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Abstract

In recent years, XR (X-Reality), including VR (Virtual Reality) and MR (Mixed Re-

ality), has been spreading with lower prices and improved quality of devices. In addition

to 2D media such as images and videos, 3D media is exchanged through information net-

works, and the proportion of 3D media is increasing. And a digital twin, which imitates

objects in the real world as 3D objects on a computer, is expected to improve our experi-

ence. 3D media is often represented by a point cloud, and some software systems handles

the data of point clouds through file input/output. If point cloud information can be

transmitted and received in a streaming format, and if point cloud attribute information

can also be provided in a streaming format, we can expect to develop a service that allows

users to perceive information about objects in remote locations in real time and to interact

with people and objects in remote locations. For the point cloud streaming with attribute

information, it is necessary to determine the format and protocol for sending and receiv-

ing information. In this thesis, we extend the existing implementation on point cloud

streaming such that an attribute of each point is also transferred. Instead of changing the

data format of points, we preserve existing data format so as not to make a lot of changes

on existing implementation, and our attribute data is injected into the end of original

data. A set of APIs are prepared for the point attribute streaming. Then, we implement

a networked VR application using the APIs to demonstrate the services using 3D-point-

attribute streaming. Our application uses a probabilistic representation of plausibility of

object on point clouds. The sender injects the probability of the plausibility on the point

as point attribute, and the attribute is transferred on network. The receiver picks up the

attribute information and when the probability of point is low, more accurate rendering

1



is performed on the point. In this study, we use a probabilistic field [1] representation as

the result of information processing. Probabilistic field representation expresses the plau-

sibility of object identification as a probability, which is calculated by supervised machine

learning on the point cloud information. We construct an experimental environment in

our laboratory, and confirmed that 3D-point-attribute streaming is performed.
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1 Introduction

In recent years, XR (X-Reality), including VR (VirtualReality) and MR (MixedReality),

has been rapidly gaining popularity due to the low cost and improved quality of the

equipment [2, 3]. Along with this, 3D media have emerged as media flowing over the

network, in addition to 2D media such as images and videos, and the proportion of 3D

media is increasing every day. For example, museums provide an application that places

3D objects that imitate exhibits in a virtual space and allows users to look around the 3D

map in VR [4]. Such a world that imitates the real world and reproduces it virtually as a

3D object on a computer is called a digital twin [5], and there are growing expectations

for its use to improve user experience and simulation.

Currently, graphic data or point cloud is used as information data to create 3D objects.

When drawing 3D objects using graphic data, a program to represent a place or a scene is

programmed in advance, and a scene in which 3D objects of the colors and shapes specified

by the program is displayed. The advantage of using graphic data is that details of 3D

objects can be created. However, it cannot do anything other than the preprogrammed

operation, and a new program needs to be developed for representing other type of scenes.

Therefore, the use of graphic data is appropriate for services that handle static informa-

tion, such as services that exhibit objects in museums, and for those with pre-determined

programs, such as live concerts. On the other hand, point cloud is a set of vertex and color

data of objects, which are surveyed by RGB-D cameras and 3D laser scanners. Since point

cloud is a set of point information, a large amount of data is required to represent curves

and irregularities on the surface of an object as a 3D object. However, when drawing a 3D

object based on point cloud, a new 3D object can be drawn simply by replacing the data

if a generic program for displaying points is created. Therefore, the use of point cloud

is considered suitable for services in which users perceive information on real objects in

remote locations in real time and interact with people and objects in remote locations.

Cloud computing [6] or edge computing [7] is used for services that provide remotely

sensed and aggregated information to users (Figure1). When using cloud computing, you

can take advantage of the cloud’s massive computing power. When edge computing is used,

information processing is performed on a server placed near the sensing device. Therefore,
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edge server

: network connection

sensing device
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edge computingcloud computing

Figure 1: Cloud computing and edge computing

by aggregating or providing users with only specific information, it can be expected to

reduce processing delays and network load compared to cloud computing, so this research

is implemented using edge computing.

There are some efforts to use point cloud information to represent and utilize informa-

tion on objects that exist in remote areas, as described in Reference [8, 9]. Reference [8]

provides a semantic segmentation process using deep learning, and the results are used for

forest management and other environmental conservation applications. In Reference [9],

deep learning is used to detect damage to water pipes to identify areas in need of repair.

In these services and studies, point cloud is transmitted and received mainly by files, and

the results of information processing on point cloud (hereafter, attribute information) are

also obtained in file format. However, exchanging information in file format involves disk

input/output, which increases transmission delays and impairs the immediacy of informa-

tion. Therefore, if point cloud can be transmitted and received in a streaming format, and

if the attribute information of the point cloud can also be provided in a streaming format,

it is expected to develop a service that allows users to perceive information on objects

that exist in remote areas in real time and to interact with people and objects in remote

areas. For example, by providing the results of object recognition by machine learning
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together with point cloud information in a streaming format, point cloud information and

its attribute information can be used for services that require real-time performance, such

as automatic robot running and hazardous object detection.

Therefore, this study implements a streaming method that includes point cloud infor-

mation and its attribute information. For point cloud-only streaming, the implementation

is already available in Intel Realsense Software Development Kit [10]. With this, the point

cloud could be sent to the end device (user) and attribute information at the end device.

However, with this design, as the point cloud data volume and users increase, more data

is exchanged over the network in a multiplicative manner, placing a greater load on the

network bandwidth. Therefore, it is necessary to devise a streaming method for data that

includes attribute information in addition to point clouds. When devising a new com-

munication method, it is necessary to determine the format and the protocol for sending

and receiving information for communication integrity. To add new data to an existing

data communication system, one can either modify the existing data structure or keep the

existing data structure and add new data. The former can improve application efficiency

by compressing data and optimizing the data structure for subsequent processing, but it

is expensive due to the wide variety of program modification points. The latter, on the

other hand, is less expensive and easier to deal with implementation defects, making it a

suitable method to use at the beginning of a project.

In this study, probabilistic field [1] is used as attribute information. The probability

field expresses the plausibility as a probability after object identification, which is calcu-

lated by supervised machine learning on point cloud information. Specifically, it is a set of

information that is a normalized representation of the predicted probability for the maxi-

mum likelihood label in the object recognition results for each object in the point cloud.

By using a probabilistic field, it is expected that, for example, the amount of information

processing for a point group with low probability can be increased to improve visibility

at the terminal end, or that the amount of information processing can be reduced while

maintaining visibility by thinning out points of an object composed of a point group with

high probability.
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2 Networked virtual reality services

2.1 Supposed virtual reality services

In recent years, XR (X-Reality), including VR (Virtual Reality) and MR (Mixed Reality),

has spread rapidly due to the low cost and improved quality of the equipment [2,3]. With

the advent of XR, it is becoming possible to experience the world created virtually on a

computer as if it were the real world. For example, a world that imitates the real world

and reproduces it virtually as a 3D object on a computer is called a digital twin [5], and

there are growing expectations for its use to improve user experience and simulation.

3D models can be created using computer graphics or point cloud data, which is data

obtained by surveying real space. This study deals with point cloud data that can be

surveyed by RGB-D cameras and 3D laser scanners. Other sensing devices can be used

that can measure the distance, or depth, from the device to the subject. A point cloud is

three-dimensional information about an object calculated from this depth information, and

by mapping the color information acquired by the camera to it, it is possible to represent a

real object. Since point cloud data is obtained through surveying, it can be used to create

3D models that accurately reproduce the dimensions and structure of surveyed objects in a

virtual space. However, because point cloud information is three-dimensional information,

its large data volume is often problematic. For example, it is about 60 [MB] or more for

a 3D object of a thing surveyed by a 3D laser scanner and about 300 [MB] or more for a

3D object of a landscape including mountains and lakes surveyed by an aerial laser.

The service envisioned in this study is a service that uses point cloud to analyze and

represent information in remote areas. By using point cloud, real-world information can

be faithfully reproduced, and attribute information analyzed from this information can be

used in the service. For example, the aging of water pipes is analyzed [9] and individuals

are identified based on the characteristics of surrounding environmental objects [11]. These

services acquire point cloud from remotely located sensing devices, and it is transferred

over the network. Considering the implementation of these functions using a network, in

the case of Reference [9], the network model would look like Figure3 with cloud computing

and Figure2 with edge computing. The respective images attached at the bottom of the

figure are cited from Reference [9]. From left to right: real objects, point clouds, attribute
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Figure 2: Network model (with cloud server)
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Figure 3: Network model (with edge server)

information, and analyzing using attribute information. First, a point cloud is surveyed

from a real object, in this case a water pipe. This is done by the computer to which the

sensing device is connected, both in the case of cloud computing and edge computing. This

information is then transferred to the cloud and edge servers, respectively, and attribute
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information is calculated. Cloud computing [6] can be used to take advantage of the large-

scale computing capabilities of the cloud. With edge computing [7], point cloud data can

be computed at the location where it was measured, thus delivering the data to the user

with less network latency. The attribute information calculated by each server is then

transferred together with the point cloud to the computer that performs the analysis. In

Reference [9], the attribute information contributes to a surface reconstruction focused on

the damage location and ultimately to an estimate of the damage volume.

2.2 Transferring point cloud data

Services using point clouds obtain point cloud information from sensing devices placed in

remote locations. Possible methods are by file transfer and by streaming. Currently, most

of applications on point cloud uses the file transfer.

2.2.1 Non streaming

Sending and receiving point cloud information by file transfer has the advantage of being

easy to implement. This is because the file format defines the interfaces and protocols for

transmission and reception, and there is no need to devise these on one’s own. However,

transferring information in file format is prone to large transmission delays because disk

input/output is involved. Therefore, it should be used for services that do not require

immediacy, such as identifying damaged areas of a structure. For example, the document

[11] is implemented in a way that allows a point cloud in file format to be transferred over

a network to receive a result file.

2.2.2 Streaming

Streaming point cloud makes it possible to use the information with low transmission de-

lay. This makes it suitable for services such as digital twin, where the simulation results

are to be reflected in the real world in real time. However, although an API (Applica-

tion Programming Interface) for streaming only point cloud exists, but a framework for

streaming including attribute information has not been devised. For example, a point

cloud is streamed from a computer with a camera connected to another computer in the
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Figure 4: Example output of streaming point cloud

network, and the displayed result is shown in Figure4. In the figure, it can be verified that

the point cloud data transferred over the network has been transferred correctly, while

retaining the actual values. As mentioned earlier, since attribute information is necessary

to apply point cloud to services, this study proposes a framework for streaming point cloud

and attribute information.

2.3 Attribute data of point clouds

Services using point clouds are diversified by attribute information, which is the result

of analyzing and statistically processing point cloud information. For example, there is

probability field information to represent point cloud information probabilistically, object

recognition result information for each point comprising the point cloud, or simply a flag

indicating the location of damage. Therefore, attribute information is essential for the

application of point cloud information to services. It is possible to send point cloud to
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an end device and assign attribute information at the end device, but in this design,

the more the point cloud data volume and users increase, the more data is exchanged

over the network in a multiplicative manner and the greater the load on the network

bandwidth. Therefore, it is necessary to devise a data streaming method that includes

attribute information in addition to point cloud.
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3 Implementation of streaming point clouds and attribute

data

In this study, we will implement a streaming method that includes information associated

with point clouds for application.

3.1 Existing approach for streaming point cloud

Point cloud only streaming has already been implemented in the open-sourced Intel Re-

alsense Software Development Kit (librealsense) [10].

This section describes the implementation. The implementation in librealsense achieves

point cloud streaming by using the live555 [12] functionality. The sensing device can be

an Intel Realsense series RGB-D camera, and these can acquire depth (Figure5) and color

(Figure6) information. The format of the depth information is a float type that stores

the distance to be measured in each element of a quadratic array with a size equal to the

resolution (width∗height). Color information is transmitted as RGB image data. In other

words, the raw data is divided into depth and color information. And the sending system

transmits these separately to the receiving system. The receiving system then synchronizes

the received depth and color information to compose the point cloud information. In the

composition of point cloud information, the depth information is calculated and stored

as a pair of coordinates x, y, z from the depth, and the color information is stored as it

is. However, the depth and color information are captured by a separate camera in the

sensing device, so the angles of view do not match. Therefore, in librealsense, in addition

to the coordinate and color information, a correspondence table (UV map) between the

coordinate and color information is added to the point cloud information.

3.1.1 Sending point clouds

It is implemented in the librealsense, which is OSS. Deliver depth or color information

surveyed by the sensing device to the receiving system by the following method (Figure7).

First, stablish a connection with the receiving application via RTSP (Real Time Streaming

Protocol). Next, depth and color information, which is the source of point cloud infor-

mation, is obtained from the sensing device. Data acquisition from the sensing device is
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Figure 5: Example of depth frame

Figure 6: Example of color frame

performed using poll for frame function. This function is a queue function that accu-

mulates the data surveyed by the sensing device. If there is no first data, it waits until

timeout, and if there is, it returns it as a return value. The acquired data is moved to the

Real-time Transport Protocol (RTP) message area. Then, when afterGetting function

notifies the system that the message is ready, the color and depth information is delivered

to the receiving system as a message by RTP, respectively. By repeating these steps,
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Figure 7: Sending point clouds (librealsense)

streaming distribution of point clouds is performed.

3.1.2 Receiving point clouds

As with the transmission, the reception is implemented in librealsense. The receiving

system uses the following method to receive a point cloud (Figure8). Establish a connection

with the sending application by RTSP. Through RTP, messages are received from the

sending application and stored in a buffer as color or depth information. Next, the sync

function is used to match the received color information (depth information) with the

depth information (color information) that already exists in the buffer. If found as a

result of matching, they are combined and entered into rs2 wait for frame queue as a

single piece of data. If not found, it returns to receiving RTP messages again. The function

WaitForFrame called in the application calls the system function rs2 wait for frame and

receives a reference to the point cloud data frame. Since this is not a point cloud state,

but is still depth and color information, it is cast to point cloud format by process frame

and used by the application. By repeating these steps, streaming distribution of point

clouds is performed.
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Figure 8: Receiving point clouds (librealsense)

3.1.3 Protcol and format for streaming point clouds

As mentioned above, RTSP is used to establish communication for streaming point clouds

and RTP is used for streaming data [13]. RTSP is a protocol based on the Transmission

Control Protocol (TCP), and RTP is a protocol based on the User Datagram Protocol

(UDP). The point cloud streaming format using RTP is shown in Figure9, where the

message, including the header data and main data, is divided into packets and streamed.

Header data includes message size, timestamp, frame counter, sensing device FPS, and

timestamp domain. The main data structure is in lz4 format for depth information and in

jpeg format for color information, and the data is compressed in the respective compression

formats. The packet contains the payload and RPT header into which the message is

divided. The maximum length of the packet is 1494 [bytes], of which 42 [bytes] is the RTP

header. In other words, the maximum payload length is 1452 [bytes].
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Figure 9: Streaming format for RTP (librealsense)

3.2 Approach to Point Attribute Streaming

This section describes a method for streaming point cloud information together with its

attribute information (Point Attribute Streaming). As for protocols, as in Section3.1,

RTSP is used for establishing communication and RTP is used for streaming data. The

format is the one shown in Figure9 with attribute information added after the main data,

which is divided into packets to be streamed by RTP. The implementation is also done

by modifying some librealsense programs in which streaming of point cloud information

is implemented. The implementation policy is to preserve the existing point cloud data

structure and create messages in the form of attribute information attached to the existing

data structure for interpretation by the receiver. One possible implementation method

would be to modify the data structure of the existing point cloud and change the definition

of the information that the points hold, but we will not take this approach. This is

because there are various types of data structures for point clouds, ranging from simply

arranging the coordinate information of points in order to sorting them in a tree format,

and data compression and application processing are implemented for each of these types.

For example, as mentioned earlier, the librealsense cited in this article takes the lz4 and

jpeg formats for depth and color information, respectively, and each can take its own

18



compression method when transferred over the network. The method of changing the data

structure of the point cloud and assigning attribute information would require changing not

only the structure of the points, but also their implementation. In contrast, the approach

taken in this study allows for the implementation of a streaming function that includes

attribute information that hides the existing data structure and the implementation that

manipulates it.

Another possible method would be to send attribute information separately, but this

method was not used in this case. This is because a new synchronization system must

also be developed by transmitting attribute information separately. By implementing

a form of assignment to existing point cloud information, the synchronization of point

cloud information and attribute information is achieved by taking advantage of existing

synchronization system implementations.

3.3 Implementation of Point Attribute Streaming

The changes are made in the message creation and interpretation portions. In the in-

terpretation part, the attribute information is stored behind the point cloud information

when the point cloud information is stored in the main memory, and changes are made so

that the attribute information can be read from a reference to the point cloud information.

On the sending side, an API function rs2 add prob was implemented to attach at-

tribute information to messages (Program1).

Program 1: rs2 add prob

i n t fFrameSize ;

void r s2 add probs ( byte ∗ prob , byte ∗ dest , i n t s i z e ){

memmove( prob , dest , s i z e ) ;

fFrameSize += s i z e ;

}

The input includes the address of the attribute information, the first address of the in-

sertion destination, and the size. And memmove is performed using these. fFrameSize, a

global variable means the sum total of the forwarded message.

Specific methods are listed below:
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Step. 1 The reference to the first address of the point cloud information is added to the size

of the reference (fixed width ∗ height ∗ bpp in the format) to calculate the reference

to the accuracy information.

Step. 2 Copies the specified size from the first address of main memory to the application

area.

This is how the accuracy is extracted from the system area of main memory to the appli-

cation area.

On the application side, these API functions are used. For Step. 1, an API function

“rs2 get frame probs” is prepared. This function has as input a reference to a frame and

an error handler, and returns a reference to attribute information. Therefore, the reference

to the accuracy region obtained in Step. 1 and the size of the accuracy information (fixed

in the same format as the point cloud information) are given as arguments to the API

function that performs Step. 2 and called. Note that the API function, Copy<T>(), in the

existing implementation can be used to perform Step. 2. Then, a function, rs2 copy prob

is implemented that takes a reference to attribute information as input and copies the

attribute information to the application area (Program 2)

Program 2: rs2 get frame probs

T va l i a b l e ;

void r s2 copy probs ( byte ∗ prob ){

Copy<T>(prob , va l i ab l e , s i z e o f ( byte ) ∗ 307200) ;

}

The transmitter/receiver system is first initiated by the application, which establishes

communication via RTSP connections. The following describes the method of sending

and receiving point cloud frame data and its attribute information. The operation of the

transmitting side is described (Figure10). The sending application first acquires the point

cloud frame data from the RGB-D camera. The RGB-D camera queues the surveyed point

cloud frame data, so it is acquired from the queue. Upon receiving the point cloud frame

data, the sending application uses it as input to calculate attribute information. When the

point cloud frame data and attribute information are calculated, the contents are moved
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Figure 10: Sending point clouds (Point Attribute Streaming)
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Figure 11: Receiving point clouds (Point Attribute Streaming)
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to the message area of the sending system. Finally, the sending application notifies the

sending system that it is ready to transmit. The sending application repeats the above

process.

Next, the receiver system is described (Figure11). The receiving system receives mes-

sages from the sending system via RTP communication. Since the message is divided into

packets and transferred, it waits for rs2 wait for frame to complete receiving the entire

message. rs2 wait for frame is a function that monitors the queue where point cloud

frame data received by the receiving system is stored. Storing point cloud frame data in

the queue is done in a separate thread that handles live555 data. In other words, when

the receiving system completes the reception, the receiving application passes the refer-

ence as the return value of rs2 wait for frame. The NW forwarding system repeats the

above process. The receiving application receives a reference to the attribute information

from the reference to the point cloud frame data passed from the receiving system from

rs2 get frame prob. Then, from the reference to the attribute information, the entire

data is copied to the application area. Finally, the receiving application passes the refer-

ence to the received point cloud frame data to the system and casts it into the data format

used by the application. The receiving application repeats the above process.

New features added in implementing Point Attribute Streaming are indicated in red.

rs2 wait for frame is a function that monitors the queue where point cloud frame data

received by the receiving system is stored. The storage of point cloud frame data in the

queue is performed in a separate thread that handles live555.

Figure12 shows the packet received by Wireshark [14]. For easy identification, the

attribute information is set as a sequence of ff as byte. The figure shows that the packet

can be attached to an RTP message and sent/received as a packet.
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Figure 12: Observation results of packets containing attribute information by Wireshark
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4 Applications using Point Attribute Streaming

This section describes an example application using the implementation described in Sec-

tion 3. The application selectively corrects and renders point cloud information from the

point cloud and probability information onto the virtual space. The probability informa-

tion is the normalized predicted probability of the maximum likelihood label in the object

recognition results for each object belonging to the point cloud calculated from the point

cloud information, which corresponds to the attribute information.

4.1 Overview

This section provides an overview of the application to be implemented. The implemen-

tation is as follows:

1. Acquire point cloud information at the computer connected to the sensing device.

2. Transfer the acquired point cloud information to the edge server.

3. Perform object recognition on the edge server to calculate probability information.

4. Transfer the point cloud and probability information to the computer connected to

the VR device.

5. Render the point cloud in virtual space using accuracy information on VR equipment.

Although it is possible to stream only the point cloud and calculate the probability in-

formation using a computer connected to the VR device, the design is based on placing

an edge server because it requires a lot of computational resources to perform object

recognition. Furthermore, assuming the case of streaming to multiple VR devices and

the computers to which they are connected, sending point cloud information for learning

object recognition to all computers is undesirable because it will occupy a lot of network

bandwidth.

Figure13 shows the assumed experimental system in which the above flow is imple-

mented. In practice, the application is implemented without an intervening edge server

and communicates between the computer to which the sensing device is connected and

the computer to which the VR device is connected.
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: local connection

: network connection

① Sensing Point Cloud
② Transfer Point Cloud
③ Calculate Probabilistic Field
④ Transfer Point Cloud and Probabilistic Field
⑤ Rendering method applied Point Cloud

Figure 13: Assumed experimental system

4.2 Sending point clouds and probability data

The application for transmission also calculates probabilities. The probability calculation

uses the algorithm implemented in Reference [15], and the function processFrame is called

in the sending application program. The program for the sending application is coded in

C++ and uses a Python program, a Python program, by reading “Python.h” in the

package python3-dev. The included script has vertex and color information as input and

probability field information as output. The implemented machine learning is performed

on the vertex information using PyTorch [16]. The probability field information here refers

to the likelihood of each of the 20 labels (Table1) prepared in supervised machine learning,

where the label with the highest likelihood is called the inference result and the likelihood

for that label is called the probability. The input receives the vertex information. Color

information is also required for input, but since the vertex and color information is not

synchronized at this point, all color information is assumed to be black (R = 0, G = 0,

B = 0). This may result in an overall decrease in probability, which we are considering

addressing by lowering the threshold for probability in the receiving application. ScanNet

[17], a 3D indoor point cloud data set, is used for training.

By passing the calculated probability and the address of the message to be sent via

RTP to rs2 add prob, the application accomplishes the transmission of the probability.

4.3 Receiving and rendering point clouds and probability data

Receiving and rendering point cloud information to the VR device is implemented by

modifying the program for Unity in librealsense. This section describes this application.
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Table 1: Labels used in the learnig model

Label Category

0 wall

1 floor

2 cabinet

3 bed

4 chair

5 sofa

6 table

Label Category

7 door

8 window

9 bookshelf

10 picture

11 counter

12 desk

13 curtain

Label Category

14 refrigerator

15 shower curtain

16 toilet

17 sink

18 bathtub

19 other furniture

Existing implementations involve rendering a point cloud by passing vertex, uvmap, and

texture information to a renderer. In this study, we replace the rendering method and

apply the method of corrective rendering only on a part of region.

The method to correct and represent point cloud information in virtual space using

probability information is implemented in this program. In this method, based on the

nature of the probability information, the correction display is limited to 3D objects with

small probability to improve visibility.

Usually, when rendering point cloud information on a virtual space, a technique is

used to represent each point as a circle (hereafter referred to as uncorrected rendering.

See Figure14). However, because the drawn circles overlap each other in this drawing

method, the contour and detail information of each point is lost. Therefore, a corrective

rendering method was proposed [18]. Corrective rendering calculates the three-dimensional

positioning of the point cloud from the user’s perspective and draws each point in the point

cloud as a parabolic surface (Figure16) that takes this into account (Figure 14) .

In this application, probability information is used to reduce the processing load be-

cause correction rendering is computationally expensive and causes delays when streaming

is used. The overall processing load is reduced by using corrective rendering only for points

that are considered to have low visibility in part due to the characteristics of the proba-

bility information.

This application receives point clouds and probability information from a receiving
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Figure 14: Example of uncorrective rendering

Figure 15: Example of corrective rendering

system using Point Attribute Streaming, and renders the point clouds in a virtual space.

Points with low probability are those determined to be difficult to discriminate in machine

learning. Therefore, correction rendering is applied to improve visibility. Points with high

probability can be considered highly visible, so they are represented using uncorrected

rendering.

In the implemented method, drawing is achieved by passing vertex and color informa-

tion to the renderer. Since the data format of the color information differs from that of

existing methods, it is necessary to convert the format. In addition, the vertex information

created from the data captured by the Realsense camera is upside down. Therefore, as
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pointRadious

position

Figure 16: Paraboloid

in the librealsense rendering method, the y value is multiplied by -1 and is turned upside

down again. The conversion of color information is explained below. We found that the

texture information that can be obtained by the Realsense camera is in RGB24 format,

where the RGB values are represented as a float type of 24 [bits] each, in the same order

as the vertex information. Therefore, it was possible to provide the same sequence as the

color information as input for the implementation method.

4.4 Demonstration of the implemented application

This section displays the output results of rendering by the actual running application and

discusses the processing delays that occur. It is expected that the addition of attribute

information will increase processing delays compared to streaming only point clouds, but

specific values will be sought and discussed. In addition, the operating environment for

the implemented application is shown below. The sensing device is an Intel Realsense

D435, an RGB-D camera.

The configuration of the sending computer is shown in Table2 and that of the receiving

computer in Table3.

As a subject, we will use the rest area of our room A610 (Figure17). We considered it

appropriate because of the variety of objects arranged in both size and shape.

The final output is made to a VR device, the Oculus Rift S (Figure18).
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Figure 17: A610 rest space

Table 2: Specs of the computer which sends data

OS Ubuntu 18.04

CPU Intel Core i9-9900K 3.60GHz

RAM 64GB

Table 3: Specs of the computer which receives data

OS Windows 10 pro 1903

CPU AMD Ryzen Threadripper 3960X 24-Core Processor 3.80 GHz

GPU Radeon RX 5500 XT

RAM 32.0 GB
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Figure 18: Oculus Rift S
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Figure 19: Corrective rendering output with the implemented application

The rendering obtained as a result of the execution of the implemented application is

shown in Figure19.

The result of rendering without processing is shown in Figure20. Comparing these

results, it can be confirmed that the power cord in the lower left corner in particular has

poor visibility of details, which was recognized from the attribute information, and correc-

tive rendering was applied to that area. Visibility was improved by corrective rendering,

to the point where the cords were clearly visible crossing each other.

This indicates that the implemented streaming method can be applied to the appli-

cation. The processing of attribute information calculation has a negative effect on the

performance of the application. But this is not the issue. Because there are prospects

for improvement with the implementation of MEC servers, and the processing power of

computers is increasing daily.
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Figure 20: Uncorrective rendering output with the implemented application
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5 Conclusion

In this study, we implemented a streaming method for point cloud information sensed

remotely in real time and its attribute information, and an application using the method

to the digital twin. Since the method for streaming point cloud information sensed re-

motely in real time already exists, we modified and implemented it so that it can stream

not only point cloud information but also attribute information. When adding attribute

information to the format, we did not change the structure of the point cloud information,

but changed the streaming format. By the implementation of application, we indicate

that remote information processing based on attribute information is possible. And we

also observed performance degradation due to machine learning processes.

The calculation of attribute information is designed to be performed at the edge server,

rather than at the end computer. This is done to consider the impact on computing

resources and network bandwidth. But in practice, the function is included in transmission

application.

So, as future work, the relay function is required when installing a MechServer. An-

other issue is to be able to decide whether to use attribute information when establishing

a session.
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