065
b = 300	F1	0.0238	0.4738	0.2821	0.1321	0.3553	0.1343
3DCNN	Accuracy	0.5751	0.5554	0.5299	0.6918	0.6901	0.7376
	Precision	0.7675	0.5214	0.4936	0.3791	0.3400	0.4627
f=10,	Recall	0.1475	0.5037	0.2763	0.1942	0.2357	0.1493
b = 10	F1	0.2319	0.4973	0.3294	0.1958	0.2666	0.2053
3DCNN	Accuracy	0.4903	0.5185	0.5192	0.703	0.6317	0.6864
	Precision	0.489	0.5043	0.425	0.3537	0.3121	0.3455
f=30,	Recall	0.205	0.479	0.4042	0.1247	0.3146	0.2022
b=10	F1	0.2398	0.4664	0.4102	0.1421	0.2927	0.2276

表 3: 推論結果

Epoch number: 30, Learning rate: $1e^{-4}$

6. 議論

6.1 アノテーションおよび前処理

熱痕跡は現状明確な定義が存在せず,本実験や関連研 究[3]ではラベル付けが人手で行われているため,ラベルを つける人や動画によって判定が揺らぐ可能性が高い.そこ で,ラベリングツールに一定の温度閾値以上の部分を熱痕 跡の候補として提示する機能を付加するなどラベリングの 安定化を図ることで精度向上に効果があると考えられる. また,熱痕跡の形は場所や時間経過によって形が不明瞭に なりやすく,人がカメラと熱痕跡の間を横切ることも多い. そこで,単なる熱痕跡の有無の判別モデルではなく,事前 に既存のセグメンテーション技術により人の領域を除去し たり,前の時刻の識別結果を予測に活かすアルゴリズムを 組み合わせることでも精度を向上できると考えている.

6.2 モデル設計の再検討

本実験では近赤外画像とサーマル画像を1つに結合する ことで2種類のバンドの画像を入力としたものの,各バン ドの特徴を活用しきれていないことが窺える.理由のひと つとして,各バンドの動画をまとめて畳み込むため想定す る特徴が抽出できていないのではないかと考えられる.そ こで,各バンドに対してエンコーダを設計し,抽出された 特徴を結合したものを入力とするモデルを設計するなど, 特徴を活用できる方法についても今後検証したい.

7. まとめ

本稿では、感染症対策にも有効な人の物体表面への接触 検知を対象として CNN および 3DCNN を用いた熱痕跡の 識別を行い、入力画像のバンドや時間方向の畳み込みの有 無、画像サイズが識別結果に与える影響を調査した.実験 の結果、時間方向の畳み込みやマルチバンドの画像の入力 が識別性能向上に有効であることが示唆された.一方で, 今回の実験はデータセットも限られ基礎的な検討にとど まった.今後入力画像のバリエーションを増やすことでさ らに検討を進める予定である.また,時間方向やバンド間 のデータの差から得られる特徴を反映させやすい識別モデ ルにより認識性能を向上させたい.さらに,熱痕跡識別に よる接触検知以外の応用についても検討を進め,マルチバ ンド画像処理技術の発展に貢献していきたい.

参考文献

- D. Huo, J. Wang, Y. Qian and Y. H. Yang, "Glass Segmentation with RGB-Thermal Image Pairs," arXiv preprint arXiv:2204.05453, 2022.
- [2] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," MICCAI, pp. 234-241, 2015.
- [3] G. Ma, W. Ross, M. Tucker, P. -C. Hsu, D. M. Buckland and P. J. Codd, "Touch-Point Detection Using Thermal Video With Applications to Prevent Indirect Virus Spread," IEEE Journal of Translational Engineering in Health and Medicine, Vol. 9, pp. 1-11, 2021.
- [4] 白井 良成,岸野 泰恵,柳沢 豊,尾原 和也,水谷 伸,須 山 敬之, "Alertable Surfaces: ウイルスの付着を警告可能 な実環境," WISS 2020, 2020.
- [5] S. Ji, W. Xu, M. Yang and K. Yu, "3D Convolutional Neural Networks for Human Action Recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, No. 1, pp. 221-231, 2013.
- [6] D. Tran, L. Bourdev, R. Fergus, L. Torresani and M. Paluri, "Learning Spatiotemporal Features with 3D Convolutional Networks," ICCV, pp. 4489-4497, 2015.
- [7] K. Simonyan, A. Zisserman, "Two-Stream Convolutional Networks for Action Recognition in Videos," NIPS, Vol. 27, 2014.
- [8] M. Zolfaghari, K. Singh, T. Brox, "ECO: Efficient Convolutional Network for online Video Understanding," ECCV, pp. 695-712, 2018.
- [9] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić and C. Schmid, "ViViT: A Video Vision Transformer," ICCV, pp. 6816-6826, 2021.