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Preface

Many new network-oriented services have been developed in recent years, and these services are

expected to be virtualized in multi-access edge computing (MEC) environments, which are being

standardized along with 5G. To accommodate large numbers of services at low cost, the service

design needs to be adaptable to user requirements and environmental changes.

We investigate a core/periphery structure that allows service components to effectively adapt to

each user request and environmental variation. The core/periphery structure is a model for flexible

and efficient information-processing mechanisms, which has been used to interpret the behaviors of

biological systems, social networks, and internet systems. Some system components, called “core”,

do not change despite the composition of the entire system being changed with time and mediate

the connection of non core system elements, called “periphery.”

We first investigate the design principles and the placement policies that reduce the cost of de-

signing and developing VNFs for accommodating new service requests. We introduce a Core/Periphery-

Based Design (CPBD) that utilizes the core/periphery concept for developing VNFs. In addition,

we examine the Center-Located Core/Periphery placement (CLCP) policy and the Geographically-

Distributed Core/Periphery placement (GDCP) policy, and evaluate the long-term cost of the NFV

system under resource restrictions to run VNFs. Our results show that CPBD reduces the long-

term cost of design and development of VNFs by 23% compared to the design with no core VNFs.

Moreover, in the case of no resource restrictions, both CLCP and GDCP reduce the long-term costs

of placing and connecting VNFs by 15% compared to the existing VNF placement algorithm. With

resource constraints, GDCP reduces the long-term costs over CLCP by 11%.

Second, we introduce a core/periphery structure into a network-oriented service. We design
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and implement a network-oriented mixed reality service based on this structure. To utilize the

flexibility of a core/periphery structure, we regard core functions as those whose behaviors remain

unchanged even when there are changes in user requests or the environment. In contrast, peripheral

functions are those whose behaviors can change under such circumstances. Experiments reveal that

implementation costs are reduced while retaining increases in service response time to less than

31 ms. These results show that taking advantage of a core/periphery structure allows appropriate

division of service functions and placement of functions in a MEC environment, with only small

penalties on latency and at a low implementation cost.

Third, we evaluate the core/periphery-based service structure in the following two aspects more

pragmatically. The first one is the service scenario to use in our experiment. We consider a ser-

vice scenario that includes information processing and information sharing among remote robots

and users. The second one is the metric to represent the implementation cost. We introduce the

complexity of the program as a factor in the cost of adapting to environment because the com-

plexity is especially important when multiple people develop the service, i.e., a modern software

development. We use the cyclomatic complexity, which is the number of independent paths from

the start to the end of the program as the metric to evaluate the implementation cost. Our experi-

ment reveals that an information processing platform using a core/periphery structure is adaptable

to environmental changes at a small cost by reusing the core and recreating only the periphery.

However, when large-scale environmental changes arise, it remains necessary to change the

core/periphery roles of functions, and reconfiguration of only the peripheral functions may not be

sufficient to adapt to such changes.

Therefore, we propose an “evolvable” structure of service functions network based on a core/pe-

riphery structure. Here, we refer to the network that can change the system at low cost with main-

taining the ability to provide new services, as evolvable service structures. We show our proposed

method achieves stable and high service chain accommodation ratios in multiple evolution patterns

with low cost. This provides an advantage for changing the service functions structure in the future

for a long period of time.
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Chapter 1

Introduction

1.1 Background

Many new network-oriented services have arisen, and information networks are rapidly changing.

Using these new services, we can send real-world information from cameras and sensors to the

cloud, or perform high-load processing such as image recognition or voice and sound recogni-

tion. For example, telexistence [1] services, which enables human users to feel present virtually

in a remote place by operate a remote robot as if it is their own body and use robots and virtual

reality (VR) or mixed reality (MR) technologies are now being developed, which use real-world

information from cameras and sensors sent to the cloud, or conduct high-load processing such

as image recognition, voice, and sound recognition. In such applications, application-level delay

is a significant factor affecting service quality. However, communication distance and load con-

centrations can significantly increase application-level delay in cloud computing environments [2].

Recently, multi-access edge computing (MEC) [2–4] has been standardized to mitigate increases

in application-level delay for delay-sensitive services. In an edge computing environment, com-

puting resources and storage are allocated at the network edge so that processing required by end

devices is performed at closer sites. This improves the responsiveness of applications by shortening

communication distances and load distributions.

The service design should be adaptable to user requirements and environmental changes for
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1.1 Background

accommodating a large number of services at low cost. When design decisions that are expedient in

the short term, the costs of maintaining and adapting this system in future increase, which is known

as technical debt [5]. To reduce the costs, module-based design has been widely introduced. In

module-based design, modules connect each other via interfaces and allow to decoupling them [6],

and each module is reused for several products.

The disadvantage of module-based design is that the development becomes complex and dif-

ficult to maintain the products. Albers et. al. [7] pointed out that the interdependencies among

modules used in different products increase because the change of the module affects other prod-

ucts. As a result, the module’s development becomes complex, and it becomes difficult to maintain

the module and products. Although Albers et al. [7] explains about vehicle development, a module-

based design of service also complicates the development. Modules are connected on equal basis

and have interdependencies. More importantly, modules, in our case service functions, are some-

times developed by several different developers. Thus, it is difficult for developers to observe the

scope of effect when they modify their modules. This will lead to the difficulties of maintenance

and modification of services and/or modules.

We investigate a core/periphery structure [8, 9] that allows service components to effectively

adapt to each user request and environmental variation. The core/periphery structure is a model

for flexible and efficient information-processing mechanisms, which has been used to interpret the

behaviors of biological systems, social networks, and internet systems. Some system components,

called “core”, do not change despite the composition of the entire system being changed with time

and mediate the connection of non core system elements, called “periphery as shown in Fig. 1.1.”

The advantage of the core/periphery structure is that it helps reduce the costs for maintaining or

changing services by distinguishing the service functions into core and periphery functions. Unlike

module-based design, a service design based on the core/periphery structure can adapt to environ-

mental changes while modifying only peripheral functions and reusing the core functions. When

designing services that require efficient processing of a various input/output data based on envi-

ronmental changes, designing inspired by the biological core/periphery structure is expected to

enable the service adaptable to various inputs and outputs efficiently. A core/periphery structure is

also found in 5G (fifth Generation Mobile Communication system). Network Exposure Function
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Figure 1.1: Concept of core/periphery structure

(NEF) [10] is located between the 5G core network and external third-party application functions

(AF) and manages external open network data. Opening the network function (NF) to third-party

applications provides a connection between the network function and business requirements and

optimizes the allocation of network resources. Since all external applications that want to access

the internal data of the 5G core always pass through the NEF, it is considered that the NEF exists as

an interface between the AF and the NF and behaves as a core in the overall network that includes

both AF and NF. In this thesis, we control the core and peripheral functions based on considering

only the information exchange that occurs only on the AF side, but it is expected that a structure

consisting of core and peripheries can be found in the network on the NF side as well.

1.2 Adaptable and Evolvable Network-oriented Service Structure

To accommodate large numbers of services at low cost, the service design needs to be adaptable to

user requirements and environmental changes. Because many new network-oriented services have

developed to meet various user requests, it is important to consider service designs that can ac-

commodate as many services as possible when deploying network services in a MEC environment.

However, implementation costs increase if developers must reconstruct entire services to meet dif-

ferent user requests or to adapt to environmental variation such as device evolution. MEC environ-

ment resources are limited by spatial restrictions, making it difficult to locate all possible services,
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1.3 Outline of Thesis

such those on the edge that can adapt to each user request and environmental variation. It is there-

fore necessary to consider service structures that can change service behaviors in a flexible manner.

Service function placement in MEC environments has been studied in, for example, [11, 12], but

most of them correspond to user mobility. Therefore, we introduce a core/periphery structure into

the service design and reveal that this structure leads the service to environmental changes by mod-

ifying only the peripheral functions.

In addition, against large-scale environmental changes, the structure of the service function

requires evolution. Here, we refer to service structures that can change the system at low cost with

maintaining the ability to provide unknown services, as evolvable service structures.

We assume that there are many service functions created by software developers, and that the

service functions are connected through the interfaces are connected to each other. When envi-

ronmental changes occur, the functions commonly used to make up service chains change or new

functions are required to be added. Adapting to environmental changes requires the addition of

interfaces between service functions or the development of new service functions. Efficient accom-

modation provides the service with short chain length using only the minimum service functions.

For example, if the network of service functions is provided in a full mesh, the shortest chain can

be configured, but the number of interfaces between functions to maintain that density when adding

new functions is large. This makes the development cost significant and makes it impossible to

maintain the services in the future. If all functions are designed sparsely, the cost when adding new

functions is small, but the chain length is long since it requires extra functions to accommodate

service chains. Therefore, we propose a service structure that can efficiently accommodate various

service chains with low development cost by controlling the density of service functions.

1.3 Outline of Thesis

The overview of this thesis is shown in Fig. 1.2.
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Figure 1.2: Overview of this thesis

Design and Placements of Virtualized Network Functions based on a Core/Periphery

Structure [13]

In Chapter 2, we numerically investigate the design principles and the placement policies that reduce

the cost of designing and developing virtual network functions (VNFs) for accommodating new ser-

vice requests. As for the design policy, we introduce a Core/Periphery-Based Design (CPBD) that

utilizes the core/periphery concept for developing VNFs. In CPBD, “core” VNFs are developed in

advance and repeatedly used to accommodate future service requests. While “core” VNFs are com-

mon to current and future service requests, “periphery” VNFs are developed and customized for

each service request. Next, we investigate the placement policies of VNFs for CPBD to fully utilize

the nature of their core/periphery structure. In addition, we examine the Center-Located Core/Pe-

riphery placement (CLCP) policy and the Geographically-Distributed Core/Periphery placement

(GDCP) policy, and evaluate the long-term cost of the NFV system under resource restrictions to

run VNFs. Our results show that CPBD reduces the long-term cost of design and development of

VNFs by 23% compared to the design with no core VNFs. Moreover, in the case of no resource

restrictions, both CLCP and GDCP reduce the long-term costs of placing and connecting VNFs by

15% compared to the existing VNF placement algorithm. With resource constraints, GDCP reduces

the long-term costs over CLCP by 11%.
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1.3 Outline of Thesis

Design, Implementation and Evaluation of Core/Periphery-based Network-oriented

Mixed Reality Services [14, 15]

The advantages of a core/periphery structure for accommodating information services, represented

by chains of functions, were numerically investigated in Chapter 2. From the biological point of

view, the core/periphery structure is expected to achieve an efficient and adaptive behavior against

environmental changes.

However, from the service design point of view, dividing functions and placing them in different

devices creates extra communication paths. This degrades service responsiveness and cannot be

ignored. Therefore, when we apply the core/periphery structure to the service design, we need to

consider the balance between the penalty and the reduction of development costs. In this chapter,

we show that a core/periphery structure allows services to adapt to increasing the number of device

types with low implementation cost, and evaluate the actual penalty of locating core functions on

edge servers with regards to the service responsiveness through a service implementation.

In Chapter 3, we implement a network-oriented mixed reality (MR) service based on a core/pe-

riphery structure using actual MR devices and robots. Our implementation focuses on a shopping

service, but service design based on a core/periphery structure is not limited to the shopping service

and can be applied to other network services. We investigate what kinds of functions should be de-

veloped to accommodate user requests in conjunction with various types of devices and real-world

environments in which users and devices are located. To utilize the flexibility of a core/periphery

structure, we regard core functions as those whose behaviors remain unchanged even when there

are changes in user requests or the environment. In contrast, peripheral functions are those whose

behaviors can change under such circumstances. Experiments reveal that implementation costs are

reduced while retaining increases in service response time to less than 31 ms. These results show

that taking advantage of a core/periphery structure allows appropriate division of service functions

and placement of functions in a MEC environment, with only small penalties on latency and at a

low implementation cost.
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Chapter 1. Introduction

Design, Implementation and Evaluation of a Network-oriented Service with Environ-

mental Adaptability based on Core/Periphery Structure [16, 17]

We evaluate in the following two aspects more pragmatically than chapter 3. The first one is the

service scenario to use in our experiment. In our previous works, we considered a service scenario

that includes only information processing; however, commonly used applications today not only

process information obtained from devices, they also share information among such devices. We

focus on the information sharing in this chapter. We consider a service scenario that includes infor-

mation processing and information sharing among remote robots and users and evaluate our service

design in terms of the complexity of the source code and overhead for information sharing. To

investigate the amount of penalties on sharing information, we implement a service and measured

the penalty through experiments on actual devices. The second one is the metric to represent the

implementation cost. In our previous works, we used the number of lines of source code for the

user-side applications as the implementation cost. The number of lines can be used to evaluate the

effort required to adapt the service to the environment. However, it cannot evaluate the extent to

which the logic of the application is simplified because the amount of source code only represents

the implementation results of efforts. Therefore, we introduce the complexity of the program as a

factor in the cost of adapting to environment because the complexity is especially important when

multiple people develop the service, i.e., a modern software development. We use the cyclomatic

complexity [18], which is the number of independent paths from the start to the end of the program

as the metric to evaluate the implementation cost.

Evolvable Design of Network-oriented Services based on Core/Periphery Structure [19]

Our experiments in Chapter 3 and 4 have shown that an information processing platform using a

core/periphery structure is adaptable to environmental changes at a small cost by reusing the core

and recreating only the periphery. However, when large-scale environmental changes arise, it re-

mains necessary to change the core/periphery roles of functions, and modifying only the peripheral

functions may not be sufficient to adapt to such changes. In this chapter, we propose an evolvable

service structure that can efficiently accommodate various service chains with low development cost
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1.3 Outline of Thesis

by controlling the density of service functions. We show our proposed method achieves stable and

high service chain accommodation ratios in multiple evolution paths. In addition, the development

cost used to apply our proposed method is independent of the number or length of future service

chains. This provides an advantage for changing the service functions structure in the future for a

long period of time, because other methods require different costs to accommodate depending on

the number or length of service chains and it is difficult to predict service chains that will arise in

the future.
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Chapter 2

Design and Placements of Virtualized

Network Functions based on a

Core/Periphery Structure

2.1 Introduction

As service demands become increasingly diverse, Network Function Virtualization (NFV) is gain-

ing attention. NFV can implement network functions, such as firewall and proxy server, as a Virtual

Network Function (VNF), which is developed using software. VNFs can run on general-purpose

hardware shared with other VNFs. NFV flexibly accommodates various service requests by con-

necting VNFs over networks.

In operating NFV systems, it is important to reduce the costs of accommodating network ser-

vices. Many previous studies conducted on NFV have discussed placement algorithms that mini-

mize the costs of placing VNFs [20, 21]. For example, Kim et. al. [20] used a genetic algorithm

to minimize the power consumption and satisfy the service delay requirements of users. Nam et.

al. [21] minimized the end-to-end service time by placing VNFs based on Zipf’s law which mod-

els the frequency of VNFs use. Although these studies used different algorithms or approaches,

they implicitly assumed that VNFs are developed in advance. However, in reality, service requests
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may change drastically and require VNFs that have not yet been developed. Therefore, we need a

suitable software design of VNFs and its placement to accommodate the current and future service

requests at a lower cost. If VNFs are not appropriately designed, new VNFs will be added frequently

depending on changes in service requests, which will lead to an increase in their cumulative devel-

opment cost. Moreover, appropriate placement of VNFs is required to reduce opportunities for

changing placement, such as adding, moving, and removing VNFs. In this thesis, we investigate

a software design and placement method for VNFs that can reduce long-term development costs

against changes in service requests.

In considering the software design of VNFs, we introduce a core/periphery structure [8, 9],

which has been used to interpret the behaviors of biological systems, social networks, and internet

systems. Some system components, called “core”, do not change despite the composition of the en-

tire system being changed with time and mediate the connection of non core system elements, called

“periphery.” We interpret VNFs based on a core/periphery structure and distinguish them into core

and periphery VNFs. It is expected that designing core VNFs such that they can be repeatedly used

will reduce the long-term development cost for accommodating future service requests. However,

the development cost of each core VNF is higher than that of each periphery VNF, because core

VNFs need to be generalized to be connected with other VNFs. Therefore, we introduce a model

for deriving the development costs of NFV software systems and reveal the benefit of introducing

core/periphery structures in VNF software design.

Next, we investigate how to place VNFs designed based on a core/periphery structure, as the

deployment cost of VNFs can be reduced by appropriately placing the core VNFs in advance, so

that they can be shared to accommodate future service requests. In fact, the existing method can

reduce the number of VNFs to be placed by sharing common VNFs among the service requests

[22]. We examineCenter-Located Core/Periphery placement (CLCP) policy and Geographically-

Distributed Core/Periphery placement (GDCP) policy. CLCP places core VNFs at the center of

physical networks, which increases the opportunity for core VNFs to accommodate many service-

chain requests. In contrast, GDCP places core VNFs for each topological cluster, which prevents

resource exhaustion resulting from accommodating service-chain requests. In addition, simulations

are conducted for CLCP and GDCP, and the long-term cost of the NFV system is evaluated under
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resource restrictions to run VNFs.

2.2 Design and Placement Problems of NFV Software Systems

2.2.1 Design problem

For the operation of an NFV system, it is important to design a VNF properly, to reduce costs. The

NFV system comprises many VNFs and connects them to accommodate the service requests. There

are some costs incurred in designing and developing VNFs, which disturb the flexible accommoda-

tion for service requests. A suitable software design of VNFs can reduce such costs.

A monolithic software design has been widely used for software such as networking software.

In monolithic software design, multiple components form a single module [23]. These components

are designed to compose a particular service and connect specific components. Thus, changing

components can incur changes in other components, and thus, increase the development cost [5,

24–27]. Moreover, tight coupling makes it difficult to use the components already developed for

accommodating new services. Existing studies [24, 25] have analyzed how software components

have been designed and developed in the long term, such as Linux and Mozilla, and indicated

that large-scale refactoring to reduce tight coupling and increase the generality of components will

contribute to fastening the application development.

Recently, in the field of software engineering, microservices have gained attention due to the

possibility of reducing the development cost [23, 27, 28]. In microservices, components are well

independent and can be connected with other components to form various services. The developed

components can be used to accommodate future services; thus, microservices are expected to reduce

the number of components and costs for design and development.

However, in the case of networked software, such as NFV systems, sufficient discussions have

not been conducted on software. This thesis discusses networked-software designs that have not at-

tracted enough attention so far. To reduce development costs, such as those related to microservices,

we design “core” VNFs to be used to accommodate new service-chain requests.
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2.2.2 Placement problem

Many NFV studies have developed placement algorithms that can minimize the costs related to VNF

placement and accommodate service requests efficiently . One such method [20] uses a genetic

algorithm to solve the problem that minimizes power consumption while satisfying the service

delay requirements of users. Another method [21] places VNF on a physical network based on

Zipf’s law, which models the frequency of use, to minimize the end-to-end service time. The

existing placement algorithm, called affiliation-aware vNF placement (AaP), can reduce the number

of VNFs to be placed by merging the service requests [22]. AaP places VNFs on the shortest path

between the source and destination nodes in order of each merged request, for avoiding bandwidth

consumption.

For example, in accommodating two service requests, such as VNF1 → VNF2 → VNF3 and

VNF4 → VNF2 → VNF5, AaP merges these requests and assumes them as one service request,

such as VNF1→ VNF4→ VNF2→ VNF3→ VNF5. Here, VNF2 is shared and the number of

VNF2 placements is reduced from 2 to 1. These studies aim at optimization in terms of power

consumption, end-to-end service time, and bandwidth consumption.

However, considering the long-term operation of an NFV system, it is more important to reduce

costs to additionally place VNFs and change the VNF location. For accommodating the service

requests, the NFV system places VNFs into a physical network and connects them in a suitable

order. However, there are some costs incurred in placeing and connecting VNFs, which are called

deployment costs. In an operating NFV system, service requests may change variously and require

VNFs that have not yet been placed and connected. These VNFs require additional costs to newly

place and connect them. Moreover, changing the placement of VNFs, such as adding, moving, and

removing them, suspends their execution and causes a delay in data communication [29]. Such

factors increase the deployment cost. However, the above mentioned existing placement methods

[20–22] may frequently change the VNF placement, because they do not consider changing the

placement depending on the variation in the service requests. In this chapter, we investigate a VNF

placement method that can reduce long-term deployment costs against changes in service requests.
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Networked-software system

Periphery function Core function

Service 1
Service 2

Service ݊

Figure 2.1: Example of NFV system

2.2.3 Approaches with core/periphery structure

In considering the software design of VNFs, we introduce a core/periphery structure [8, 9], which

has been used to interpret the behaviors of biological, social, and internet systems. A system pos-

sessing a core/periphery structure operates stably. This is because some system components, such

as the “core”, do not change despite changes in the composition of the entire system with time, and

mediate the connection of non core system elements, such as the “periphery.” Fig. 1.1 shows the

basic concept of a core/periphery structure.

We interpret VNFs based on a core/periphery structure, and distinguish them into core and

periphery VNFs. It is expected that the additional VNFs and their development cost will be reduced

by designing VNFs such that the core VNFs can be used repeatedly to accommodate future service

requests. Moreover, the deployment cost can be reduced by suitably placing VNFs designed based

on a core/periphery structure. To reduce the deployment cost, we place the core VNFs in advance, so

that they can be used repeatedly to accommodate future service requests, as in the case of software

design. In fact, the above-explained AaP can reduce the number of VNFs to be placed by sharing

common VNFs among the service requests [22].
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2.3 Core/periphery-based Design of NFV Systems

2.3.1 Core / Periphery Based Design

An NFV system has many VNFs and accommodates various service requests by appropriately con-

necting them. The connecting order of VNFs is called a service-chain. In general, some VNFs are

frequently used for accommodating service-chain requests, and are regarded as core VNFs. Such

a situation occurs when the VNFs are well-implemented, which is sufficient to be connected with

many other VNFs. The other functions are regarded as periphery VNFs, which are used only for

a specific service-chain request and implemented sufficiently to be connected with specific VNFs,

such as receiving the process result of a VNF as input and passing it to another VNF as output. Fig.

2.1 illustrates the NFV system with core/periphery functions.

Such a VNF classification is based on a core/periphery structure, where the core part does not

change despite the changes in service requests and mediates the connection of other system parts.

The periphery part has higher variability and absorbs changes in service requests. Core VNFs are

used to accommodate multiple service-chain requests and should not be changed frequently, owing

to their generality. Periphery VNFs are used to accommodate service-chain requests that cannot be

accommodated by core VNFs alone, and therefore, can absorb changes in service-chain requests.

We call a software design that has both core VNFs and periphery VNFs as a Core/ Periphery-Based

Design (CPBD).

Because core VNFs can be connected to other VNFs, they have more opportunity to accom-

modate service-chain requests. Preparing many core VNFs will lead to lesser development costs of

periphery VNFs for accommodating new service-chain requests. This is because most of the ser-

vice functionalities would be provided by core VNFs. However, the development cost of each core

VNF will be higher than that of each periphery VNF because core VNFs should be generalized to

be connected with other VNFs. Based on this observation, we model the development costs of NFV

software systems, as presented in Sec. 2.3.2, and compare them with those of CPBD, as presented

in Sec. 2.3.3.
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2.3.2 Cost definitions

Let us consider an NFV system that accommodates n service-chain requests and the j-th service-

chain request requires k(j) VNFs on average. An NFV software system has fall(n) VNFs, which

is the sum of the number of core VNFs, fc(n), and periphery VNFs, fp(n):

fall(n) = fc(n) + fp(n). (2.1)

The development cost of an NFV software system, call(n), is

call(n) =
fc(n)∑

i=0

cc(i) +
n∑

j=0

kp(j)cp(j), (2.2)

where fc(n) is the number of core VNFs and cc(i) is i-th core VNF’s development cost. Moreover,

the j-th service-chain request requires kp(j) periphery VNFs, and cp(j) is the development cost of

each kp(j) periphery VNF. In Eq. (2.2), the first term represents the sum of the development costs

of the core VNFs and the second term represents that of periphery VNFs because each periphery

VNF serves only one service-chain request and the number of periphery VNFs equals
∑n

j=1 kp(j).

The variable cc(i) increases because of the ability to connect with many other VNFs, such as

already implemented core VNFs. Thus,

cc(i) = αi, (2.3)

where the parameter α determines how the development cost of newer core VNFs increases with

the number of core VNFs.

Implementing more core VNFs decreases cp(j) because more service functionalities can be

provided by the core VNFs as compared to the periphery VNFs. Thus,

cp(j) = exp(−βfc(j)), (2.4)

where β determines how the development cost of a periphery VNF decreases as the number of core
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Figure 2.2: The development cost for two design scenarios

VNFs increases. For example, if a firewall is implemented as a periphery, its development cost can

be reduced using core VNFs, such as pattern matching and session management. Such cases occur

more frequently as the number of core VNFs increases. Note that not all implemented core VNFs

can serve for a service-chain request, thus Eq.2.4 forms negative exponential.

Then, we represent kp(j) by fc(j) to observe the change in call(n) against fc(n). We introduce

a parameter γ (0 < γ < 1/fc(j)), which represents how often the fc(j) core VNFs are repeatedly

used among the service-chain requests, and kc(j) is written as

kc(j) = k(j)γfc(j). (2.5)

Then, kp(j) is obtained as k=kc(j) + kp(j);

kp(j) = k − kγfc(j). (2.6)
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2.3.3 Benefit of CPBD for long-term development costs of NFV software system

We consider a scenario in which n increases from 0 to 100, which indicates that new networking

services emerge dynamically over time. In this section, we set k = 10, α = 0.01, β = 0.001, and

γ = 0.002. When these parameters are changed, the slope of the graph changes, but CPBD reduces

long-term development costs as this simulation settings.

We examine two design scenarios – noncore based design (NCBD) and CPBD – and discuss

the development of each scenario by comparing call(100) values of both NCBD and CPBD. NCBD

uses only periphery VNFs to accommodate services without designing and developing core VNFs.

That is, NCBD maintains fc(n) = 0 regardless of the value of n. CPBD designs and develops

100 core VNFs even when n=0; that is, none of the service-chain requests are accommodated.

Setting k = 10 and γ = 0.002 means that 2 among the 100 core VNFs are used, on average, to

accommodate each future service-chain request.

Figure 2.2 shows the development cost of the NFV system call(n) for each n. Note that the

figure does not consider the addition of core VNFs; that is, fc(n) is always 100. The figure shows

that the call(0) of CPBD is 50 times higher than that of NCBD. This is because CPBD requires more

costs to design and develop core VNFs before accommodating the service-chain request. However,

CPBD can reduce the development cost by 23% compared to NCBD. This result suggests that

CPBD can reduce long-term development costs by using the developed core VNFs to accommodate

future service requests.

2.4 Placement Methods of Core/Periphery VNFs

2.4.1 Placement algorithms for a core/periphery-based software system

In the previous section, we revealed that CPBD reduces long-term development costs. Our next

concern is where to deploy the core and peripheral VNFs in the physical network.

Because core VNFs are developed such that other VNFs can be reused, their placement is

the most crucial problem in accommodating new service requests with lesser long-term costs. A

method for obtaining a suitable placement of core VNFs is to solve the optimization problem that
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core function

core function core function

core function

Figure 2.3: Example of CLCP

minimizes the deployment cost each time a service-chain request arises. Here, the deployment cost

is the cost to place and connect VNFs, and not the development cost used in the previous section.

Minimizing the long-term deployment costs is problematic because the placement of core VNFs

affects the additionally placed VNFs for future service requests. Therefore, we use the following

two heuristics, which focus on the topology of the physical network, and compare them.

• Duplications of core VNFs are placed at the center of the physical network. (CLCP: Center-

Located Core/Periphery placement Policy)

• Duplications of core VNFs are distributed over the physical network. (GDCP: Geographically-

Distributed Core/Periphery placement Policy)

Figures 2.3 and 2.4 illustrate the placement of core VNFs in cases of CLCP and GDCP, respec-

tively, which are detailed in the following sections.
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core functioncore function
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Figure 2.4: Example of GDCP

Notations

Table 2.1 shows the notations used in CLCP and GDCP.

The physical network is represented as G = (V,E), where V is the node set and E is the link

set. Given a G, a path set P that comprises the shortest paths between each source destination pair

is calculated. Here, Pu,v ∈ P represents the shortest paths between each source node u ∈ V and

each destination node v ∈ V .

In each time slot t, Cv(t) represents the remaining node resources for each node v ∈ V and

Be(t) represents the remaining bandwidth resources for each link e ∈ E. Note that Cv(0) and

Be(0) represent the initially allocated node and bandwidth resources, respectively.

In each time slot t, λ type of service-chain requests are generated, and the required VNFs

belonging to the set of all VNFs, M , are placed in the physical network. When VNF m ∈ M is

placed on a node v, ĉm,v node resources are consumed from Cv(t). We assume that ĉm,v is uniform

for any VNF m ∈ M and node v ∈ V , and denote it by ĉ. Moreover, the deployment cost, αm,v,
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Table 2.1: Table of notations

V node set
E set of links
P set of all pre-calculated shortest path
Pu,v set of shortest paths between u, v ∈ V , and Pu,v ∈ P
t time slot index
T max size of time slot

Cv(t) remined node resources for each node v ∈ V
Be(t) remined bandwidth resources for each link e ∈ E
ĉ node resource consumption when VNF is placed on node
R set of all service-chain requests (r = {sr, dr, br, nr}, r ∈ R)
Rt set of service-chain requests at each time slot t
sr source node of r ∈ R
dr destination node of r ∈ R
br bandwidth consumption when link is used for accommodating r ∈ R
%nr service-chain of r ∈ R
M set of all VNF
X core VNF set
Y periphery VNF set
wx the number of duplications of x ∈ X
Um,v the remaining number of service-chain requests that can use a VNF m placed

to node v at each time t
α deployment cost to place a VNF on a node

is required to place VNF m ∈ M on a node v. We also assume that αm,v is uniform for any VNF

m ∈M and node v ∈ V , and denote it by α. Note that the total deployment cost is the sum of αm,v

and increases with the time slot t.

Rt is the set of new service-chain requests at each time slot t, and R is a cumulative set of Rt

over the time slot. That is, R = R1, R2, . . . , RT . Each service-chain request r ∈ R is represented

as r = {sr, dr, br,%nr}, where sr ∈ V is the source node of a service-chain request r, dr ∈ V is

the destination node of r, and br indicates the bandwidth resources consumed by Be(t) of each link

e ∈ E.

Each VNF m ∈M is classified into either the core VNF or the periphery VNF. Denoting X as

the core VNF set and Y as the periphery VNF set, X and Y satisfy X ∪ Y = M and X ∩ Y = ∅.

For each core VNF x ∈ X , wx represents the number of duplications of x placed in the physical
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network. Um,v(t) is the remaining number of service-chain requests that can use a VNF m placed

at node v without processing overhead. When VNF m ∈ M is placed on node v ∈ V , there is a

limitation on running VNF m on that node. We denote Um,v(t) as the remaining number of service-

chain requests that can use a VNF m placed on node v. Um,v(0) denotes the maximum number of

service-chain requests that can use a VNF m on node v.

CLCP

Nodes located at the geographic center of the physical network have more opportunities for paths to

go through. Placing core VNFs on such nodes increases the opportunity for them to accommodate

many service-chain requests.

CLCP places the duplication of core VNFs on nodes in descending order of their efficiency [30],

which is a metric for measuring how efficiently information exchange is performed on a node. A

node with a high efficiency has a short hop count from/to other nodes, and is located at the center of

the physical network.

Algorithm 1 shows the CLCP core placement algorithm of CLCP. For a loop from line 2 to line

10, the core VNFs are placed. From lines 5 to 7, we obtain a node v that has the highest efficiency to

place x considering the resource restriction of the node. When placing the core VNF x on node v,

ĉ resources are consumed, and the remaining resource, Cv(t), decreases by ĉ. When Cv(t) is lower

than ĉ, VNF x cannot be placed on v. When the node v, which exhibits the highest efficiency, does

not satisfy the node resource restriction or x has already been placed on v, Algorithm 1 sets v to a

node with the next highest efficiency. This process of placing the core VNF x is repeated wx times,

which is the number of duplications of the core VNF x.

Next, we explain where to place the periphery VNFs. Given the placements of core VNFs by

Algorithm 1, we place and connect periphery VNFs sequentially from the source node to destination

node via nodes where core VNFs are deployed. Note that a service-chain is composed of periphery-

core-periphery VNFs as depicted in Fig. 2.1. Thus, there are three path segments between the source

and destination nodes: a segment for periphery VNFs (source side), that for core VNFs, and that

for periphery VNFs (destination side).
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Algorithm 1 Core placement algorithm of CLCP
Input: G = (V,E), X , wx

1: if t = 1 then
2: for each x ∈ X in descending order of ĉ do
3: v⇐ node with the highest efficiency
4: for loopcounter = 1 to wx do
5: while Ĉv(t) < ĉ or x has already been placed to v do
6: v⇐ node with a next higher efficiency
7: end while
8: place x to v
9: end for

10: end for
11: end if

Algorithm 2 calculates a set of available paths for each path segment, Pavail, and determines

the possible nodes on which core VNFs can be placed, under the resource restriction of the node

in line 7. In addition, it considers the bandwidth resource restriction in line 13. In using link e for

accommodating a service-chain request r, br bandwidth resources are consumed by Be(t), which

is defined as the resources remaining on link e. br should not exceed Be(t); otherwise, r cannot

use e because of the lack of bandwidth resources. When Um,v is 0 for all m and v, or Algorithm 2

cannot obtain Pavail with the remaining bandwidth resources larger than br, a service-chain request

r is rejected.

Algorithm 3 places the periphery VNFs along the Pavail obtained by Algorithm 2. However,

when the hop count between the nodes in Pavail is too short, periphery VNFs cannot be placed

because there are fewer opportunities to find a node to run them. To avoid such a situation, we

consider detour paths other than the shortest path for each path segment from lines 11 to 16 .

In more detail, when m is placed on v, which deploys core VNFs and does not retain sufficient

resources, a detour path, p, is selected using the neighboring nodes of v.

GDCP

By placing the core VNFs at the center of a physical network, as in CLCP, they can be used more

frequently for accommodating many service-chain requests. However, using the central nodes that
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Algorithm 2 Algorithm to obtain available paths to place periphery VNFs
Input: G = (V,E), X , P , r
Output: Pavail

1: Pavail ⇐ ∅
2: s′r ⇐ sr
3: for each m ∈ %nr do
4: if m /∈ X then
5: continue
6: end if
7: if Um,v(t) = 0 for all VNF m and node v then
8: reject r
9: end if

10: d′r ⇐ node with the shortest path from s′r, VNF m, and r̂m(t) < r̃m
11: Obtain ps′r,d′r ∈ Ps′r,d

′
r

with the highest remaining bandwidth resources
12: for each e ∈ ps′r,d′r do
13: if B̂e(t) < br then
14: reject r
15: end if
16: end for
17: add ps′r,d′r to Pavail

18: s′r ⇐ d′r
19: end for
20: d′r ⇐ dr
21: Repeat from lines 11 to 17
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Algorithm 3 The CLCP periphery placement algorithm
Input: G = (V,E), X , P , R

1: for each r ∈ R in descending order of br do
2: call Algorithm 2 and obtain Pavail

3: p⇐ first path of Pavail

4: v⇐ source node of p
5: for each m ∈ %nr do
6: if m ∈ X then
7: p⇐ next path of Pavail

8: v⇐ source node of p
9: continue

10: end if
11: if v owns any core VNF then
12: while Cv(t) < ĉ do
13: v⇐ neighbor node of v with the highest remaining node resource Cv(t)
14: end while
15: add a detour that can reach v to p
16: end if
17: while Cv(t) < ĉ do
18: if v is the destination node of p then
19: reject r
20: end if
21: v⇐ next node of p
22: end while
23: place m to v
24: end for
25: end for

deploy core VNFs and their neighbors leads to resource exhaustion because such nodes are inten-

sively used for accommodating service-chain requests. Therefore, we examine another placement

algorithm that exhibits a distributed placement of core VNFs on the physical network.

GDCP divides the physical network into clusters to maximize modularity [31], and place dupli-

cation of core VNFs in each cluster. Modularity is a metric that reflects the density of the cluster

density; a higher modularity leads to an increased ratio of the number of links between clusters

and that in each cluster. Algorithm 4 shows the core placement algorithm of GDCP. In line 2, we

divide the physical network into clusters using the Louvain algorithm [32] and obtain the number

of clusters ζ. The Louvain algorithm can obtain optimized ζ to maximize modularity. Thus, line 3
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Algorithm 4 Core placement algorithm of GDCP
Input: G = (V,E), X

1: if t = 1 then
2: divide G into ζ cluster by using Louvain algorithm
3: wx⇐ ζ
4: for each x ∈ X do
5: for loopcounter = 1 to wx do
6: Place a duplication of core VNF x to the node that has the highest efficiency in the

loopcounter-th cluster
7: end for
8: end for
9: end if

sets wx, which is the number of duplications of the core VNF x, to ζ. Finally, these duplications

are distributed to each cluster, and placed on the node having the highest efficiency in the cluster in

line 6. For the placement of periphery VNFs on GDCP, Algorithm 3 is used.

2.4.2 A model for service-chain requests

In the simulation for evaluating the algorithms, service-chain requests are dynamically generated.

Each request comprises k VNFs, which is the sum of the numbers of core VNFs, kc, and periphery

VNFs, kp. Here, kc and kp are obtained using the Eqs. 2.5 and 2.6, respectively.

When the time slot t is incremented, λ new types of service-chain requests are generated. Both

the source and destination nodes of each service-chain request are selected by using a uniform

random. kc core VNFs are selected from all |X| types of core VNFs using a uniform random. Note

that service-chain requests do not have duplicate VNFs.

2.4.3 Results

We perform simulations to evaluate the CLCP and GDCP. AaP [22] is used as a placement policy

for comparison. In this section, to reveal the basic characteristics of each placement policy, we first

perform simulations when the resources are infinite. Next, we consider the case in which only node

resources are finite and become a bottleneck for accommodating service-chain requests. Finally,

we show the simulation results when both the bandwidth resources and node resources are finite.
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Results with no resource restriction

We use a 7×7 grid network as the physical network, where both the initial node resources Cv(0) and

bandwidth resources Be(0) are infinite. The number of VNFs comprising a service-chain request,

that is, chain length k, is decided by using a uniform random from the range [4, 8]. When t is

incremented, new λ = 10 service-chain requests are generated. Because the Louvain algorithm

divide the 7 × 7 grid network into five clusters, we set wx of both CLCP and CDCP to 5. The

deployment cost, α, is decided using a uniform random from the range [1, 1.2].

Figure 2.5 shows the deployment cost of each placement policy when CLCP and GDCP place

|X| = 500 core VNFs in advance, which are used for accommodations at a frequency of γ = 0.001.

When the resources are infinite, the deployment costs of the CLCP and GDCP are the same, and

thus, both are indicated by the CLCP / GDCP line in the figure. At t ≤ 80, the deployment cost

of AaP is lower, but at 80 ≤ t, the deployment cost of CLCP / CDCP reduces below that of AaP.

This is because CLCP and GDCP reduce the number of additional VNFs to be placed, by using the

already placed core VNFs to accommodate new service-chain requests.

Placing more core VNFs in advance reduces the deployment costs of CLCP and GDCP. Figure

2.6 shows the deployment cost of each placement policy at |X| = 700; that is, CLCP and GDCP

place more core VNFs in advance. The deployment costs of CLCP/GDCP at t = 150 are 12.76%

less than those of AaP. This is because placing more core VNFs increases the opportunity to use

them to accommodate a service-chain request and reduce the opportunity to use periphery VNFs.

Moreover, the parameter γ affects the deployment costs of CLCP and GDCP. As γ increases, the

core VNFs are used more frequently to accommodate the service-chain requests.

Table 2.2 shows the average hop count of paths used by each placement policy to accommodate

the service-chain requests. The average hop count of CLCP is smaller than that of GDCP. CLCP

places core VNFs at the center of a physical networ, which has, on average, a short hop count

from any node. In addition, it tends to use shorter paths through nodes that deploy core VNFs as

compared to GDCP. Note that AaP is the placement policy with the shortest hop count because

it uses the shortest path from the source node to destination node, while CLCP and GDCP use a

detour path.
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Figure 2.5: Deployment costs of each placement policy (|X| = 500, γ = 0.001)

Table 2.2: Average hop counts of paths used by each placement policy

setting placement policy average hop count
CLCP 6.65

|X| = 500, γ = 0.001 GDCP 7.15
AaP 6.50

CLCP 6.63
|X| = 500, γ = 0.0015 GDCP 6.70

AaP 6.49

Results with restrictions on computing and bandwidth resources

First, we consider a case in which only the node resources are finite and become a bottleneck to

accommodate service-chain requests. A 7 × 7 grid network is again used for the physical network.

We set the initial node resources Cv(0) to 100 for each node v ∈ V and the initial bandwidth

resource Be(0) to infinity for each link e ∈ E. The node resource consumed by a placed VNF,

ĉ, is decided using a uniform random from the range [0.4, 1]. The upper number of service-chain
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Figure 2.6: Deployment costs of each placement policy (|X| = 700, γ = 0.001)

requests that can use a VNF m placed at node v without processing overhead, Um,v(0), which is the

maximum number of service-chain requests that can use a VNF m placed at node v, is set using a

uniform random from the range [4, 40]. When the time slot t is incremented, λ = 10 service-chain

requests are newly generated. The chain length, k, is decided using a uniform random from the

range [4, 8], and the deployment cost for each VNF, α, is decided using a uniform random from the

range [1, 1.2].

Figure 2.7 shows the deployment cost of each placement policy when |X| = 500, γ = 0.001

and wx = 5. In the figure, the deployment costs per service-chain request accommodated by

CLCP and GDCP decreases as t increases. This result indicates that CLCP and GDCP reduce the

deployment cost by repeatedly using the core VNFs.

Note again that a reduction in the deployment costs appears when many service-chain requests

are accommodated (t ≥ 90). Otherwise, the initial costs to deploy the core VNFs are significant;

the deployment cost of AaP at t = 1 is 6.82, whereas that of CLCP and GDCP is 278.69.

The deployment costs of GDCP are lower than those of CLCP, because they accommodate
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Figure 2.7: Deployment cost: (Cv = 100, Be is infinite, |X| = 500, γ = 0.001, wx = 5

different numbers of service-chain requests due to the node resource restriction. CLCP places

core VNFs only on nodes at the center of the physical network and intensively uses these nodes

to accommodate service-chain requests; thus, node resource restrictions are likely to occur. In

contrast, GDCP distributes core VNFs on the physical network, and thus, can use geographically

distributed nodes and accommodate more service-chain requests than CLCP. This can be observed

from Figure 2.8, which shows the amount of node resources consumed by the placed VNFs per

accommodated service-chain request.

Next, we consider the case in which both the bandwidth resources and node resources are finite.

Other settings are the same as those in the case where only the node resources are finite. Figure 2.9

shows the deployment cost of each placement policy. We set Be to 500, keeping all other parameters

same as those in Fig. 2.7. Looking at t = 150 in Figure 2.9, the deployment cost per service-chain

request by GDCP exhibits the lowest value. The deployment cost of CLCP is 12.99% larger than

that in Figure 2.7, while that of GDCP is only 4.26% larger. Figure 2.10 shows the amount of

node resources consumed by the placed VNFs per accommodated service-chain request. In CLCP,
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Figure 2.8: Amount of node resources consumed by the placed VNFs: Cv = 100, Be is infinite,
|X| = 500, γ = 0.001, wx = 5

nodes at the geographic center of the physical network are intensively used; thus, the links that can

reach these nodes are also intensively used. As compared to CLCP, GDCP can use geographically

distributed nodes and incurs fewer bandwidth resource restrictions. We have conducted simulations

on 9× 9 grid network, 49-node BA networks, and 40-node ternary trees, which are not shown here.

Similar tendencies are observed for AaP/CLCP/GDCP.

Our results show that GDCP mostly reduces the deployment costs for CPBD when there are

many service-chain requests. As CPBD also reduces the development costs, the core/periphery-

based software design and distributed placement are suitable for NFV systems for accommodating

future service-chain requests.

2.5 Conclusion

In this chapter, we investigated the software design and placement method of VNFs to reduce

the long-term development and deployment costs against the change in service requests. We first
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Figure 2.9: Deployment cost: Cv = 100, Be = 500, |X| = 500, γ = 0.001, wx = 5

considered designing an NFV system based on a core/periphery structure, and repeatedly used core

VNFs to accommodate future service requests. Our evaluation results indicated that such software

design based on the core/periphery structure can accommodate service-chain requests with lower

development costs than that without core VNFs. Moreover, we investigated where to place the core

VNFs in the physical network by examining CLCP and GDCP. Our results showed that GDCP is

the best placement policy that can accommodate many service-chain requests with low deployment

cost, and the difference between GDCP and CLCP is significant when there are resource constraints

on nodes and/or links.

In this thesis, the incremental development of VNFs was considered. However, in reality, some

of core VNFs would be no longer necessary as the time proceeds, because of the changes in service-

chain requests. One of the future works is to consider removing the not required VNFs from the

nodes.
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Figure 2.10: Amount of node resources consumed by the placed VNFs: Cv = 100, Be =
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Chapter 3

Design, Implementation and Evaluation

of Core/Periphery-based

Network-oriented Mixed Reality

Services

3.1 Introduction

Because many new network-oriented services have developed to meet various user requests, it is

important to consider service designs that can accommodate as many services as possible when

deploying network services in a MEC environment. However, implementation costs increase if de-

velopers must reconstruct entire services to meet different user requests or to adapt to environmental

variation such as device evolution. Moreover, MEC environment resources are not necessarily the

same as those in a cloud computing environment. Specifically, MEC environment resources are

limited by spatial restrictions, making it difficult to locate all possible services, such those on the

edge that can adapt to each user request and environmental variation. It is therefore necessary to

consider service structures that can change service behaviors in a flexible manner. Service func-

tion placement in MEC environments has been studied in, for example, [11, 12], but most of them
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correspond to user mobility. We consider a service design where the developers can modify or add

service functions in a flexible manner with less cost against changes of real environment and user

requirements.

The advantages of a core/periphery structure [8, 9] for accommodating information services,

represented by chains of functions, were numerically investigated in our previous work [13]. From

the biological point of view, the core/periphery structure is expected to achieve an efficient and

adaptive behavior against environmental changes. However, from the service design point of view,

dividing functions and placing them in different devices creates extra communication paths. This

degrades service responsiveness and cannot be ignored. Therefore, when we apply the core/pe-

riphery structure to the service design, we need to consider the balance between the penalty and

the reduction of development costs. In this chapter, we show that a core/periphery structure al-

lows services to adapt to increasing the number of device types with low implementation cost, and

evaluate the actual penalty of locating core functions on edge servers with regards to the service

responsiveness through a service implementation. Unlike model-based evaluations, we implement

a network-oriented MR service based on a core/periphery structure using actual MR devices and

robots. Our implementation focuses on a shopping service, but service design based on a core/pe-

riphery structure is not limited to the shopping service and can be applied to other network services.

When designing services based on a core/periphery structure, it is necessary to consider which

functions should be implemented as core units and which should be implemented as periphery

units. We first investigate what kinds of functions would be required in a shopping service. To uti-

lize the flexibility of a core/periphery structure, we regard as core functions those whose behaviors

remain unchanged under changes to user requests or the real-world environment, and peripheral

functions as those whose behaviors can change under such circumstances. In this way, core func-

tions allow adaptation to the emergence of new services by adding or changing some peripheral

functions instead of recreating entire services. We next evaluate the design of a service based on

a core/periphery structure in terms of implementation cost and service responsiveness. The results

shows that as compared to a conventionally designed service, the implementation cost for adding

new functions of a service design based on a core/periphery structure is reduced without increasing

service responsibility. We close with a summary of the advantages of service design based on a
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core/periphery structure, which are not numerically verified but are experienced through the service

implementation.

3.2 Current and Future Network-oriented Mixed Reality Services

This section describes network-oriented services that have been developed recently or are expected

to be developed in the future.

3.2.1 Current Services

Telexistence services have been actively developed in recent years, and momentum for their social

implementation has been rising. Telexistence aims at allowing people to feel as if they are actually

at a remote place. TELESAR V [1] is a telexistence master–slave system allowing users to feel

present in a remote environment by transmitting not only video and audio, but also haptic sensa-

tions. ANA Avatar [33] is conceived as a new mode of instantaneous transportation allowing users

to communicate and work as if actually present in remote places, using robotics and technologies

for sending tactile sensations and allowing remote robot operations. ANA has begun testing via

the ANA Avatar Museum, which allows users to view a remote aquarium, and ANA Avatar Fish-

ing, through which users can remotely fish. A telexistence application using drones is also being

developed [34].

Existing conventional MR services implement service functions targeted for specific devices

and specific functionality. Flexible service development is necessary to easily adapt to changes in

users’ requests on the real-world side, such as future development of devices and shifting locations.

Moreover, users of a MR service send related information to the centralized server, and the infor-

mation is processed, and then, the results are sent to the remote devices. Typically, the centralized

server is located on the cloud in services such as the above-mentioned ANA Avatar. Conceptually,

the centralized server can be a remote device; users directly communicate with remote devices. By

developing service functions with design of a core/periphery structure, less part of the program code

needs to be modified. In addition, service functions can be placed separately on cloud/edge servers,

users’ devices, and remote devices. More importantly, placing the service functions on edge servers
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has a potential to reduce application-level delay. Note, however, that separating service functions

into core and periphery may lead to increased overhead at the function’s processing delay and im-

plementation cost. Therefore, it is necessary to design and implement the actual MR services by

the concept of a core/periphery structure, and then measure the increased overhead.

VRPN (Virtual-Reality Peripheral Network) [35], which is used for developing VR services, is

similar to the concept of core/periphery structure since it absorbs the difference of VR devices. We

use an MQTT (Message Queuing Telemetry Transport), which is a messaging protocol to absorb

the differences between devices as a core function.

In recent years, there is a concept of dividing and combining service functions such as mi-

croservices [36] and service-oriented architecture (SOA) [37]. In these architectures, each function

is loosely connected and adaptable to changing demands, but because the functions are finely di-

vided, development costs are higher to support various input/output. These architectures are called

“No Core” because they are considered as service structures with only peripheral functions.

3.2.2 Future Services

Sixth-generation (6G) networks will allow development of services using technologies that would

be difficult to support over fifth-generation (5G) networks. Within ten years, current remote in-

teraction technologies will become obsolete, and new forms of interaction such as holographic

and five-sensory communication will allow immersion in remote places [38]. Tactile Internet and

full-sensory digital reality can be realized by 6G networks [39]. It has also been suggested that 6G

networks will further support underwater and space communications, allowing deep-sea sightseeing

and space travel [39].

Application-level delay, which significantly increases in cloud computing environments with

communication distances and load concentrations, will be a significant factor for service quality in

these applications [2]. MEC is therefore expected to be further standardized [2–4]. In edge comput-

ing, computing resources and storage are allocated at the network edge, so that processing required

by end devices is performed at closer sites. This improves the responsiveness of applications by

– 36 –



Chapter 3. Design, Implementation and Evaluation of Core/Periphery-based Network-oriented Mixed
Reality Services

shortening communication distances and optimizing load distributions. Our research group demon-

strated that MEC environments improve the service quality of network-oriented MR services [40].

The ETSI Industry Specification Group [28] suggests video content delivery, video stream analy-

sis, and Augmented Reality (AR) as key use cases for MEC, and suggests guidelines for software

developers.

Current mainstream services include audio and video transmission, but realizing transmission

of information for the five senses will require construction of service systems that can handle mul-

tiple inputs and outputs. In this thesis, we propose guidelines for service function placement in a

core/periphery structure, a biological model for flexibly and efficiently processing information.

3.3 Service Design Based on a Core/Periphery Structure

This section describes a service design based on a core/periphery structure.

3.3.1 Supposed Service for Network-oriented Mixed Reality

We consider a shopping service using MR and robots. Robots are placed in an actual store to allow

users to shop from home as if they were actually there. Robots provide a video feed while moving

about the store under user operations. Real-world information on the store side is added to videos

delivered to users. Users can move robots with gamepads, gestures, or gaze. Figure 3.1 shows an

overview of the shopping service and its functions.

Robot-side applications provide functions for moving, taking video, processing images, col-

lecting and aggregating information around the robot, and adjusting movement speed so as not to

collide with people or objects. User-side applications provide functions for displaying video, send-

ing instructions to the robot, collecting and aggregating information around users, and detecting

objects at a user-defined granularity.

3.3.2 Service Decomposition Based on a Core/Periphery Structure

To design the service described in Sec. 3.3 based on a core/periphery structure, we divide the service

functions into core and peripheral functions. This section discusses core and peripheral functions

– 37 –



3.3 Service Design Based on a Core/Periphery Structure

User
Robot

Virtual store Real store

Aggregate 
information

Object 
detection

Move

Take video Get local 
information

Adjust 
speed

Aggregate 
information

Display video

Send 
messages

Display 
information

Fine-grained 
object 

detection

Get local 
information

User side Robot side

Figure 3.1: The presumed service and its functions.

for video transfer and robot operations, and explains the process at each function in detail.

The service function provides a functionality to services. The functionality ranges from prim-

itive functionality to auxiliary functionality or specific functionality. A service is then provided

by selecting a set of service functions and by combining/chaining the service functions over the

network. Note that the number of possible services drastically increases as the number of func-

tions increases, which makes deployment cost being low by numerical examples in our previous

work [13].

In this thesis, we investigate the effectiveness of core/periphery design using the actual imple-

mentation of MR services. However, because we cannot design and implement all of the possible

(MR) services, we select three services as service scenarios, and design/implement them by using

functions for video transfer (Sec. 3.3.2) and for robot operation (Sec. 3.3.2).

Video Transfer

Functions for video transfer provide video capture and output, perform object detection, and dis-

tribute video to users. For video transfer, we consider three functions depending on user requests,

devices, and real-world environments. First function is the video I/O. When a new camera or device

is developed, the performance of the camera capturing the video may not match the performance of

users’ devices. In that case, the function to change the rate and resolution of the video is needed.
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Table 3.1: Service functions for video transfer.

Function User requests Processing

Video I/O Real time Change rates
High-resolution Change resolution

Object detection Fast but coarse Choose methodsSlow but fine

Video distribution To one user UDP-based protocol
On a large scale TCP-based protocol

Users can also change the video resolution and rate depend on the network environment they are

placed in. Second function is object detection. Users switch object detection methods appropriate

to the location of the robot or information the users want. For example, in a shopping service, when

a robot is moving through the halls of a shopping mall or window shopping by walking a street,

users may select fast but coarse-grained method, and when users want to know the detailed clas-

sification of a product in a specific store, they select slow but fine-grained method. Fine-grained

object detection is supposed to be used at the user side to provide detailed information about the

object based on the user’s preference or intention. Also, when new object detection methods are

developed, service developers implement additional functions to support them. Third function is

the video distribution. A video transfer service which requires real-time video transmission from

robots to users may use UDP and mpeg-ts, and other video transfer service may use HLS (HTTP

Live Streaming) for transmitting video to multiple users. HLS is a live streaming protocol using

HTTP, which allows video delivery/playback to be executed on a web server/client. HLS can dis-

tribute video to multiple users at the same time, but HLS transfers the chunk of video with TCP,

which makes the delay larger. Table 3.1 summarizes the functions for video processing that are

used to realize service scenarios in Section 3.3.3.

We decompose the service into functions, and consider which of those described in Sec. 3.3.1

are core functions and which are peripheral functions, based on the concept of a core/periphery

structure in which core functions processes information more efficiently, while periphery functions

have various configurations for flexibly adapting to environmental changes.
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Figure 3.2: Examples of processing in video transfer. (1) Video providers change video frame or
bit rates. (2) Video providers distribute video to multiple users. (3) Object detection with only a
standard part is executed. (4) Object detection with a new part is executed.

Figure 3.2 shows examples of video transfer processing. When video providers want to change

the video frame or bit rates to adapt to the amount of available resources, the video is processed

before input. Users too can change the frame or bit rate. In that case, video is processed after

output. Protocols and the video format can be changed at the video providers’ request. For example,

video providers use the UDP-based transfer protocol to send video to a single user, and TCP-based

protocols such as HTTP otherwise. When users want to know what is in the video, object detection

is executed. There are various object detection methods, such as YOLOv3 [41], which is fast and

widely used, and Mask R-CNN [42], which provides more detail but is slow. Users can adopt their

preferred method. Orange functions in Fig. 3.2 are common core functions, while light orange and

blue functions are peripheral functions.

Figure 3.3 shows the core/periphery structure for video transfer, with orange fields indicating

core functions, light orange fields indicating camera-side periphery functions, and blue fields in-

dicating user-side periphery functions. Video is sent from the camera, whose frame and bit rates

are adjusted based on provider requests as a peripheral function. The video then passes through
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Figure 3.3: Video transfer based on a core/periphery structure.

core functions, including those for inputting video, outputting video, and the standard part of object

detection. Finally, the video format and distribution protocol are selected and sent to users. By

utilizing the flexibility of a core/periphery structure, all developers have to do is remake or add

peripheral functions for adapting to different user requests, changes in the real-world environment

where devices are placed, or device evolution.

Robot Operation

Robot operations provide functions for recognizing user actions, sending messages from users, ac-

cessing APIs, adjusting robot speeds to avoid obstacles, and collecting and aggregating information

obtained from robots. For robot operations, we consider three functions depending on user re-

quests, devices, and real-world environments. First function is command interfaces based on the

users’ devices, which includes either separately or in combination of gamepads, gestures, and gaze.

Users select how to operate remote devices depending on the users’ device type and its specifi-

cation. In the future, as new command interfaces or devices are developed, new functions to use

the new devices are developed and provided to users. Second function is the selection of a remote

device to operate. Users select the remote devices e.g. robots and drones to operate based on the

remote environment or users’ requests. The APIs used in the service are switched accordingly.

When new remote devices are developed, users can use the new remote devices. Third function
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Table 3.2: Variations of service for robot operations.

Function
User requests/

Real-world
environments

Variations of service

Command interface
Use gestures

Change interfaceUse gamepad
Use gaze

Device to control Operate robots Switch/Add APIsOperate drones

Adjust robot speed
Some obstacles Move robot slowlySlippy

No obstacles Move robot speedily

is related to adapting changes in the real environment in which the robot is located. For example,

when the robot is located in a crowded area, it moves slower, and when it is in a large area, it moves

faster. Table 3.2 summarizes the functions for robot operation variation of service on different user

requests/real-world environments for requests for robot operations.

We decompose the service into functions and determined core functions as in Sec. 3.3.2. Fig-

ure 3.4 shows examples of processing for robot operations. When users operate a robot with

gamepads or gestures, their device recognizes instructions and send messages based on the selected

method. When users operate different devices such drones, service behavior after receiving user

messages will change to access the robot or drone’s API. Furthermore, robot speeds are adjusted

based on the surrounding environment. When there are no obstacles or crowds, users can speedily

move robots. Otherwise, robots slow down to avoid collisions.

The function for send messages in robot operations is a common function, and therefore should

be divided as a core function, rather than the whole service being performed as an all-in-one func-

tion. Figure 3.5 shows the core/periphery structure for robot operations. Functions for sending

instruction messages from users and aggregating information obtained from robots are common, so

they are core functions. Functions for adapting to user requests and changes in the real-world envi-

ronment, such as how to input user instructions, are peripheral functions. Functions for accessing

robot APIs, collecting information such as the current robot position and adjusting movement speed
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(1) User Robot

Send
messages Device control

(2) User Robot

Input

Input

Command 
interface

(3) User Drone
Input

(4) User Robot
Input

Adjust speed

(gamepad)

(gesture)

Figure 3.4: Examples of processing for robot operations.(1) User operates a robot with gamepad.
(2) User operates a robot with gestures. (3) User operates a drone. (4) Robot speed adjusted based
on the environment.

are peripheral functions, because they change according to device type and real-world environment.

Flexibility of a core/periphery structure allows developers to simply remake or add peripheral func-

tions to adapt to varying user requests, environmental changes, and device evolution.

3.3.3 Service Scenarios

We prepare two service scenarios for implementation. Note that we use a robot, Pepper [43], for

the implementation and did not use the Drone devices. The applicability to the Drone and other

devices is discussed in Section 3.4.1. In the first, we modify robot behavior according to its real-

world environment. This scenario realizes communication between robots’ peripheral functions for

adjusting speed and core functions related to robots, object detection, and messaging. In the second

scenario, we modify behavior of a user application based on the user’s real-world environment. This

scenario realizes communication between user-side peripheral functions for displaying information

and core functions related to users, information aggregation, and messaging.
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Figure 3.5: Robot operation based on a core/periphery structure.

Behavior Based on the Real-world Robot Environment

The following describes a scenario in which robots modify their behavior based their real-world

environment. Functions for robot operation and core/periphery functions are as follows:

• Core: Functions for transmitting instructions from the user to the robot and functions for

object detection.

• Periphery: Functions for obtaining information near the robot, adjusting the robot movement

speed, and aggregating information sent from multiple robots.

Figure 3.6 shows this scenario. There are users with MR headsets, robots, cameras, and edge

servers on robot side. Orange functions are core functions. Blue functions are peripheral functions

on robot side, and light orange functions are peripheral functions on user side. Users send instruc-

tions to robots, moving their bodies and heads by gamepads, gestures, and gaze. Robots can detect

nearby obstacles and stop using sensors. Video captured by robot-mounted cameras are sent to the

edge servers, which perform object detection to recognize objects and persons around the robots.

Object detection, a core function, needs to be performed in real time and requires powerful servers.

These functions should thus be deployed on edge servers, not on end devices. The results of ob-

ject detection are returned to robots. For example, when robots know that there are many people

around them, they can reduce speed to avoid collisions. Moreover, information from robots can be
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Figure 3.7: Video processing

aggregated on edge servers and shared with other robots for collision avoidance and the like.

Behavior Based on the Real-world User Environment

The following describes a scenario in which behavior is based on the real-world user environment.

Core/periphery functions are as follows:

• Core: Functions for sending user instructions to robots and for aggregating information from

multiple robots.

• Periphery: Functions for displaying video, detailed object information, and information about

each robot.

– 45 –



3.4 Implementation and Evaluation of a Service Based on a Core/Periphery Structure

Figure 3.7 shows this scenario. As a core function, store and robot information such as product

information or communication status is collected at user-side edge severs. Users select which robot

to operate only by communicating with an edge server while viewing aggregated information about

stores and robots. Video sent from cameras is roughly classified by object type on robot-side edge

servers. These functions perform real-time image processing and information aggregation, and thus

are inappropriate for execution on end devices. To improve responsiveness, core functions should

be performed on edge servers instead of the cloud. Then, detailed object detection is performed as

a peripheral function on a user-side edge server. User devices collect personal information such as

user tastes, what the user already owns, and purchase history, and this information is aggregated on

an edge server. Using this personal information, the system can display content most appropriate

for the user. For example, the application can recommend commodities based on previous frequent

purchases, or can warn users of impending expiration dates for food.

3.4 Implementation and Evaluation of a Service Based on a Core/Pe-

riphery Structure

This section describes implementation details and evaluates the service based on Section 3.3.3.

3.4.1 Implementation of a Service Based on a Core/Periphery Structure

This section describes the implementation of our service. Although there is techniques such as

inheritance in object-oriented languages as an implementation that is based on the concept of a

core/periphery structure, in this thesis, we implemented the core and peripheral functions as sep-

arate programs to locate core functions on edge servers and peripheral functions on robots or MR

headsets. We implemented the service using only HoloLens devices on the user side and only robots

on the remote side.
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Video Transfer

Video from cameras is sent to a robot-side edge server. Video is captured using OpenCV [44],

then object detection is performed using a PyTorch implementation of YOLO v3 [41]. For video

processing, mask R-CNN (Region-based Convolutional Neural Networks) [42], an algorithm that

surrounds detected objects with a rectangle and recognizes the object type for each pixel and colors

it accordingly, can be used. The processed video is transmitted via UDP using ffmpeg [45] to

HoloLens [46], an MR headset worn by users, for display. HoloLens is a standalone head-mounted

computer made by Microsoft that displays holograms and recognizes user gaze and gestures to

provide a MR experience.

Robot Operation

HoloLens controller information is transmitted via Message Queuing Telemetry Transport (MQTT),

a publish/subscribe-type protocol developed for frequent message exchange between IoT devices.

Users use an Xbox controller that can connect to HoloLens. The available operations are as follows;

• Xbox controller: moving forward, backward, left, and right, with left stick, rotation with L

button and R button, and resetting robot’s neck rotation with X button

• gesture: moving forward, backward, left, and right with dragging, and rotation with holding

• gaze: robot’s neck rotation synchronized with HoloLens direction

Because we use the MQTT for the core function, some of the robot operations here are easily ex-

tended to other devices such as Drone [47]. Note again that we selected HoloLens and Pepper to

evaluate the amount of the source code and to measure the application-level delay. The MQTT bro-

ker receives controller commands via HoloLens and sends them to a program running on the robot.

The robot is a Pepper [43] running a program developed using the programming tool Choregraphe.

This program converts messages from the MQTT broker to the Pepper API.

Figure 3.8 shows a screenshot of the HoloLens application. Users can see video with the object

detection results and a map made by Pepper displayed at the top left. The green dot represents

Pepper’s position.
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Figure 3.8: Screenshot of the HoloLens application.

3.4.2 Evaluation Metrics and Measurement

This subsection describes the evaluation metrics, namely implementation cost and service respon-

siveness, and how we measure those metrics.

Implementation Cost

Using the implemented service, we show that adopting a core/periphery structure lowers implemen-

tation costs.

We evaluate the number of lines of source code as the implementation cost, comparing source

code size when the service is designed based on a core/periphery structure with the case where

the service is not designed based on a core/periphery structure and implemented on an end device.

Actually, the number of program code lines highly depends on a programming manner. How-

ever, because we implemented functions with the same programming manner, and program code

mainly consists of essential codes to prepare/handle API calls for each device, we use the number
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of program code lines for comparison. Comparisons between other programming manners may be

possible with more implementations of MR services, but is left for our future work.

While knowledge and preparation of the development environment is also part of the imple-

mentation cost, such factors are difficult to numerically evaluate. Section 3.5 describes these and

other lessons regarding service implementation.

Service Responsiveness

Because sending user instructions via an edge server can increase application-level delay compared

with the case of directly sending instructions to robots, we measure and evaluate application-level

delay as a penalty for using edge servers.

We measure times from when the HoloLens application publishes a message to return of robot

sensor data to HoloLens directly, and through the edge server. Then, we compare these times to

evaluate the effect of allocating core functions on an edge server. We regularly sent messages about

20 times from the HoloLens application and saved each message return time as t1, t2, . . . , t20. We

also record times when Pepper returned sensor data as t′1, t′2, . . . , t′20 in the HoloLens application.

Then, we calculate the average of t′1 − t1, t′2 − t2, . . . , t′20 − t20 as the application-level delay.

Application-level delay is a one-way delay. However, since there are different system clocks

between HoloLens and Pepper, accurate comparison of one-way delay is difficult. We therefore

measure round-trip delay.

We construct a MEC environment using OpenStack located in Osaka.

3.4.3 Results

Implementation Cost

Figure 3.10 shows the relation between the number of device types at remote sites and the number

of lines of source code for the connection establishment part (Fig. 3.10(a)) and for the messaging

part (Fig. 3.10(b)). We omit the complete source code due to space limitations, but it is available

at our GitHub repository [48]. The “Direct” represents the design not based on a core/periphery

structure, and Core/Periphery represents the design based on a core/periphery structure. Solid lines
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in the figure represent the number of lines for two robot types, a Pepper and a presumed robot, and

dashed lines represent the number of lines when using more than two robot types. We have not

implemented the application with more than two robots, but predict that the number of lines will

linearly increase because applications not based on a core/periphery structure require source code

for establishing connections and messaging for each device API, resulting in a constant additional

number of IF statements for each.

Figure 3.10 shows the effect of a design based on a core/periphery structure increases as the

number of device types increases. Note that when a single type of device or a single type of service

is implemented, the design based on a core/periphery structure is less effective. When additional

type of remote devices are deployed for the service, developers need to prepare service functions,

i.e., write code, to establish connections and operations for the remote devices. Writing the code

is necessary for both the design based on a core/periphery structure and the design not based on a

core/periphery structure. However, in the application designed not based on a core/periphery struc-

ture, the amount of source code increases linearly against the increase of remote device since the

service functions are dependent each other. In the application designed based on a core/periphery

structure, developers can reuse these functions as core functions, and the amount of code is constant

or increases marginally.

We considered both variation of devices at remote sites and variation of user-side devices. Both

in services based on a core/periphery structure and those not based on this structure, developers

must add source code for obtaining controller information, because this is a peripheral function.

However, increasing the number of controller types also increases the number of source code parts

to be added on the remote side, an effect that is mitigated by designing services based on a core/pe-

riphery structure. Therefore, developers can implement applications more easily by adopting a

core/periphery structure.

Service Responsiveness

Table 3.3 shows average, maximum, and minimum values for application-level delay, along with

ping round-trip time (RTT) when the HoloLens application directly connects to the Pepper and
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Table 3.3: Results of experiments measuring penalty of using an edge server.

Direct Core on Edge
Average [ms] 21 52

Max [ms] 24 263
Min [ms] 0 18

Ping RTT [ms] - 1

when the HoloLens application connects to Pepper via edge servers. As shown in Table 3.3, the

application-level delay in the case of Direct was 21 ms, and that in the case of Core on Edge was

52 ms. The difference between the two shows that the penalty for locating the core function, MQTT,

on the edge server is 31 ms. The application-level delay in the case of Core on Edge is 52 ms, and

the 52 ms delay is tolerable because humans’ reaction time is around 190 ms for light stimuli. The

results show that application-level delay when using MQTT on an edge server is about 52 ms. A

52 ms delay is tolerable because humans’ reaction time is around 190 ms for light stimuli [49–53].

In combination with the results presented in Section 4.3.1, therefore, a service design based on a

core/periphery structure reduces implementation costs without significantly deteriorating service

responsiveness. Note that application-level delay when core functions are placed on the cloud1 was

626 ms, which exceeds the tolerable delay due to the round-trip time. However, the penalty of

separating service functions into core and periphery is the same as the “Core on Edge”.

3.5 Lessons from Service Implementation

This section presents lessons learned from service implementation based on a core/periphery struc-

ture, including factors that cannot be numerically represented.

First, developers do not need to consider device APIs and specifications. When a service is

not based on a core/periphery structure, functions are not divided and user-side devices directly

establish connections with remote devices. Developers need to know the APIs of many remote

devices to write many parts of source code, including how to establish connections, how to move

1AWS (Amazon Web Services) cloud host in Ohio, USA.
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devices at remote sites, and the parameter settings such as the sensitivity to user operations, which

are depend on the speed and other features of the remote device. By dividing functions based on a

core/periphery structure, user-side developers need to know only user-side device APIs, and do not

need to consider remote device APIs.

Furthermore, adopting a core/periphery structure absorbs differences in development environ-

ments. We implement the service using Unity. A 32-bit version of Unity is required to directly use

the Pepper API from a user-side application, but 32-bit versions of Unity are no longer being devel-

oped. To develop for Pepper, therefore, we must use an old version of Unity and modify the source

code as appropriate. When developing for devices that require an old development environment and

those that require new ones, we need to know the APIs provided by both. When designing services

based on a core/periphery structure, however, developers need to prepare an environment for the

user-side device only, because core functions absorb differences in device specifications.

Second, we consider the implementation cost for sharing information among robots. A non-

core/periphery service structure does not have edge servers. To share information such as positions,

robots must establish connections with each other. Therefore, each time a new robot appears, de-

velopers must modify source code to allow other robots to connect with the new one. By designing

services based on a core/periphery structure, since robots send information to only edge servers,

where that information is aggregated, source code does not need to be changed even when new

robots appear.

Third, we derive guidelines for service function placement in a core/periphery structure. Taking

advantage of a core/periphery structure allows appropriate division of service functions and deploy-

ment of those functions to different servers or devices. If no functions are divided and deployed

in the cloud or on end devices, new services must be entirely recreated to adapt to various user

requests or device evolution. Furthermore, allocating core functions on edge servers and peripheral

functions on end devices is the most effective in terms of service responsiveness and implementa-

tion cost, because it is possible to form feedback loops by short-distance communication between

end devices and edge servers located near those devices and to adapt to real-world environmental

changes.
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3.6 Conclusion

We revealed implementation cost and actual penalty of services using a core/periphery structure,

which is a known model for flexible behavior in biological systems, and evaluated it in terms of

implementation cost and service responsiveness.

To utilize the flexibility of a core/periphery structure, we regard core functions as those with

unchanging behaviors even when there are changes in user requests or the real-world environments,

and peripheral functions as those whose behaviors can change under such circumstances. We im-

plemented a service and evaluated the effects of a design based on a core/periphery structure under

an experimental laboratory environment. These experiments showed that the penalty due to MQTT

on an edge server is about 31ms. Taking advantage of a core/periphery structure allowed us to

appropriately divide service functions and locate functions in a MEC environment, thus reducing

implementation cost for adding new functions with little penalty.

In future work, we will evaluate implementation costs for object detection and feedback to

robots, and for sharing information among robots. There is also a need for implementation and

evaluation of the service using robots other than Pepper. Service design based on a core/periphery

structure is more efficient when there are various devices, but in this thesis we implement and

evaluate a service using only one kind of headset and robot.

– 54 –



Chapter 4

Design, Implementation and Evaluation

of a Network-oriented Service with

Environmental Adaptability based on

Core/Periphery Structure

4.1 Introduction

In Chapter 3, we focused on a shopping experience service using mixed reality (MR) and robots

as a use case to realize a service scenario based on [13], implemented the service with an actual

device, and showed that the service design using a core/periphery structure is effective for robot

operation when the numbers of types of devices on the user side and remote side increase.

In this chapter, we evaluate in the following two aspects more pragmatically than previous

works. The first one is the service scenario to use in our experiment. In our previous works [13]

and [14, 15], we considered a service scenario that includes only information processing; however,

commonly used applications today not only process information obtained from devices, they also

share information among such devices. We focus on the information sharing in this chapter. We

consider a service scenario that includes information processing and information sharing among
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Figure 4.1: Effectiveness of service design using core/periphery structure. Consider adding Input
2 and Output 2 to a service that has Input 1 and Output 1. By providing core functions, fewer
additional functions are needed to support various inputs and outputs.

remote robots and users and evaluate our service design in terms of the complexity of the source

code and overhead for information sharing. To investigate the amount of penalties on sharing infor-

mation, we implement a service and measured the penalty through experiments on actual devices.

The second one is the metric to represent the implementation cost. In our previous works [13]

and [14,15], we used the number of lines of source code for the user-side applications as the imple-

mentation cost. The number of lines can be used to evaluate the effort required to adapt the service

to the environment. However, it cannot evaluate the extent to which the logic of the application

is simplified because the amount of source code only represents the implementation results of ef-

forts. Therefore, we introduce the complexity of the program as a factor in the cost of adapting

to environment because the complexity is especially important when multiple people develop the

service, i.e., a modern software development. We use the cyclomatic complexity [18], which is the

number of independent paths from the start to the end of the program as the metric to evaluate the

implementation cost.
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Figure 4.2: Our service with added functions

4.2 Service Scenario

4.2.1 Basic Service

Our basic service is a shopping experience that uses a robot in a remote location. The remote robot

takes images of a store or streets lined with stores and provides a processed video to the user using

an object detection function. The user operates the robot while watching the video and information

sent from a remote location.

4.2.2 Additional Functions to Improve the Service

To improve this basic service by adapting it to a real environment, we consider adding the following

service scenarios:

• a service scenario that adjusts the movement of the robot based on where it is walking to

avoid collisions in crowded or small areas, and

• a service that obtains information based on the attention level of the user.

Our services and functions are shown in Fig. 4.2. To realize these services, it is necessary to

conduct object detection, store and share information using the results of the object detection, and

– 57 –



4.3 Service Design and Implementation

adjust the manner in which the robot moves. When realizing such services, these functions are

combined as necessary.

4.2.3 Service Design without a Core/Periphery Structure

In designs without a core/periphery structure, the specifications of each service function are specific

to a particular environment, for example, the API for a particular robot. For example, in implement-

ing a design without a core/periphery structure for a robot operation, the robot is accessed directly

from the user devices, and the program needs to be changed to adapt to the environment. In in-

formation sharing, because the method of storing information is not unified, each device stores

information in a different format, and it is difficult to store information collected from a variety of

robots and provide information to the users.

4.3 Service Design and Implementation

4.3.1 Design Scenario

Using the following three design scenarios, we evaluated the effectiveness of the service design

using a core/periphery structure.

No Core: All functions are peripheral and specific to each device.

Core on Robot: Common functions are implemented as core functions on the robots.

Core on Edge Server: Common functions are implemented as core functions on edge servers.

As we described in Sec. ??, we there call the structures such as microservices [36] and service-

oriented architecture (SOA) [37] “No Core” because they are considered as service structures with

only peripheral functions.

Note that a monolithic structure in which all functions are tightly coupled is another candidate

for the design scenarios. Because functions are tightly coupled, we can interpret the monolithic

design as the design consisting only of core functions. Monolithic designs are more difficult to

maintain and scale than designs with microservices because monolithic services are larger and

– 58 –



Chapter 4. Design, Implementation and Evaluation of a Network-oriented Service with Environmental
Adaptability based on Core/Periphery Structure

Figure 4.3: The core/periphery structure for video processing and information storage

Figure 4.4: The core/periphery structure for robot operation

more complex than microservices [36]. Since its development cost is greater than that of a structure

consisting of only peripheral functions, we do not compare with the monolithic design.

4.3.2 Service Design based on a core/periphery structure

We designed our service scenarios in Sec. 4.2.2 based on a core/periphery structure. In a service

design without a core/periphery structure, all functions are implemented as peripheral functions,

and are implemented specifically for each service scenario or real environment. This makes it

difficult to add more functions or change the combination of functions. In a service design with a

– 59 –



4.3 Service Design and Implementation

core/periphery structure, we implemented common functions such as messaging from the user to the

robot, object detection for the video, storage of the object detection results, core functions, and other

functions that can be connected peripherally to the core functions. Therefore, when environmental

changes occur, only peripheral functions need to be changed within a short period of time.

Because the object detection function is commonly used in our service scenario, both it and

the tightly connected information storing function are core components, and peripheral functions

provide how the information is used, as described in 4.3.3 and 4.3.3. For the robot operation, the

core function is sending messages from the user to the robot, and the peripheral function adjusts

the speed of the robot and processing the messages based on each API. Figures 4.3 and 4.4 respec-

tively show the core/periphery structure for video processing and information storage, as well as

the core/periphery structure for a robot operation.

4.3.3 Implementation

Object Detection and Information Sharing (Core Function)

Video images from cameras are sent to the robot-side edge server. The video images are cap-

tured using OpenCV [44], and object detection is then applied using a PyTorch implementation of

YOLO v3 [41]. Using FFmpeg, the processed video is transmitted through UDP to HoloLens, an

MR headset worn by users, for display purposes. HoloLens is a standalone head-mounted computer

made by Microsoft that displays holograms and recognizes user gaze and gestures to provide an MR

experience. From the results obtained by the object detection function, the type, coordinates, and

shooting time of the products sold in the store are acquired as remote information and stored as

shared information among the robots.

Messaging (Core Function)

HoloLens controller information is transmitted through message queuing telemetry transport (MQTT),

a publish/subscribe-type protocol developed for frequent message exchanges between IoT devices.

Users use an Xbox controller that can connect to HoloLens. We develop an MQTT messaging sys-

tem on a user-side edge server using Mosquitto, an open-source message broker, and Node-RED, a
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programming tool for event-driven applications. The MQTT broker receives controller commands

through HoloLens and sends them to a program running on the Pepper robot [43].

Speed Adjustment (Peripheral Function)

The basic service provides a function to move at a constant speed. To enable a change in the way the

robot moves according to the surrounding environment, we add a function to adjust the speed of the

robot such that it does not bump into people or obstacles, using the information of the surroundings

obtained by the object detection function. The results of the object detection are returned from the

edge server to the robot, and the robot uses the information to adjust its speed, such as slowing down

in crowded areas. The core function is to perform object detection on the images sent from the robot

and return the results, and the peripheral function is to reduce the speed when there are many people

in the area. The peripheral function processes the results, and thus the robot can choose to avoid

obstacles other than people, depending on where it is. The edge server stores a list of objects and

their sizes, and the robot refers only to the information of the object to be avoided.

Displaying Information to Users (Peripheral Function)

The basic service displays information about an object using object detection with a learned model.

To display detailed information about the surrounding objects based on the user’s attention, we add

a function to detect gaze and display information using a database of products. A database that

integrates the product list of each store is prepared, and the region of interest (i.e., the object that

the user is gazing at in the video) is cut out and enlarged, and a recommendation is made for a

product of the same type that the user has not yet been shown. The peripheral function customizes

the information for each user by selecting the necessary information from the information stored in

the core function, or by deleting the object that the user has already gazed at.

4.4 Evaluation

Using the following three design scenarios described in 4.3.1, we evaluated the effectiveness of the

service design using a core/periphery structure in terms of the implementation cost and overhead

– 61 –



4.4 Evaluation

for information sharing.

4.4.1 Implementation Cost

We evaluate the implementation cost for increasing the number of device types. Consider our

service, where n types of remote robots and m types of devices are connected on the user side.

In [14, 15], we have measured the implementation cost of core and periphery functions by the

amount of source code. However, the amount of source code does not fully capture the effort

required to adapt to the environment. This is because the amount of source code only represents

the implementation results of efforts. Therefore, we introduce the complexity of the program as

a factor in the cost of adapting to environment, and the complexity is especially important when

multiple people develop the service, i.e., a modern software development.

We assume that all implementations under the No Core scenario are written in the program

of the user-side device, based on the implementation of the program that directly connects the

HoloLens MR headset with the Pepper robot. Therefore, when modifying the program to control

other robots, it is necessary to write the API program for each robot. When users have m+ 1 types

of devices, it is necessary to describe the process for n types of robots for the m + 1th device. In

addition, when the number of robot types becomes n+1, it is necessary to describe the process for

the n+1th robot in each program of the m types of user devices. The more we add to the program,

the more complex the program becomes, and the more complex the program is, the longer it takes

to read and write to add the source code. Thus, the implementation cost is considered to be not only

based on the amount of new source code that has to be written, but also based on the complexity of

the program that we have to read when we modify the program. Therefore, we define the cost of

reading a program as the implementation cost, and use the cyclomatic complexity [18] to evaluate

the implementation cost. Cyclomatic complexity is the number of independent paths from the start

to the end of the program. The higher the number of branches, the higher the value, and the harder

it is to read.

We show extracts of source code to establish connection with robot. Source Code 4.1 shows a

part of the source code of the HoloLens application under the No Core scenario. To access each
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robot directly from the HoloLens application, we need to write all processes for all robots’ APIs

within a single program. This example represents the case where n = 2 and m = 1. The second

and ninth lines are branches according to the environment (in this case, the type of device), and

become more complex as n and m increase.

Listing 4.1: Establish connection to robots.

/ / Pepper

i f ( ! s t r i n g . I sNul lOrEmpty ( p e p p e r I P ) ) {

s e s s i o n = Q i S e s s i o n . C r e a t e ( t c p P r e f i x + p e p p e r I P + p o r t S u f f i x ) ;

i f ( ! s e s s i o n . I s C o n n e c t e d ){

Debug . Log ( ” F a i l e d t o e s t a b l i s h c o n n e c t i o n ” ) ;

r e t u r n ;

}

/ / Another Robot

} e l s e i f ( ! s t r i n g . I sNul lOrEmpty ( RobotIP ) ) {

s e s s i o n r o b o t = R o b o t S e s s i o n . C r e a t e ( t c p P r e f i x + RobotIP + p o r t S u f f i x ) ;

i f ( ! s e s s i o n . I s C o n n e c t e d ){

Debug . Log ( ” F a i l e d t o e s t a b l i s h c o n n e c t i o n ” ) ;

r e t u r n ;

}

}

Source Code 4.2 shows a part of the source code of the HoloLens application, and Source

Code 4.3 shows a part of the source code of the Pepper application with a core/periphery structure.

Because the messaging function with MQTT is provided as a core function, we only need to write

the process for connecting to the MQTT broker from each device.

Listing 4.2: Establish connection from User to MQTT broker.

t r y {

c l i e n t . Connect ( c l i e n t I d ) ;
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}

c a t c h ( E x c e p t i o n e ){

Debug . Log ( s t r i n g . Format ( ” E x c e p t i o n MQTT {0} ” , e ) ) ;

th row new E x c e p t i o n ( ” E x c e p t i o n MQTT” , e . I n n e r E x c e p t i o n ) ;

}

Listing 4.3: Establish connection from Robot to MQTT broker.

mqt t c = mqt t . C l i e n t ( )

mqt t c . Connect ( b r o k e r I P , p o r t S u f f i x , k e e p a l i v e )

Under the No Core scenario, all source code for accessing the robots is written into the HoloLens

program, and thus the more robots are used, the more branches are written into the program. Thus,

the cyclomatic complexity for the entire service becomes O(m×n). Under the Core on Robot/Edge

Server scenarios, we do not need to consider branching, and thus the value does not change and re-

mains at 1. Therefore, as the number of robot types increases, the difference in the cyclomatic

complexity between the No Core and Core on Robot/Edge Server design scenarios becomes more

significant.

4.4.2 Overhead for Information Sharing

Assuming that we keep the information stored by the information sharing function up-to-date, and

that robots R1, R2,..., Rn share information with each other, we measured the number of messages

sent for information sharing in the three design scenarios: No Core, Core on Robot, and Core on

Edge Server, and show that the number of messages is the lowest when the system is implemented

as a core function and deployed on an edge server.

Figure 4.6 shows configuration of the experimental environment in our laboratory. We con-

structed MEC environment using OpenStack version 3.8.1 [54]. The user-side edge server is an

OpenStack virtual machine (192.168.10.73). The robot-side edge server is a physical machine

(192.168.10.39). We built MQTT brokers on the edge servers with mosquitto version 1.4.15, which

is an MQTT version 3.1.1/3.1 broker [55]. Messages from the user to the robot, e.g., controller

– 64 –



Chapter 4. Design, Implementation and Evaluation of a Network-oriented Service with Environmental
Adaptability based on Core/Periphery Structure

Figure 4.5: Cyclomatic complexity of application source code when the number of robots n is
increased.

operation or gaze operation, are sent through the MQTT broker on the user side. The MQTT server

on the robot side is used to send information from the edge server to the robot and from the robot to

the edge server. The robot Pepper (192.168.10.51) is connected to the MEC environment. Note that

the Pepper has an embedded camera with 320x240 resolution, but it is too low to enjoy the video

streaming at the HoloLens. Thus, in this experiment, we attached an external camera on the head

of the Pepper, and the camera is connected to Aja HELO [56] via SDI cable to perform the H.264

encoding for the video streaming. Video from camera is input to the HELO at 60 fps, 1920x1280,

and output at 30 fps, 1080x720. The video encoded by HELO is sent to the robot side edge server

using UDP in mpegts format. Once the processing is completed, the video is output to standard

output as raw data, then encoded into mpegts using FFmpeg, and sent to the HoloLens worn by the

user.
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The messages in our experiment were the results of object detection obtained from the cap-

tured video. Therefore, we measured the number of messages using video of a certain length and

calculated the average overhead per frame. We then divided the process, from the time the new

information was acquired until it was reflected to the user, into the following three phases and

measured the number of messages during each phase.

1. The object detection function is executed until each robot obtains new information. The

information is a list of objects seen by the camera used in our application. Under the No

core and Core on Robot scenarios, this phase is not applied because the robot conducts the

object recognition function directly. Under the Core on Edge Server scenario, the edge server

conducts the object detection function and then sends the list to the robot via MQTT for

integration with the information held by the robot.

2. Information is sent from the robot to the information sharing function. The robot Pepper adds

the coordinates and time information obtained by the robot to the object information. Under

the No Core and Core on Robot scenarios, the robot sends information to all other robots.

Under the Core on Edge Server scenario, the robot sends information to the edge server via

MQTT.

3. Information is provided from the information sharing function to the user when the user

gazes at a specific object. Under the No Core and Core on Robot scenario, the robot sends

information to the user. Under the Core on Edge Server scenario, the edge server sends

information to the user.

Under the No Core scenario, the information-sharing function is implemented in a specific

way based on the type of robot applied. To keep the information stored in the information-sharing

function on all robots up to date, each robot shares information through flooding when there is an

update in the surrounding information held by the robot. Because each robot, R1, R2, ..., Rn, sends

information to n − 1 robots other than itself, O(n2) messages are sent for information sharing.

Information-sharing functions are implemented as periphery functions, and the method of storing

information for each robot is not unified, and thus it is necessary to break down and transmit each
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Figure 4.6: Experimental environment to measure messages for information sharing. The numbers
correspond to each phase.

type of information, such as the name and coordinates of the object. Therefore, O(k×n2) messages

are sent, where k is the number of information types.

Under the Core on Robot scenario, multiple types of information can be shared in a single

flooding because the information-sharing function is unified as a core function. We assume that we

need to keep the information stored in the information sharing function of all robots up to date in

the same way as that under the No Core scenario, and thus we assume that when each n robot sends

information to the n− 1 robots other than itself, O(n2) messages are sent.

Figure 4.7 shows the change in the number of messages for information sharing when the num-

ber of robots n is increased. We measured the number of messages for n = 1, and calculated the

number of messages for each frame, which is the coefficient. For Phase 1, overhead occurs only

in scenario Core on Edge Server. Because the information-sharing function is implemented as a
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Figure 4.7: Number of messages for information sharing when the number of robots n is increased

core function, the method of storing and sharing information is unified, and all the information ob-

tained from one frame can be sent to the robot concurrently. Therefore, one message per frame is

applied. For Phase 2 (Core on Edge Server scenario), we measured the number of messages using

a video 26.36 s in length (790 frames) captured at 29.97 fps and revealed that the edge server sent

854 messages. A total of 1.08 messages were sent every time the information was updated. For

Phase 3, 11 gazes occurred in the same video as that used in the Phase 2 experiment. Because a

recommendation is sent once for each gaze, the rate is approximately 0.014 times per frame. From

these results, the number of messages in the Core on Edge Server scenario is 2.094 × n times per

frame.

In extrapolating the results of our experiment shown in Fig.4.7, under the No Core scenario, the

messages occur at a rate of k × 1.094 × n × (n − 1) times per frame (where k is the number of

information types, which in this implementation is three), and at 1.094 × n × (n − 1) times per

frame under the Core on Robot scenario. In the case of a single robot, the number of messages under
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Figure 4.8: Experimental environment to measure penalty due to the extra communication path.
The numbers correspond to each phase.

the Core on Edge Server scenario is the largest. However, as n increases, the number of messages

under the No Core and Core on Robot scenarios increases, and the overhead is considered to become

larger than the number of messages under the Core on Edge Server scenario.

4.4.3 Penalty in scenario Core on Edge Server

Dividing functions and placing them in different devices creates extra communication paths and

penalty of service responsiveness. To investigate this penalty, we have conducted another exper-

iment which measures the penalty of communicating through an edge server when robots share

information.

In this experiment, we evaluate the application-level delay using a service scenario of infor-

mation sharing among robots. Figure 4.8 shows our experimental environment. The robot NAO

(192.168.10.44) [57] is connected as additional robot. The application-level delay in this service is

the delay between the robot obtaining information about a new object, storing the information in

the edge server, and providing the information based on the user’s attention. Among these delays,

the penalty for using the edge server to provide information to the user via is about the same as that
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Figure 4.9: Each phase to measure the delay

measured in [15] because the extra path in the Core on Edge Server scenario is between the robot-

side switch and the robot-side edge server. Thus we measured the time as application-level delay it

takes for the information obtained by the object detection function to be reflected in the information

sharing function under the Core on Edge Server scenario, represented by the orange arrows in Fig.

4.6. To understand the application-level delay more clearly, we divided the service process into five

phases. Figure 4.9 shows the five phases, starting from the time the new information was acquired

at the edge server, and ending with the time the information is stored in the edge server.

1. From the time the object detection function completes execution to the time it completes

publishing to the MQTT broker under the Core on Edge Server scenario. Under other design

scenarios, this phase is not applied because the robot execute the object detection function.

2. Until Pepper/NAO gets the information obtained by the object detection function. The infor-

mation is a list of objects seen by the camera used in our application. Under other design

scenarios, this phase is not applied because the robot execute the object detection function.

Under the Core on Edge Server scenario, the edge server conducts the object detection func-

tion and then sends the list to the robot via MQTT for integration with the coordinate and

time information held by the robot.

3. Until Pepper/NAO adds the coordinates and time information obtained by the robot to the

object information. This is a common process for all design scenarios.
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4. Until the object information that is added by the robot is received by the information sharing

function. Under the No Core and Core on Robot scenarios, the robot sends information to

all other robots. Under the Core on Edge Server scenario, the robot sends information to the

edge server via MQTT.

5. Until the information sent from Pepper/NAO is stored. This is a common process for all

design scenarios.

The sum of the time taken for the five phases is the delay taken in the Core on Edge Server

scenario. We measure the time it takes for an object detection function in the edge server to complete

publishing a list of objects to the MQTT broker in the same edge server. Phases 1, 2 and 4 are

extra processing compared to other design scenarios. Therefore, the time taken in these phases is a

penalty in the Core on Edge Server scenario. Phase 2 is Pepper/NAO’s MQTT subscription process.

Since there are different system clocks among edge servers and robots, accurate measurement of

the time it takes for Phase 2 is difficult. Thus, we calculate the difference between the total time

taken in Phases 1 through 5 and the time taken in Phases 1, 2, 3, and 5, and measure the time taken

in Phase 2. For Phase 4, we measure the time taken for Pepper/NAO to complete publishing each

information including the object, coordinate, and time, to the MQTT broker on the edge server. We

measure the total time for all phases by recording the time when the edge server executes the object

detection function and the time when the edge server receives the message with the coordinate and

time information added by NAO for each video frame. In our experiment, we used 70 frames of

video stored in the edge server. In this video, 1024 objects are detected in total.

Result

We show the result of our experiment using the robot NAO. TABLE 4.1 shows the average, maxi-

mum, and minimum values for total time, the time for each phase and the penalty by time incurred

by Core on Edge Server scenario. The total measured time, 104 [ms] on average, is the application-

level delay for information sharing among robots. The penalty under the scenario Core on Edge

Server is 99 [ms] on average, and can be up to 536 [ms]. The application-level delay penalty in
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Table 4.1: Time it taken for each phases

Avg [ms] Max [ms] Min [ms]
Total 104 496 10

Phase 1 0 0 0
Phase 2 76 430 1
Phase 3 4 23 1
Phase 4 24 106 3
Phase 5 0 0 0

Sum of Phases 1, 2 and 4 99 536 4

users’ operation of the robot was 31 [ms] on average [15]. In [15], since the penalty is for user-

robot communication, the extra path is between the edge server at the user side and the switch at the

user side. In this experiment, the extra communication path is between the robot and the robot-side

edge server, which is three times the number of hops, and has a larger penalty. The time taken

for Phases 1 and 5 was 0 ms, because the functions performed in those phases are communicating

with the MQTT broker on the same edge server without communication delay. The reason why the

delay of Phase 3 changes drastically is that the robot does not have a good CPU and does process

our information processing in addition to the fundamental control of the robot head and arms. In

addition, the robot sequentially adds and sends information for every item in the list of objects.

Thus, the more objects there are in one frame, or the longer it takes to send other objects, the larger

the maximum value becomes, because waiting time to send the object at the end of the list becomes

large. Therefore, we evaluate the penalty due to the extra communication path compared to 4 [ms],

which is the average time taken for Phase 3.

Figure 4.10 shows the time for Phases 2, 3, and 4 under the Core on Edge Server scenario

compared to the average time for Phase 3 only. The average communication delay is 99 [ms] which

occupies about 95% of the application-level delay and is about 25 times longer than the delay for

Phase 3. Since Wi-Fi communication is used in Phases 2 and 4, the delay varies due to congestion,

obstacles, and the distance from the access point. This result reveals that the penalty is tolerable

because interaction delay tolerance is 100 [ms] [58]. The latency of wireless communication can

be expected to improve with the ultra-low latency that 5G offers.
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Figure 4.10: Minimum and average time for Core on Edge Server scenario

4.4.4 Hierarchical Core/Periphery Structure

In our implementation, communication is applied only between the periphery and core functions;

however, in actual services, communication may be achieved between the core functions on the edge

servers. For example, the core function on the edge servers can aggregate the information held by

neighboring robots, which can communicate with each other to share information over a wide area.

In this case, we can regard the information collection function at each edge server as a periphery

function, and the information-sharing function among edge servers as a core function. Therefore,

in a large-scale service configuration where multiple edge servers exist, we can find a hierarchical

core/periphery structure. Considering the same situation as shown in Fig. 4.7, placing the core

functions in the edge servers of a higher hierarchy is effective when aggregating the information of

four or more edge servers. However, this figure assumes that information is exchanged every frame.
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In a real service, information sharing among edge servers is infrequent, and the edge servers for the

core functions of higher hierarchy are only needed when information is shared among an extremely

large number of edge servers.

4.5 Conclusion

In this chapter, we introduced a core/periphery structure to actualize a flexible and adaptive service

composition in an MEC environment, which is a known model for flexible behavior in biological

systems, and designed and implemented a network-oriented service based on this structure. We

designed and implemented multiple service scenarios and evaluated them using two metrics: cy-

clomatic complexity and overhead for information sharing. We demonstrated that the source code

does not become complex when we add functions to access different devices using the core/periph-

ery structure. Furthermore, we measured the penalty through experiments on actual devices and

showed that it is tolerable.

Although this chapter focuses on a shopping service, a service design based on a core/periphery

structure is not limited to shopping and can be applied to other network services.

In a future study, we will consider a service design that can adapt to larger environmental

changes, such as moving to another location in the real world. Specifically, we design a service

that can adapt to larger environmental changes by reconstructing both the core and peripheral func-

tions.
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Evolvable Design of Network-oriented

Services based on Core/Periphery

Structure

5.1 Introduction

To accommodate large numbers of services at low cost, the service design needs to be adaptable

to user requirements and environmental changes. We have been investigating a core/periphery

structure [8, 9] that allows service components to effectively adapt to each user request and en-

vironmental variation. Information processing units in a core/periphery structure are classified as

core or peripheral units. In a core/periphery structure in biological systems, a periphery processes

various inputs and outputs and reuses a core, which processes information efficiently. When design-

ing services that require efficient processing of a various input/output data based on environmental

changes, designing inspired by the biological core/periphery structure is expected to enable the ser-

vice adaptable to various inputs and outputs. Our previous work has shown that an information

processing platform using a core/periphery structure is adaptable to environmental changes at a

small cost by reusing the core and recreating only the periphery. However, when large-scale envi-

ronmental changes arise, it remains necessary to change the core/periphery roles of functions, and
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reconfiguration of only the peripheral functions may not be sufficient to adapt to such changes.

In this chapter, our aim is to achieve an evolvable service structure based on a core/periphery

structure. Here, we refer to service structures that can change the system at low cost with main-

taining the ability to provide unknown services, as evolvable service structures. We assume that

there are many service functions created by software developers, and that the service functions are

connected through the interfaces are connected to each other. When environmental changes occur,

the functions commonly used to make up service chains change or new functions are required to be

added. Adapting to environmental changes requires the addition of interfaces between service func-

tions or the development of new service functions. Therefore, we propose a service structure that

can efficiently accommodate various service chains with low development cost by controlling the

density of service functions. Efficient accommodation provides the service with short chain length

using only the minimum service functions. For example, if the network of service functions is pro-

vided in a full mesh, the shortest chain can be configured, but the number of interfaces between

functions to maintain that density when adding new functions is large. This makes the development

cost significant and makes it impossible to maintain the services in the future. If all functions are

designed sparsely, the cost when adding new functions is small, but the chain length is long since it

requires extra functions to accommodate service chains.

5.2 Design Problem of Evolvable Service Structure

5.2.1 Design Problem

In this thesis, we assume that there are many service functions created by software developers,

and that the service functions are connected through the interfaces are connected to each other.

When peripheral functions are added by developers, some new service chains using them will be

generated. We add appropriate interfaces between service functions so that accommodate service

chains in the future. Since it is difficult to predict what service chain will be required in the future,

we use only the information available at the time.
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Figure 5.1: An example of service functions network Gt

Service Structure and Service Chain

We consider a network consisting of service functions and interfaces connecting them. The network

of service functions at time t is represented by a directed graph Gt({Fpit, Fct, Fpot}, Lt) consisting

of a set of input-side peripheral functions Fpit, a set of output-side peripheral functions Fpot, a

set of core functions Fct, a set of links Lt. Lt represents interfaces among the service functions.

Service functions are developed by several different developers, each working independently from

the others. When an interface exists between service functions, the interface is always available.

The service providers attempt to connect the service functions they use based on their input data

and output data they want to acquire. The directed graph connecting those service functions from

the input side to the output side is a service chain. We call a service chain sct using an interface

other than an existing interface links a known service chain. For instance, given a service function

network Gt in Fig. 5.1, the chain shown in Fig. 5.2 is a known chain and it is a subgraph of

Gt. A known service chain is represented by a directed graph G′
t({F ′

pit, F
′
pot, F

′
ct}, L′

t). G′
t is a

subgraph of Gt since F ′
pit, F

′
pot, F

′
ct, and L′

t are subsets of Fpit, Fpot, Fct ,and Lt respectively. Here,

we assume that the functions in Fpi is not used after the functions in Fpo and the functions in Fc

and Fpi is not used after the functions in Fpo.
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Figure 5.3: An example of service chain that is accommodated by using other service functions and
interfaces

Service Accommodation

This section describes the accommodation of unknown service chains. In this thesis, we assume

that a service chain can be accommodated when there is a combination of interfaces that allows the

service functions that consist the service chain to be used in a given order. All of G′
t and some of

service chains that are not subgraphs of Gt are accommodated. For example, the chain in Fig. 5.3

is unknown, but can be accommodated since by using service function 7 between function 6 and

12. However, in this case, service functions and communications that are not originally required

are used. The link (6, 12) allows to provide a shorter chain and efficient service. We call the

minimum number of interfaces required to accommodate a given service chain sct the chain length

lsct. Service chains which have a combination of unreachable service functions, as shown in Fig.

5.4 are not accommodated.

5.2.2 Problem Description

Development Cost

To increase the probability of accommodation of the service chain and to provide services with short

chain length, additional interfaces between service functions are required. Based on the information
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Figure 5.4: An example of service chains that is not accommodated

available at time t, we determine interfaces Lt+1 and add the link. We define the cost C required to

accommodate a service chain by the number of links to be added.

C = |Lt+1 \ Lt| (5.1)

Service Accommodation Ratio

Let acsc = 1 when the service chain sc can be accommodated in Gt and acsc otherwise. For

the set of service chains SC arising at time t, the accommodation ratio AC(C) when using the

development cost C is

AC(C) =

∑
sc∈SC acsc
|SC| (5.2)

Our goal is to maximize AC(C) for the same C when t is increased.

We list our representations at Table 5.1

5.2.3 Approach based on Density Control

When considering the realization of an evolvable service function network, it is difficult to solve

the problem described in Sec. 5.2.2 as an optimization problem because it is difficult to express

unknown service requirements in mathematical form. Thus, we enable service function networks to

evolve by maintaining a core/periphery structure of appropriate size and density. Our method can

determine the structure of the network at the next time based only on the topology of the service

function network at the current time. Therefore, it is expected to be able to continue to evolve at a

stable and low cost, regardless of the inability to predict environmental changes.

In [59], for a given two blocks in the human brain, when (connection strength within block m)
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Table 5.1: Representations in Chapter 5

Name Description
Fpi Set of input-side peripheral functions
Fpo Set of output-side peripheral functions
Fp Fin ∪ Fout

Fc Set of core functions
coresize Ratio of cores to the total network

L Set of links
d{pi,po,c} Density within the function block
d(c,{pi,po}) Density between the function blocks

C Development cost
sc A service chain
lsc Chain length

> (connection strength between blocks m,n) > (connection strength within block n), block m is

a core block and n is a peripheral block. Gu et al. [59] shows that in terms of the organization

of brain function, as the brain develops, modules become more separated, core-periphery pairs

increase, and the strength of the connections within blocks the strength of the connections between

blocks are negatively correlated, i.e., the more separated they are, the more indicating a state of

well-developed function. In the service function relationship, a negative correlation between the

density between blocks and the density within a block facilitates development of the function of

each block because of its small dependencies with other blocks.

It is important that the density between the blocks be between the density of the core block and

the density of the peripheral blocks. Gu et al. [59] explains that, when the density between blocks is

greatest, they are not separated and are a monolithic structure, and when the density between blocks

is smallest, there is no interrelationship between them. That is, the density between the core block

and the peripheral block is required to be sufficiently smaller than the density within the core block

to facilitate development, but sufficiently greater than the density within the peripheral blocks to

accommodate service chains.

In addition, this approach enables to distinguish the role of core/periphery and determine Lt+1

from only the network topology information regardless of the content of the service function or the
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frequency of use. Determining the structure of the service function by distinguishing the roles of

the core and periphery based on the frequency of use of the service and the content of the service

function is conceivable, but it is difficult to obtain the information for all service functions and

predict future information.

On a service functions network, the role of the service function can change to accommodate

unknown service chains over time. Therefore, we control the structure of service functions so that

some of the peripheries functions are newly regarded as core functions while keeping the inequali-

ties.

5.3 Density Control of Service Functions Network

This section describes the operation of determining Lt+1.

5.3.1 Service Functions Structure based on Core/Periphery Structure

The connection between function blocks is represented by an adjacency matrix A of blocks m,n.

Aij = 1 when the interfaces i ∈ m to j ∈ n are available, and Aij = 0 when they are not. When

m = n, that is, within Fpi ,Fpo, Fc, we define dm, the density within function block m as

dm =

∑
i∈m,j∈m,i #=j Aij

|m| · |m|− 1
(5.3)

We define dm,n, the density between blocks as

dm,n =

∑
i∈m,j∈nAij

|m| · |n| (5.4)

Hereinafter, we refer the density within Fpi, Fpo, Fc as dpi, dpo, dc respectively, and density

between the core block and peripheral block as dc,pi, dc,po.
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Algorithm 5 Determine Gt+1

Input: Gt = (Fpi, Fc, Fpo, Lt)
Output: Gt+1

1: while dc − dc,pi ≤ thc,cp or dc − dc,po ≤ thc,cp or dc < dminc do
2: n1, n2← random nodes in Fc

3: add edge (n1, n2)
4: add edge (n2, n1)
5: end while
6: while coresize < coresizemax or dc − dc,cpi ≤ thc,cp or dc − dc,cpo ≤ thc,cp do
7: fp← a random node in adjacent nodes of Fc

8: c← a random node in Fc

9: add edge (fp, c)
10: add edge (c, fp)
11: end while
12: while dc,pi − dpi ≤ thcp,p or dc − dc,pi > thc,cp do
13: fp← a random node in Fpi

14: c← a random node in Fc

15: add edge (fp, c)
16: end while
17: while dc,po − dpo ≤ thcp,p or dc − dc,po > thc,cp do
18: fp← a random node in Fpo

19: c← a random node in Fc

20: add edge (c, fp)
21: end while
22: while dc,pi − dpi > thcp,p or dpi < dminp do
23: n1, n2← a random nodes in Fpi

24: add edge (n1, n2)
25: end while
26: while dc,po − dpo > thcp,p or dpo < dminp do
27: n1, n2← a random nodes in Fpo

28: add edge (n1, n2)
29: end while

5.3.2 Adding Links to Accommodate Unknown Service Chains

We focus on the service function fp ∈ Fp. f is connected to one or more of the service functions

in Fc. Let Lfp,c be the set of links connecting fp and Fc, and Lfp,p be the set of links connecting

fp and the block where fp belongs.
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New peripheral function

New peripheral function

Fpi
Fc

Fpo

Figure 5.5: An example of service functions before application of the method

Gt+1 is determined by Algorithm 5. In our simulations, we control the density in the following

order, but you can get the same results if you switch the order. Figure 5.5 shows an example of

the structure of the service functions before the method is applied, assuming an increase in the

peripheral functions on the input side. In line 1-5, we control dc. We select two functions at random

in Fc and add links between them. As we explained in Sec. 5.2.3, to make the density of core blocks

sufficiently greater than the density between blocks, we add links until the following conditions are

met:

• dc − dc,pi > thc,cp

• dc − dc,po > thc,cp

• dc ≥ dminc

Figure 5.6 shows the service functions structure when this process is finished.

In line 6-11, we control the core size. We randomly select fp ∈ Fp and nodes in Fc and add the

links between them so that fp can be considered fp ∈ Fc. Fc including fp become the new core

block. To keep core size below the certain value, we transit to the next state when at least one of

following conditions is met:

• coresize ≥ coresizemax

• dc − dc,cpi > thc,cp and dc − dc,cpo > thc,cp
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Original core block

New core block

Add links

Fpi
Fc

Fpo

Figure 5.6: An example of service functions after adding a core function

In line 12-21, we control dc,pi and dc,po. We randomly select nodes in Fp and nodes in new

Fc and add the links between them. As we explained in Sec. 5.2.3, to make the density between

blocks sufficiently greater than the density within peripheral blocks, we add links until the following

conditions are met. We set the second and fourth conditions to avoid adding an unlimited number

of links.

• dc,pi − dpi > thcp,p

• dc − dc,pi ≤ thc,cp

• dc,po − dpo > thcp,p

• dc − dc,po ≤ thc,cp

In line 22-29, we control dpi and dpo. We randomly select peripheral nodes in the same block

and add the links between them. To make the density within peripheral blocks sufficiently great to

be the function blocks, we add links until the following conditions are met. We set the second and

fourth conditions to avoid adding an unlimited number of links.
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Add links

Fpi
Fc

Fpo

Figure 5.7: An example of service functions after adding links between peripheral functions

• dc,pi − dpi ≤ thcp,p

• dpi ≥ dminp

• dc,po − dpo ≤ thcp,p

• dpo ≥ dminp

Figure 5.7 shows the service functions structure when this process is finished.

Our method randomly selects which nodes to add links between. The nodes to which links

are added can be determined based on information such as frequency of use or degree. Since

service chains that will arise in the future are difficult to predict, adding links randomly leads to

accommodating a variety of service chains.

5.4 Evaluation

5.4.1 Comparative Methods

The methods used in our evaluation are as follows:
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• Density Control: our proposal explained in 5.3.2.

• Random: this method randomly selects nodes and adds links between them with the same

cost as our With Density Control method.

• Low-cost Accommodation: this method accommodates service chains occurring at t with as

low cost as possible. Specifically, the following operations are executed.

1. We calculate how much the accommodation ratio is increased by each link between all

nodes. Note that the links which are able to add are that from Fpi to Fc, Fpi to Fpo or

Fc to Fpo.

2. We add the link with the largest value calculated in 1.

3. We repeat 1. and 2. until there are no more links to increase the accommodation ratio.

• Shortest-Path Accommodation: this method connects all nodes of the service chains so that

each service chain at t is a subgraph of Gt.

The simulation program executes in the following order at each step t.

1. Initial state at t. The function network consists of a core block Fc, an input-side peripheral

block Fpi, and an output-side peripheral block Fpo.

2. Environmental Change at t. We add peripheral functions with probability p. We generate

random number r. When 2
p < r ≤ p, a function is randomly selected from the Fpi and

otherwise a function is randomly selected from the Fpo. Then, the new function is connected

to the selected node as a leaf.

3. Each method determines Gt+1, and calculate their development cost and accommodation

ratio AC(C).

4. Gt ← Gt+1 for each methods.

5.4.2 Evaluation Metrics

We evaluate the methods with following three metrics.
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Accommodation Ratio

First, we calculate the accommodation ratio of the service chains explained in Sec.5.2.2. We assume

that the Random and Shortest-Path Accommodation methods can use the same cost as our Density

Control method at each step.

We created 30 service chains for each step in the following way.

1. We select one input node and one output node at random. The nodes in Fp that are leaves are

candidates for input and output nodes of service chains, respectively.

2. We randomly select nodes to generate the service chain from all nodes other than the in-

put/output nodes selected in 1. Let the number of nodes at step t Nt. The number of nodes

selected here is set to be between 1 and Ni
3 . Note that they are connected in the order of the

nodes in Fpi, nodes in Fc, and node in Fpo.

3. The chain connecting the input node, the node selected in 2, and the output node in that order

is a service chain.

Here, 15 of the service chains are selected based on the core/periphery classification at t = 0,

and the remaining 15 are selected based on the core/periphery classification when the algorithm is

applied in section 5.3.2. This is to focus on new service chains that use core functions that were not

previously used as core functions.

Development Cost

The Low-Cost Accommodation method tries to accommodate the service chains with as little cost

as possible, so its cost is less than Density Control. Therefore, we calculate the development cost

of each method to achieve its objectives at each step to evaluate how much more cost the Density

Control and Shortest-Path Accommodation methods require compared to the Low-Cost Accommo-

dation method to accommodate the same service chains. We calculate the cost of accommodating

all service chains generated at each t in the shortest distance, with unlimited cost available for the

Shortest-Path Accommodation method.
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Chain Length

In Low-Cost Accommodation method, AC(C) is expected to be higher, but it has the disadvantage

of requiring extra paths to be taken to accommodation the service chain. Longer chain lengths mean

the use of service functions and communication paths that are not required to provide the service,

which leads to a degradation of the responsiveness of the service.

Therefore, we calculate the chain length lsc with our Density Control method and it with Low-

Cost Accommodation method respectively. For a service chain sc which consists of Nsc functions,

the minimum value is Nsc− 1 when the given service chain is a subgraph of Gt. In this simulation,

we calculate lsc
Nsc−1 .

5.4.3 Simulation Results

Table 5.2: Parameters Setting for evaluation

Parameter Description Setting
coresizemin Minimum ratio of cores to the total network 0.3
coresizemax Max ratio of cores to the total network 0.4

p Probability of new peripheral functions to be created 0.4
thc,cp Threshold of dc − dc,piorpo 0.3
thcp,p Threshold of dc,piorpo − dpiorpo 0.2
dmincp Minimum value of dc,piorpo 0.3
dminp Minimum value of dpiorpo 0.2
dminc Minimum value of dc 0.7
dmaxc Maximum value of dc 0.8

We give the network represented in Fig. 5.8 and parameter shown in Table 5.2. We executed

the methods until t = 40 respectively for 20 times.

Service Accommodation

The results of the accommodation ratio calculations are shown in Fig. 5.9, and 5.10. The accom-

modation ratio with a case of an example of evolution paths each service function network followed

is shown in Fig. 5.9. The horizontal axis represents steps and the vertical axis represents AC(C).
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Figure 5.8: The service function network at t = 0

Note that Random and Shortest-Path Accommodation methods can use the same cost as our Density

Control method at each step.

As the steps pass, the accommodation ratio approaches nearly 1 when Density Control is applied

but that with Low-Cost Accommodation method decreases. This is because there are less nodes that

are bi-directionally linked (i.e., less functions that are used mutually) and it cannot accommodate

the service chains that do not use new core functions. In Density Control method, the number of

combinations of functions that can be used mutually is increased by densely connecting peripheral

functions as new core functions. As a result, it is now possible to accommodate service chains that

use as core a function that was not previously used as core.

The accommodation ratio is not stable when connecting the nodes in the service chain arriving

at each step using the same cost as our Density Control method. As the size of the network increases

over the course of the steps, the long service chains increases. Since Shortest-Path Accommodation

method uses more costs to accommodate longer service chains, the accommodation ratio is lower

when more long service chains arise.

Figure 5.10 shows the accommodation ratio for 100 executions of each method, that is, the

accommodation ratio for following 100 evolutionary paths. We excerpted the 30th step and later,

when the effect of the initial network state is small. When Density Control method is applied,

there are some service chains that cannot be accommodated because not all nodes are reachable,

but the accommodation ratio is close to 1 for almost all evolutionary paths. When other methods
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Figure 5.9: An example of accommodation ratio for all service chains

are applied, the variance in accommodation ratios is large. Density Control method also has many

random factors, but has a stable higher accommodation ratio than the Random method for the same

cost. This indicates that controlling the density of service functions leads to accommodating many

service chains.

Development Cost

The results of calculating the cost at each step are shown in Fig. 5.11, and 5.12. The horizontal axis

represents a step and the vertical axis represents the cost.

Density Control method adds about 10 times more links than the Low-Cost Accommodation

method with our settings. However, Low-Cost Accommodation method calculates accommodation

ratios for all possible links. The larger the service functions network, the more difficult it becomes

to find the optimal link to add from vast combination of nodes.

The cost for Shortest-Path Accommodation method shown in Fig. 5.11, is the cost required to
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Figure 5.10: Accommodation ratio for all service chains

accommodate all service chains, including those not accommodated shown in Fig.5.9, 5.10. The

cost for Shortest-Path Accommodation method increases significantly because the links added at

t are rarely reused in the future. Development cost for Low-Cost Accommodation and Shortest-

Path Accommodation method are highly dependent on the parameter settings such as the length

and number of service chains arriving at each t and it is difficult to predict what service chains will

occur in the future. However, development cost for Density Control method is not dependent on the

content of the service chain since it is based only on network topology.

Path Length to Accommodate Services

The length of the chains with Density Control and Low-cost Accommodation is shown in Fig.

5.13, 5.14, respectively. Density Control method requires only 1 to 2 times the shortest length of

the service chains since we control the density between Fc and Fp. Low-Cost Accommodation

method requires about 3 to 5 times the shortest length of the service chains. It adds links between
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Figure 5.11: An example of development cost

peripheral functions because it determine the links based on the accommodation ratio. As a result,

the peripheral function becomes closer to being connected in a ring-like shape. If the Low-Cost

Accommodation method is modified to have a shorter chain length, it performs the same process as

the Shortest-Path method, and the cost become higher as shown in Fig. 5.11, 5.12.

5.4.4 Evolvability of Service Design

Our simulation results shown in Sec. 5.4.3 revealed that our proposed method allows the ser-

vice functions network to evolve a structure that can accommodate more unknown service chains.

Density Control method achieves stable and high service chain accommodation ratios in multiple

evolution paths. In addition, the development cost used to apply Density Control method is inde-

pendent of the number or length of future service chains. This provides an advantage for changing

the service functions structure in the future for a long period of time, because other methods require
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Figure 5.12: Development cost

different costs to accommodate depending on the number or length of service chains and it is dif-

ficult to predict service chains that will arise in the future. We expect that this advantage becomes

more significant as the size of the service functions network and service chains become larger.

5.5 Conclusion

To accommodate large numbers of services at low cost, the service design needs to be adaptable

to user requirements and environmental changes. When large-scale environmental changes arise, it

remains necessary to change the core/periphery roles of functions, and reconfiguration of only the

peripheral functions may not be sufficient to adapt to such changes. In this chapter, we proposed

a evolvable service structure that can efficiently accommodate various service chains with low de-

velopment cost by controlling the density of service functions. Our proposed method efficiently

accommodates a many service chains for cases following multiple evolutionary paths. Future work

– 93 –



5.5 Conclusion

Figure 5.13: Chain length (Density Control)

includes addressing the problem of where to place service functions and providing a service struc-

ture for the unavailability of some service functions.
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Figure 5.14: Chain length (Low-Cost Accommodation)
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Conclusion

Many new network-oriented services have been developed in recent years, and these services are

expected to be virtualized in multi-access edge computing (MEC) environments, which are being

standardized along with 5G. To accommodate large numbers of services at low cost, the service

design needs to be adaptable to user requirements and environmental changes. Module-based design

have been widely introduced in the software design, but the concept of modularization alone is

not sufficient because development costs will change depending on how the service is divided.

Module-based design enables to develop different services by combining the modules, but it is

difficult to properly divide the service into modules at the design phase of the service. When design

decisions that are expedient in the short term, the costs of maintaining and adapting this system

in future increase, and it is known as technical debt. Therefore, a service design requires not only

modularization, but also efficient adaptation to environmental changes.

We first investigated the design principles and the placement policies that reduce the cost of

designing and developing VNFs for accommodating new service requests. As for the design pol-

icy, we introduce a Core/Periphery-Based Design (CPBD) that utilizes the core/periphery concept

for developing VNFs. In CPBD, “core” VNFs are developed in advance and repeatedly used to

accommodate future service requests. While “core” VNFs are common to current and future ser-

vice requests, “periphery” VNFs are developed and customized for each service request. Next, we
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investigate the placement policies of VNFs for CPBD to fully utilize the nature of their core/pe-

riphery structure. In addition, we examined the Center-Located Core/Periphery placement (CLCP)

policy and the Geographically-Distributed Core/Periphery placement (GDCP) policy, and evaluate

the long-term cost of the NFV system under resource restrictions to run VNFs. Our results show

that CPBD reduces the long-term cost of design and development of VNFs by 23% compared to the

design with no core VNFs. Moreover, in the case of no resource restrictions, both CLCP and GDCP

reduce the long-term costs of placing and connecting VNFs by 15% compared to the existing VNF

placement algorithm. With resource constraints, GDCP reduces the long-term costs over CLCP by

11%.

Second, we introduced a core/periphery structure for service components, which is known as

a model for flexible behavior in biological systems, and design and implement a network-oriented

mixed reality service based on this structure. To utilize the flexibility of a core/periphery struc-

ture, we regarded core functions as those whose behaviors remain unchanged even when there are

changes in user requests or the environment. In contrast, peripheral functions are those whose be-

haviors can change under such circumstances. Experiments revealed that implementation costs are

reduced while retaining increases in service response time to less than 31 ms. These results showed

that taking advantage of a core/periphery structure allows appropriate division of service functions

and placement of functions in a MEC environment, with only small penalties on latency and at a

low implementation cost.

Third, we evaluated the core/periphery-based service structure in the following two aspects

more pragmatically. The first one is the service scenario to use in our experiment. We focused

on the information sharing in this paper. We consider a service scenario that includes informa-

tion processing and information sharing among remote robots and users and evaluate our service

design in terms of the complexity of the source code and overhead for information sharing. To

investigate the amount of penalties on sharing information, we implement a service and measured

the penalty through experiments on actual devices. The second one is the metric to represent the

implementation cost. We introduced the complexity of the program as a factor in the cost of adapt-

ing to environment because the complexity is especially important when multiple people develop

the service, i.e., a modern software development. We used the cyclomatic complexity, which is
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the number of independent paths from the start to the end of the program as the metric to evaluate

the implementation cost. Our experiment showed that an information processing platform using a

core/periphery structure is adaptable to environmental changes at a small cost by reusing the core

and recreating only the periphery.

Finally, we proposed an evolvable structure of service functions network based on a core/periph-

ery structure, that is, a network that can change the system at low cost with maintaining the ability

to provide unknown services, as evolvable service structures. We proposed a method that can effi-

ciently accommodate various service chains with low development cost by controlling the density

of service functions. Our simulation revealed that our proposed method efficiently accommodates

a many service chains for cases following multiple evolutionary paths.

In summary, we introduced a core/periphery structure for service components, which is known

as a model for flexible behavior in biological systems, and revealed that taking advantage of a

core/periphery structure allows appropriate division of service functions and placement of functions

in a MEC environment. By reusing core functions and modifying only the peripheral functions, the

system adapts to environmental changes with low cost. Also, we proposed a method to evolve

the service functions network based on a core/periphery structure. Against large environmental

changes, our method enables the service functions network to accommodate service chains in which

a service function that was not previously used as a core is used as a core by controlling the density

of service functions.

Future work includes addressing the problem of where to place service functions. Dividing

functions and placing them in different devices creates extra communication paths and penalty of

service responsiveness. While we have shown that the penalty for dividing services into core and

peripheral functions and placing them in different device is tolerable. However, in service structures

that evolve to adapt to large environmental changes, the peripheral functions sometimes change

their role to core functions. We consider that migration of the functions or distributed deployment

of copies are possible. Determining how to deploy them based on deployment costs and service

responsiveness will help to implement our evolvable service structure. Also, providing a service

structure for the unavailability of some service functions. We considered only the case where the

service functions increase, but there are cases where some of service functions become unavailable.
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