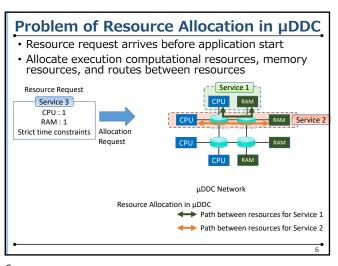
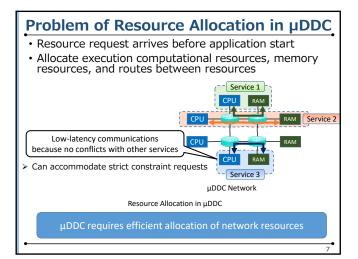


1

5


Background · Edge services using micro data centers Smaller latency than the cloud · Effective for time-sensitive services · More limited resources compared with large data centers ➤ Disaggregated Micro Data Center (µDDC) • μDDC is constructed of resources connected by a network · Achieve efficient resource utilization Optimization per resource Flexible scaling without server constraints DC Network Traditional data center


2

Problem of Resource Allocation in µDDC Resource request arrives before application start Allocate execution computational resources, memory resources, and routes between resources Service 1 Increased traffic Increased traffic uDDC Network Resource Allocation in μDDC Path between resources for Service 1 Path between resources for Service 2

Problem of Resource Allocation in µDDC • Resource request arrives before application start Allocate execution computational resources, memory resources, and routes between resources Service 1 Resource Request Service 3 CPU:1 $R\Delta M \cdot 1$ Allocation Strict time constraints Request Increased latency due to conflicts with communication routes of other applications μDDC Network Resource Allocation in uDDC ▶ Path between resources for Service 1 Path between resources for Service 2

Approach


- Research Objectives
 - Accommodate more applications by efficient use of network resources in μDDC
- Approach
 - We propose efficient resource allocation method
 - · Efficient use of resources through link sharing for flexible routing
 - · Considering future requests by preserving important resources

- Model the impact of network on the application performance
- Define resource allocation cost based on resource importance

8

8

Resource Allocation Method

Allocate execution resources for the service following the steps below

- 1. Model Impact of network on performance
 - · Derive time to execute running services
- 2. Cost Assign to resources
 - Assign cost based on importance for future resource requests
- 3. Allocate resources and path between them
 - · Allocate resources with the lowest cost
 - Allocate resources to finish the process within the acceptable time

Ensure resources are available for the future request while meeting service performance requirements

10

10

Resource Allocation Cost

- Avoid allocating resources likely needed for future resource allocations
 - These resources and links cost high
- Computational resource : $W_c^c = (|C_{Node_c}^s|) \cdot K_c$
 - High performance and many available resources
- Memory resource : $W_m^m = |{\cal M}_{Node_m}^s|$
 - many available resources

• Link:
$$W_e^e = \begin{cases} \sum\limits_{c \in C^s, m \in M^s} \left(\frac{N^r_{c,m}(e)}{N^r_{c,m}} \right) \left(\frac{W^c_c \cdot W^m_m}{H_{c,m}} \right) e \notin E^{alc} \\ e \in E^{alc} \end{cases}$$

 \bullet Likely to be the path between important resources

- C^s: allocatable computational resource
- M^s: allocatable memory resource • E^{alc}: allocated network resource
- E^{alc}: allocated network resource
 K_c: FLOPS of computational resource c
- $N_{c,m}^{r}$: shortest paths between resources c,m
- $N_{c,m}^{r}(e)$: shortest pathsthrough link e between resources c.m
- \cdot $H_{c,m}$: Shortest hops between resources c,m

Resource Allocation Problem

- Allocate resources solving resource allocation problem
- · constraints

$$\begin{aligned} \forall i \in N^v, & \sum_{j \in N^s} \delta^N_{i,j} = 1 \\ \forall x \in E^v, \forall s, t \in N^s, & \sum_{y \in R_{s,t}} \delta^E_{x,y} = \delta^N_{n^v_x,s} \cdot \delta^N_{n^{pd}_x,t} \\ \forall c \in N^c, & |C^e_s| - \sum_{c' \in C^v} \delta^{b'}_{c',c} \geq 0 \\ \forall m \in N^m, & |M^s_m| - \sum_{m' \in M^v} \delta^N_{m',m} \geq 0 \\ \forall t \in S, & T^e_t \leq T^a_t \end{aligned}$$

objective function

$$\begin{aligned} & minimize & \sum_{c \in N^c} \sum_{c' \in C^v} \delta^N_{c',c}(W^c_{c_e^v}) + \\ & \sum_{m \in N^m} \sum_{m' \in M^v} \delta^N_{m',m}(W^m_{m_m^s}) + \\ & \sum_{i,j \in N^s} \sum_{y \in R_{i,j}} \left[\mathbbm{1}_{\sum_{x \in E^v} \delta^x_{x,y}} >_0 \left(\sum_{e \in y} W^e_e \right) \right] \end{aligned}$$

Derived by metaheuristic method for NP-hard
 We use Ant Colony Optimization (ACO)

12

11

Resource Allocation Problem

Allocate resources solving resource allocation problem

constraints

$$\begin{aligned} \forall i \in N^v, \quad & \sum_{j \in N^s} \delta^N_{i,j} = 1 \\ \forall x \in E^v, \forall s, t \in N^s, \quad & \sum_{y \in R_{s,t}} \delta^E_{x,y} = \delta^N_{n^{vs}_x,s} \cdot \delta^N_{n^{vd}_x,t} \\ \forall c \in N^c, \quad & |C^s_e| - \sum_{c' \in C^v} \delta^N_{c',c} \geq 0 \\ \forall m \in N^m, \quad & |M^s_m| - \sum_{m' \in M^v} \delta^N_{m',m} \geq 0 \end{aligned}$$

 $\forall t \in Resource mapping constraints$

 Objective fu
 Request resources and µDDC resources are one-to-one
 No more than one service can be allocated to a resource. minimi $\min_{m \in \mathbb{N}^m} \sum_{m' \in M^v} \delta_{m',m}^N(W_{m_m^s}^m) +$

 $\sum_{i,j \in N^s} \sum_{y \in R_{i,j}} \left[1_{\sum_{x \in E^v} \delta_{x,y}^E > 0} \left(\sum_{e \in y} W_e^e \right) \right]$

Derived by metaheuristic method for NP-hard

We use Ant Colony Optimization (ACO)

13

Resource Allocation Problem

- Allocate resources solving resource allocation problem
- · constraints

 $\forall i \in N^v, \quad \sum_{j \in N^s} \delta^N_{i,j} = 1$ $\begin{array}{ccc} \forall x \in E^v, \forall s, t \in N^s, & \sum_{y \in R_{s,t}} \delta^E_{x,y} = \delta^N_{n^v_x,s} \cdot \delta^N_{n^{vd}_x,t} \\ \forall c \in N^c, & |C^s_s| - \sum_{c' \in C^v} \delta^N_{c',c} \geq 0 \end{array}$ $\forall m \in N^m, \quad |M_m^s| - \sum_{m' \in M^v} \delta_{m',m}^N \ge 0$ $\forall t \in S, \quad T_t^e \leq T_t^a$

• objective function $Time\ constraints$ • Finish the process within the acceptable time $\sum_{m\in N^m}\sum_{m'\in M^v}\sum_{m'}\sum_{m'\in M^v}\sum_{m',m}(W^m_{m'_m})+\sum_{m'\in M^v}\sum_{m'_m}(W^m_{m'_m})+\sum_{m'\in M^v}\sum_{m'_m}(W^m_{m'_m})+\sum_{m'\in M^v}\sum_{m'_m}(W^m_{m'_m})+\sum_{m'_m}(W^m$

 $\sum_{i,j\in N^s} \sum_{y\in R_{i,j}} \left[1_{\sum_{x\in E^v} \delta_{x,y}^E} > 0 \left(\sum_{e\in y} W_e^e \right) \right]$

· Derived by metaheuristic method for NP-hard

We use Ant Colony Optimization (ACO)

14

Resource Allocation Problem

- Allocate resources solving resource allocation problem
- constraints

$$\begin{aligned} \forall i \in N^v, \quad & \sum_{j \in N^s} \delta^N_{i,j} = 1 \\ \forall x \in E^v, \forall s, t \in N^s, \quad & \sum_{y \in R_{s,t}} \delta^E_{x,y} = \delta^N_{n^v_x,s} \cdot \delta^N_{n^{vd},t} \\ \forall c \in N^e, \quad & |C^c_c| - \sum_{c' \in C^v} \delta^{V_c}_{c',c} \ge 0 \\ \forall m \in N^m, \quad & |M^s_m| - \sum_{m' \in M^v} \delta^N_{m',m} \ge 0 \\ \forall t \in S, \quad & T^e_t \le T^a_t \end{aligned}$$

• objective function Allocate resources and routes to minimize costs

 $\begin{array}{l} minimize \sum_{c \in N^c} \sum_{c' \in C^v} \delta^{N}_{c',c}(W^c_{c^s_c}) + \\ \sum_{m \in N^m} \sum_{m' \in M^v} \delta^{N}_{m',m}(W^m_{m^s_m}) + \end{array}$ $\sum_{i,j \in N^s} \sum_{y \in R_{i,j}} \left[1_{\sum_{x \in E^v} \delta_{x,y}^E > 0} \left(\sum_{e \in y} W_e^e \right) \right]$

· Derived by metaheuristic method for NP-hard

We use Ant Colony Optimization (ACO)

Evaluation Environment

• Simulate allocation process in a 3×3 2D torus network

- Evaluate the number of blocked resource requests
 - · Blocked when request fails to satisfy the acceptable time

Acceptable time

- 4 types requests arrive in 300 minute
 - arrive at a rate of 20% per minute · Lifetime is 60 minutes
 - · Request 4 only requires GPU

S	Request	time		
	Request 1	3000ms		
	Request 2	500ms		
	Request 3	150ms		
	Request 4	150 ms		
		16		

15

16

Evaluation Environment

Simulate allocation process in a 3×3 2D torus network

- · Evaluate the number of blocked resource requests
 - · Blocked when request fails to satisfy the acceptable time

4 types requests arrive in 300 minutes Request time

• arrive at a rate of 20% per minute

· Lifetime is 60 minutes · Request 4 only requires GPU Strict performance requirements

Request 1 3000ms Request 2 Request 3 150ms Request 4 150 ms

Evaluation

Change the arrival rate of each request

Arrival rate of each request in each requests sequence

· · · · · · · · · · · · · · · · · · ·					
	Request 1	Request 2	Request 3	Request 4	
Request sequence 1	75%	5%	5%	15%	
Request sequence 2	35%	15%	35%	15%	
Request sequence 3	5%	5%	75%	15%	

- · Comparison of network resource allocation policies
 - RA-CNP: proposed method
 - · SP: allocate the shortest path between resources
 - NP: allocate low latency path between resources
- Comparison of Link Usage Policies
 - RA-CNP w/o S: each link is used by one application only
 - RA-CNP w/o A: prohibit aggregating multiple optical fiber cores

17

Result

- In all cases, RA-CNP accommodated the most requests
 - RA-CNP blocked in environments with a high arrival rate of requests with a high amount of required resources
 - More than twice fewer rejections than comparative methods
- Reduce the blockings by sharing and aggregating link

• RA-CNP can accommodate more applications without affecting the required performance

Conclusion

- We proposed RA-CNP that achieved an efficient usage of network in μDDC
 - We modeled the impact of network on performance
 - Preserves important resources for future requests
 - Efficient use of network through link sharing and aggregation
- We demonstrated to accommodate more requests to satisfy the required performance
- Future work

20

- Evaluation of our method on a larger scale μDDC
- \bullet Investigation of network structure suitable for μDDC
 - Network topology and resource placement

20