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Abstract—Network slicing technology is required to dynami-
cally provide virtual networks in response to user requirements
with a wide variety of services operating on the network.
Generally, optimal allocation of virtual networks to resources
on the real network is a combinatorial optimization problem,
and it is difficult to find an exact solution in realistic time in
the current large-scale and complex networks. In addition, user
requirements change dynamically, and therefore, optimization
methods that can cope with such temporal variations in the
situation are required. In this paper, we propose a method
to solve a virtual network embedding problem using quality-
diversity (QD) algorithms, especially the MAP-Elites algorithm,
and evaluate its effectiveness through computer simulations.

Index Terms—Network virtualization, network slicing,
SDN (Software Defined Networking), genetic algorithm, genetic
diversity.

I. INTRODUCTION

In recent years, as cloud services and IoT technologies
have become increasingly popular, there is a growing need
to provide users with flexible networks through network
virtualization [1], [2]. The construction of multiple virtual
networks on a substrate network is called network slicing
and is considered a fundamental technical specification in
5G networks. To control network slicing, it is necessary to
determine the mapping between substrate and virtual networks,
and the problem of finding the mapping is called Virtual
Network Embedding (VNE) [3].

Since the computational complexity to find the optimal
mapping increases exponentially with the size of the network,
it is required to heuristically solve this problem in modern
networks, which have become increasingly large and complex.
Furthermore, since the structure of the virtual network dynam-
ically changes according to user requirements in practical use,
it is important to be able to derive a solution immediately in
response to such changes.

One of the algorithms for handling such combinatorial opti-
mization problems is an evolutionary algorithm that models the

mechanism of biological evolution. In the genetic algorithm,
which is the most representative of these algorithms, opti-
mization is performed by repeatedly selecting individuals with
high evaluation values preferentially from multiple randomly
generated individuals and applying genetic operations such as
crossover and mutation for them. Due to its ability to handle
optimization problems independently of the characteristics of
the objective function, it has been applied in a wide range of
fields. However, it is known that in such conventional genetic
algorithms, populations tend to converge to a single form,
unlike the natural world where diverse organisms can be found.
Therefore, novel optimization methods have been proposed to
generate a variety of solutions while maintaining diversity, and
these methods are called quality-diversity (QD) algorithms [4].
They can improve their adaptability to diverse environments by
simultaneously searching for superior solutions with different
characteristics.

In this paper, we propose a method using QD algorithms,
in particular, the MAP-Elites algorithm [5] to achieve rapid
adaptation for dynamic VNE problems with unpredictable
environmental variations. We show that maintaining solution
diversity promotes optimization and adaptation to environ-
mental variations through a comparison between conventional
genetic algorithms and QD algorithms and heuristics.

The remainder of this paper is organized as follows. Sec-
tion II formulates the VNE problem. Section III introduces
MAP-Elites, which is one of the QD algorithms that we mainly
focus on and details of our method. Section IV shows the
results of computer simulations. Section V summarizes the
paper.

II. PROBLEM FORMULATION

The virtual network embedding (VNE) problem is a re-
source allocation problem in network virtualization and in-
volves substrate and virtual networks. A substrate network
consists of multiple substrate nodes, such as servers and



switches, and substrate links that connect them, with finite
substrate resources such as CPU and link bandwidth. A virtual
network consists of virtual nodes running on substrate nodes
and virtual links established on substrate paths.

We model these networks as undirected connected graphs
in which each node and link has a positive real value as the
amount of resources. The substrate network is represented
by GS = (NS , LS , R

n
S , R

l
S), where NS , LS , Rn

S and Rl
S

are the set of the substrate nodes, the substrate links, the
amounts of node resource, and the amounts of link resource,
respectively. Similarly, the virtual network is represented by
GV = (NV , LV , R

n
V , R

l
V ), but Rn

V and Rl
V are the amounts

of resources required.
The VNE problem determines how to map the nodes and

links among these networks (Fig. 1). It is defined as a mapping
M : (NV , LV ) → (N ′

S , P
′
S), where N ′

S is a subset of NS ,
and P ′

S is a subset of the set of substrate paths. GV and
(N ′

S , P
′
S) must have the same topology, and the substrate

elements must satisfy the resource requirements of the virtual
elements assigned to them. Also, the node mapping must be
injective, that is, ∀n,m ∈ NV (n ̸= m⇒M(n) ̸= M(m)).

Fig. 1. Model of virtual network embedding

III. METHOD

A. The MAP-Elites algorithm

MAP-Elites [5] is an optimization algorithm that aims
to compute the maximum fitness distribution in a low-
dimensional feature space for a high-dimensional search space.
Users of MAP-Elites need to select several features of interest
from the problem object and design a feature space. The fea-
ture space has dimensions whose variables are those features
and they are divided at a certain granularity, which makes cells
in the space; MAP-Elites outputs the solution with the highest
fitness in each cell on the feature space. It is reported that
MAP-Elites is unlikely to fall into a local optimum compared
to conventional genetic algorithms, as it calculates individuals
with high fitness in a larger region of the feature space in
parallel and generates a new solution based on them.

The pseudocode of MAP-Elites is shown in Algorithm 1.
F and X are sets, returning fitness and individuals with a
cell identifier (ID) as index, respectively. A unique ID for
each cell is returned by feature descriptor where the same
value is always returned for features contained in the same
cell. Each cell contains the individual with the highest fitness

Algorithm 1 Pseudocode of MAP-Elites [5]
procedure MAP-ELITES
F ← ∅,X ← ∅
for iter ← 1, I do

if iter < G then
x′ ← random solution()

else
x← random selection(X )
x′ ← random variation(x)

b′ ← feature descriptor(x′)
f ′ ← fitness(x′)
if F(b′) = null or F(b′) < f ′ then
F(b′)← f ′

X (b′)← x′

return feature-fitness map (F and X )

among the individuals explored in it. In each iteration, random
variation (mutation and crossover) is applied to a randomly
selected individual from the population, and the individual is
compared with the current occupant of the cell corresponding
to its features, and if it has higher fitness, the occupant is
replaced with it, leading to evolution.

B. Encoding of solutions
In dealing with the VNE problem using genetic algorithms,

it is necessary to encode the solution of embedding (denoted
by M ), which is the phenotype, into the genotype. In MAP-
Elites, it is known to be effective to directly encode the
parameters so that the behavior does not change significantly
due to genotypic variation [6], so here we also encode the
node-link correspondence directly.

To encode the mappings with a finite fixed gene length, the
search space must be limited. In our method, a substrate path
assigned to a virtual link is selected from only the k shortest
paths. Therefore, a solution mapping can be represented as
a combination of |NV | integers of 1 to |NS | that indicate
substrate nodes mapped to virtual nodes and |LV | integers of 1
to k that indicate substrate paths mapped to virtual links. Then,
the maximum size of the search space is |NS ||NV |× k|NV |C2 ,
and a mapping in this space can be encoded into an array
of integers. In our implementation, we concatenate the binary
representation of elements of the array and use the result as a
genotype (Fig.2).

Fig. 2. Genotypes example (encoding the mapping in Fig. 1)

C. Definition of fitness
In genetic algorithms, a population evolves to increase the

fitness of individuals to search for a solution, so it is necessary



to define the fitness appropriately to the VNE problem. We
define the fitness of the solution M as F (M) in Eq. (1).

F (M) = R(M)− λP (M) (1)

where R(M) is the total amount of residual resources and
P (M) is the penalty term that is the total amount of resource
shortage. In our method, there are phenotypes, which are
mappings decoded from genotypes, that cannot satisfy the
resource requirement, and the penalty term is the summation
of the difference between the amount of the substrate resource
and the resource requirement in embedding such a phenotype.
By setting the value of λ sufficiently large, the population
evolves to decrease the penalty term and satisfy resource
requirements.

D. Design of the feature space

Since the MAP-Elites algorithm searches for solutions
within a feature space of a lower dimension than the problem
space, it is important to define a feature space that facilitates
efficient solution search. Genetic diversity is known to promote
evolution [7], so we should define a feature space such that the
coverage in the feature space is positively correlated with the
genetic diversity. Additionally, considering the environmental
variation in the dynamic VNE problem, it is desirable that
diverse feasible solutions are distributed in the feature space
so that they can be explored efficiently. Based on these
considerations, the following values are used as features in
this study.

• The total amount of the physical node resources mapped
to the virtual nodes

• The total hops of the physical paths mapped to the virtual
links

It is also intended that node and path selections are separated
into each feature and that the optimization of each proceeds
in parallel, leading to more efficient solution search.

IV. EVALUATION

To examine the influence of solution diversity on adapt-
ability in the dynamic VNE problem, we conducted computer
simulations with several genetic algorithms including MAP-
Elites to solve the dynamic VNE problem.

A. Simulation Setting

In this simulation, a single virtual network is embedded
into a physical network, and a specific physical node becomes
unavailable at a certain time. Separate simulations were per-
formed for outages on each of the top 10 physical nodes with
the largest resources to evaluate the impact of the amount
of resources and the tolerance of each algorithm to it. The
duration of the simulation is two epochs, and one epoch is
100 generations. The specific node becomes unavailable at the
start of the second epoch.

The physical network have 32 nodes and 60 links, and
is generated based on the Barabási-Albert (BA) model [8].
The virtual network is a random graph with 5 nodes and

8 links. For any pair of physical nodes, the 8 shortest paths is
calculated using the k shortest path algorithm [9] in advance,
and the algorithms determine which of these paths is assigned
to the virtual link. Therefore, the size of the search space is
325 × 85C2 = 255.

The resources of the physical network are set to a random
number following a log-normal distribution and sorted in
descending order of degree centrality. The resources required
for the virtual nodes and links also follow the same distribution
and multiplied by a constant (0.5 in this paper).

B. Algorithms used for evaluation

To evaluate the effectiveness of the MAP-Elites algorithm,
we implemented optimization methods in Table I for com-
parison. In the following, the notation of these optimization
methods follows Table I. The encoding and decoding of
the solutions in these genetic algorithms follow the methods
defined in Section III-B.

The parameters used in these genetic algorithms are listed
in Table II.

TABLE I
OPTIMIZATION METHODS USED IN SIMULATIONS

Notation Algorithm Description
ME Our method described in Section III.

EGA

Elitism-based Genetic Algorithm (EGA) is a conventional
genetic algorithm [10] that adopts elitism to make its
evolution steady. In EGA, the population is replaced with a
new population consisting of new individuals by generations.
This method maximizes the fitness defined in Section III-C.

SSGA

Steady State Genetic Algorithm (SSGA) is a modified genetic
algorithm that replaces the worst individual in the population
with a new individual to evolve, not generating a new popula-
tion. Therefore, there is no generation gap, so the evolution is
comparatively steady. This characteristic is in common with
the MAP-Elites. This method maximizes the fitness defined
in Section III-C.

NSLC

Novelty Search with Local Competition (NSLC) [11] is
one of the QD algorithms like MAP-Elites, which is a
multi-objective optimization algorithm for novelty and local
competitiveness. Novelty is the average Euclidean distance
to the k nearest neighbors on the feature space, and local
competitiveness is relative performance (fitness defined in
Section III-C) in them. This method maximizes the average
of novelty and local competitiveness using SSGA.

TABLE II
PARAMETERS OF THE GENETIC ALGORITHMS

Parameters Value
Gene length 55

Population size (except ME) 100
Feature space granularity (ME) (10× 10)
Mutation rate (at each locus) 1%

Crossover rate 90%

C. Simulation results

The simulations were performed 30 times for 100 pairs
of different physical and virtual networks for each genetic
algorithm, and the results shown below are averages of all
simulations.



(a) Acceptance rate (b) Immediate acceptance rate

Fig. 3. Solution search performance for each algorithm

The metrics of the performance of the solution search are
shown in Fig. 3. The acceptance rate is the percentage of
cases where a solution satisfying the constraints is found
in the second epoch. The immediate acceptance rate is the
percentage of cases in which there is a solution that satisfies
the constraints in the second epoch at the time the first epoch
ends.

The physical nodes are numbered in descending order of
resource amount, and the horizontal axis in Fig. 3 represents
the number of the physical node which becomes unavailable
in the simulation.

The results show that there is no major difference among
the methods in the acceptance rate, but the QD algorithms,
namely ME and NSLC, overwhelm the others in the immediate
acceptance rate. This means that the QD algorithms search for
more diverse solutions in the first epoch, some of which satisfy
the constraints in the second epoch, and they lead to a higher
tolerance for the environment variation.

Also, the extent of performance degradation of the QD algo-
rithms to the decrease of the horizontal axis is comparatively
small, which means that they find the solutions independent
of important nodes in more cases.

V. CONCLUSION

Network slicing techniques are becoming more and more
important due to the diversification of services running on
networks. In this paper, we proposed a dynamic solution
method using the QD algorithm for the VNE problem, which is
one of the implementation problems. Comparative evaluation
through simulations shows that methods using QD algorithms
are more effective for the dynamic VNE problem than those
using conventional genetic algorithms. We also showed that
the ability of QD algorithms to search for diverse and superior
solutions leads to their tolerance to unpredictable environmen-
tal variations.

However, we did not observe the effectiveness of the search
in the feature space designed in this paper. Since the MAP-
Elites algorithm was shown to be superior to NSLC-based

methods in its ability to search for high-quality solutions in
a wide range of feature space, the design of a feature space
that enables a more efficient search in the genotypic domain
containing those high-quality solutions is expected to further
improve the performance of the method using the MAP-Elites
algorithm.
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