
Anticipatory Robot Navigation:
Incorporating Estimated Obstacle Behaviors with

the Social Force Model
Fengkai Liu∗, Yuichi Ohsita†, Kenji Kashima‡, Shinya Yasuda§, Taichi Kumagai§,

Hiroshi Yoshida§, Dai Kanetomo§, Masayuki Murata∗
∗Graduate School of Information Science and Technology, Osaka University, Osaka, Japan 565-0871

Email: {f-liu, murata}@ist.osaka-u.ac.jp
†Cybermedia Center, Osaka University, Osaka, Japan 560-0043

Email: yuichi.ohsita.cmc@osaka-u.ac.jp
‡Graduate School of Informatics, Kyoto University, Kyoto, Japan 606-8317

Email: kk@i.kyoto-u.ac.jp
§Visual Intelligence Research Laboratories, NEC Corporation, Kanagawa, Japan 211-8666

Email: {shinya-yasuda, t kumagai, yoshida, d-kanetomo}@nec.com

Abstract—In environments populated by various dynamic
obstacles, such as people and robots, it is essential for each robot
to operate efficiently while avoiding these obstacles. Therefore, in
this paper, we propose a method for navigating a robot to avoid
obstacles and ensure smooth and efficient movement in dynamic
environments. Moving obstacles may also actively attempt to
avoid the robots. Therefore, our navigation method should
consider such interactions to achieve an efficient movement. To
achieve this, our method integrates principles from the Social
Force Model and models the movement of nearby obstacles by
estimating the parameter of the Social Force Model. Then, our
method controls the robot to ensure a balance between efficiency
and safety based on the model. We evaluate our method by
simulation and demonstrate that it achieves high efficiency and
safety by utilizing a model of nearby obstacles.

Index Terms—Obstacle Avoidance, Obstacle Behavior, Social
Force Model

I. INTRODUCTION

With the continuous growth of the e-commerce and retail
sectors, there’s an increasing demand for automation within
warehouses and logistic centers. Being central to this automa-
tion transition, the robot, specifically the Automated Guided
Vehicle (AGV), offers efficiency for warehouse operations,
especially in tasks like material transport. However, the ware-
house environment is unique, with robots interacting with
moving obstacles, e.g., humans or robots operating in other
systems, presenting distinctive challenges for robot navigation.
Particularly, given the efficiency demands of warehouse opera-
tions, the movement efficiency of the robot and safety become
paramount.

Traditionally, in situations with a possibility of collision,
actions like stopping or significantly limiting speed have been
taken to ensure human safety [1]. Several approaches have
been proposed in the past, for example, Feder et al. [2]
presented a method for real-time path planning in dynamic
environments using harmonic potentials. Arslan et al. [3]

proposed a robot obstacle avoidance method based on power
diagrams. Missura et al. [4] enhanced the Dynamic Window
Approach and incorporated a dynamic collision model that
predicts future collisions. However, neither of these methods
considers the potential impact of the robot’s movement on the
trajectory of obstacles, indicating that they lack interaction-
awareness. Such neglect could lead the robot to perceive a
greater intrusion by obstacles into its trajectory, prompting it
to adopt a more conservative control strategy. As a result,
these methods may introduce inefficiencies and, in extreme
scenarios, give rise to the Freezing Robot Problem [5].

Therefore, several interaction-aware methods have been
proposed. Helbing et al. [6], [7] introduced the Social Force
Model, a simple yet effective framework for describing pedes-
trian movement adaptable to a myriad of contexts, which was
also used in robot navigation. Ferrer et al. [8] presented a
human-aware navigation approach based on the Social Force
Model. Shiomi et al. [9] improved the Social Force Model
based approach by introducing the concept of “social dis-
tance” and respecting personal spaces, aiming for human-like
collision avoidance in robots. Kamezaki et al. [10] enhanced
the Social Force Model by adding an inducible feature to
handle the Freezing Robot Problem. However, a common
limitation across the methods in the approaches presented in
[8]–[10] is the use of fixed parameter values. This assumes
uniform repulsive forces across all objects, implying that all
obstacles exhibit the same behavioral pattern. However, each
obstacle has its own behavior. Some obstacles may change
their trajectories to avoid the robot, while other obstacles may
not change their trajectories. If an obstacle does not avoid the
robot but the robot assumes it will, this mismatch can result
in a collision.

An interaction-aware method based on reinforcement learn-
ing has also been proposed [11]. This method trains a model
to control a robot without violating social norms by using a

trajectory dataset. However, this method also does not consider
the variation in the behavior of the obstacles.

Hence, in this paper, we propose a method for navigating
a robot to avoid obstacles and ensure smooth and efficient
movement by considering the interaction between the robot
and obstacles. In our method, we use the Social Force Model to
model the behavior of obstacles. By estimating the parameter
of the Social Force Model based on the observations of
obstacles, our method reflects the varied behaviors exhibited
by different obstacles. While we apply the Social Force Model
to prevent collisions, its parameters are adjusted in our system
to achieve a balance between safety and efficiency, factoring in
the behaviors of surrounding obstacles. By repeatedly updating
the models of the behaviors of nearby obstacles and updating
the parameters for controlling robots, our method achieves
safety and efficiency in dynamic environments.

Our primary contributions in this study are:
1) We propose a method to model the behaviors of each

obstacle that avoids collisions with the robot by using
observations of obstacles.

2) We also propose a method to refine the robot’s control
input, ensuring a balance between efficiency and safety,
based on the model of the behaviors of nearby obstacles.

In the following sections, we elaborate on our methodology.
Section II delves into the Social Force Model. Section III
outlines our approach for calculating the control input, while
Section IV-B presents the experimental setup, results, and
discussions related to our evaluation.

II. SOCIAL FORCE MODEL

Social Force Model is a simple model designed to describe
pedestrian motion, and takes into account individual prefer-
ences, local intentions with neighbors, and the surrounding
environment. In this model, interactions with other objects in-
fluence the moving velocity. This influence is defined in terms
of repulsive forces. One object also experiences a simulated
attractive force originating from destinations or places they
intend to go to, guiding them towards their target. Figure 1
shows the overview of the Social Force Model. By utilizing
the principles of the Social Force Model, we can model the
behavior of the robot and the obstacles within a shared space,
especially in contexts where their paths might intersect or
come into proximity.

In the Social Force Model, we can use (1) to determine the
position of object i for the subsequent time step t+∆t.

ri(t+∆t) = ri(t) + vi(t) ·∆t+
1

2
ai(t) ·∆2t, (1)

where ri(t) and vi(t) are the position and velocity of object
i at time step t, respectively. In the Social Force Model, the
acceleration ai(t) is obtained by (2).

ai(t) =
∑
j ̸=i

F rep
i,j (t) + F att

i (t), (2)

where F rep
i,j (t) represents the repulsive force exerted between

object i and any distinct obstacle j, and F att
i,j (t) denotes

F rep
r,o

F rep
r,w

F att
r

r o

w

gr

Fig. 1. An example for Social Force Model. In this scenario, a robot r
navigates in a space with a moving obstacle o and a wall w, which serves
as a static obstacle. Therefore, there are three forces acting on robot r: two
repulsive forces exerted by moving obstacle o, F rep

r,o and wall w, F rep
r,w , and

the attractive force F att
r directed towards its goal gr .

the attractive force directing object towards its designated
destination. We accumulated all the repulsive forces F rep

i,j (t)
that arise between object i and any obstacles.
F rep
i,j (t) is the repulsive force to act the interaction, calcu-

lated by (3), which is a simplified version of the Social Force
Model from [7], often referred to as the circular specification.

F rep
i,j (t) = Ai · e−||di,j(t)||/B di,j(t)

||di,j(t)||
, (3)

where di,j(t) means the distances between the object i and
object j, calculated by di,j(t) = ri(t)− rj(t). The parameter
Ai determines the strength of repulsive force exerted on object
i, which can be used to flexibly depict the behavior of object i.
The parameter B determines the range of the repulsive force.
In this paper, by setting Ai for each object, we capture its
tendency to avoid obstacles.
F att
i (t), the attractive force, is calculated by (4), using a

specific variable v0
i (t) that represents the desired velocity.

F att
i (t) =

1

τ

(
v0
i (t)− vi(t)

)
, (4)

where τ represents the relaxation time. The desired velocity
v0
i (t) can be calculated by (5) from the concept in [6].

v0
i (t) = vmax

i (t) = vmax
i · gi − ri(t)

||gi − ri(t)||
, (5)

where the notion vmax
i represents the maximum velocity, while

gi denotes the goal of the object i.
For static obstacles, we only employ (3) to compute the

repulsive force between the object and the static obstacle and
do not use other equations to calculate the displacement of
static obstacles.

III. CONTROL OF THE ROBOT

In this section, we explain our assumption of the en-
vironment. Then, we explain the overview of our method.
Following that, we delve into the mechanisms by which the
robot processes information about obstacles to ascertain the
appropriate control input.

Control Input

Calculation

Parameter Ao

Estmation
Information UpdateSensor

Robot
Desired Velocity Ao

Calculation

Ao

v0
r

Fig. 2. The procedure of control.

A. Assumed Environment
In our setup, we assume robot r can observe the positions of

obstacle o as r̃o(t) by sensors installed within the environment
or sensors mounted on the robot. Similarly, the obstacle can
observe the position of the robot as rr(t). We also assume
that the robot’s observation of the obstacle’s position r̃o(t)
contains noises, potentially due to sensor precision. That is,
r̃o(t) is represented by

r̃o(t) = ro(t) + e(t), (6)

where ro(t) is the actual location of o at time t, and e(t) is er-
rors. We assume that the error term e(t) follows a multivariate
normal distribution where the components in each dimension
are independent. To simplify our analysis, we consider the
errors included only in the observations by the robot and do
not consider the errors included in the observations by the
obstacles.

B. Method Overview
Our method employs the model introduced in Section II to

compute interaction and the robot’s control input. Using the
movement model, we assume both the robot r and the obstacle
o have their own goals, denoted as gr and go. respectively. We
assume that we can use the goal for the obstacle estimated by
the methods proposed in [12], [13]. We also assume that both
the robot and the obstacle will make every effort to move
towards their destinations, without exhibiting unreasonable
behaviors like getting lost.

Our method operates based on a distinct workflow, compris-
ing two cycles, as shown in Figure 2. The first cycle focuses on
determining the avoidance behavior and is characterized by its
shorter duration. This cycle involves obtaining the observation
from sensors, as well as calculating the control input for the
robot based on the Social Force Model. The second, longer
cycle primarily deals with determining the parameters needed
to compute the robot’s control input. This not only includes
the parameter value Ao that reflects the tendency of obstacles
to avoid the robot, but also the desired velocity v0

r used to
calculate the robot’s attraction. The desired velocity v0

r affects
the attractive force from the goal. That is, by setting the desired
velocity, we can strike a balance between the attractive force
and the repulsive force from obstacles.

We will delve into further details in the subsequent Section
III-C and Section III-D.

C. Avoidance Behavior based on the Social Force Model
At each time step t, the system first employs the Kalman

filter to refine the observed position of an obstacle, and then

calculates the control input of the robot by integrating forces
derived from the Social Force Model.

1) Estimation for the position of obstacle: At a discrete
time step t, upon observing the position of the obstacle, we
use the Kalman filter to minimize the impact of observation
errors. The filter refines this prediction by (7), using the newly
observed position, r̃o(t), to produce an estimation of the true
value, r̂o(t).

r̂o(t) = r̂′o(t) +
[
K(t) ·

(
r̃o(t)− r̂′o(t)

)]
, (7)

where r̂′o(t) is the predicted value from the previous time step,
while K(t) is the Kalman gain, calculated by (8).

K(t) =
P (t)

P (t) +R
, (8)

where P and R are pre-defined covariances matrix. After this
step, we update the covariance matrix P in preparation for the
next prediction by (9).

P (t+∆t) = (I −K(t))P (t), (9)

We then predict the obstacle’s position for the subsequent
time step r̂′o(t + ∆t). In the prediction period, we use the
model we introduced in Section II, but use (10) to estimate
the obstacle’s velocity.

v̂o(t) =
r̂o(t)− r̂o(t−∆t) + 1/2 · âo(∆t) ·∆2t

∆t
(10)

This prediction is aimed at refining the subsequent time step’s
estimation at t+∆t, as we showed in (7).

2) Behavior based on Social Force Model: Using the esti-
mated position of the obstacle r̂o(t), and the model from Sec-
tion II, we can utilize (3) to compute the repulsive forces and
(4) to calculate the attractive force acting on the robot. Once
both forces are obtained, the actual control input vr(t +∆t)
is computed using (11).

vr(t+∆t) = vr(t) + ar(t)∆t, (11)

where the desired velocity used in (4) is determined using the
method detailed in Section III-D2.

D. Control Considering the Avoidance Behavior of Obstacle

Within this discussion, we delve into a control strategy
that addresses the evasive actions of dynamic obstacles. This
includes estimating the tendency of nearby obstacles to avoid
the robot and the calculation of the desired velocity of the
robot. First, based on the observed obstacle position, we infer
the parameter value Ao of the repulsive force acting on the
obstacle, in (3). Then, using the estimated parameter value Âo,
we compute the desired velocity v0

r , ensuring the formulation
of a harmonious path. In the estimation step, we use the
observed obstacle position instead of the optimized outcomes
from the Kalman filter, aiming to minimize the influence of
the Kalman filter’s behavior on the estimation results.

1) Parameter Estimation for the Model: Using Bayesian
estimation (12), we estimate the value of the parameter Ao.

P (Ai
o|r̃o(t), r̃o(t−∆t)) =

L
(
r̃o(t)|Ai

o, r̃o(t−∆t)
)
· P (Ai

o)∑
i L

(
r̃o(t)|Ai

o, r̃o(t−∆t)
)
· P (Ai

o)
, (12)

where Ai
o is a value sourced from the prior probability

distribution. This prior is derived from the posterior probability
of the previous time step. We set the initial distribution of Ai

o

to a normal distribution N (0, σ2), assuming that the obstacle
might not change its trajectory. L

(
r̃o(t)|Ai

o, r̃o(t−∆t)
)

is the
value of the likelihood function defined by

L
(
r̃o(t)|Ai

o, r̃o(t−∆t)
)
= f(r̃o(t); r̃o,i(t),Σ), (13)

where f is the probability density function of the normal
distribution of r̃o(t), given by r̃o(t) ∼ N

[
(r̃o(t−∆t)+v̂o(t−

∆t)·∆t+ 1
2 âo,i(t−∆t)·∆2t),Σ

]
, with the error terms e(t) is

assumed to follow a same normal distribution N (0,Σ). Σ is
the covariance matrix of the error term’s components in each
dimension. r̃o,i(t) determined based on the sampled Ai

o by

r̃o,i(t) =
(
r̃o(t−∆t)− e(t−∆t)

)
+

v̂o(t−∆t) ·∆t+
1

2
âo,i(t−∆t) ·∆2t− e(t), (14)

where âo,i(t−∆t) is calculated by (2) using Ai
o.

After the calculation on time step t, we determine the
estimated value Âo from the expectation of the posterior prob-
ability distribution, and we then treat the posterior probability
distribution as the prior probability distribution on the next
time step t+∆t.

2) Calculation of the Desired Velocity: Given the position
of the robot rr(t) and the Kalman filter corrected position
of the obstacle r̂o(t) at current time step t, we calculate the
desired velocity used to calculate the robot’s control input by
considering their future interactions. The desired velocity v0

r

for robot, used in (4), is computed by minimize objective
function J ([v0

r]
t+(H−1)∆t
t) in (15), where the independent

variable [v0
r]

t+(H−1)∆t
t denotes the sequence of desired ve-

locity vectors from time t to t+ (H − 1)∆t. For brevity, we
denote the array of the desired velocity as [v0

r] in subsequent
equations. In our objective function, we aim to minimize both
the time the robot takes to reach its destination and the risk
of collision with the obstacle.

minimize J ([v0
r]) =Jt([v

0
r]) + Pv([v

0
r]) + Pd([v

0
r])

(15)

This objective function consists of a function Jt([v
0
r]) that

calculates the required time to the destination for the robot, a
penalty function Pv([v

0
r]) to ensure movement efficiency, and

a penalty function Pd([v
0
r]) to ensure safety.

We define the function Jt([v
0
r]) by

Jt([v
0
r]) =

∣∣∣∣∣ ||gr − rr(t+H∆t, [v0
r])||

V
(
vr(t+H∆t, [v0

r]), gr, rr(t+H∆t, [v0
r])

)
+ ε

∣∣∣∣∣
+∆t ·

H∑
i=1

[
I
(
gr, r̂r(t+ i∆t)

)]
, (16)

where rr(t + H∆t, [v0
r]) and rr(t + H∆t, [v0

r]) denote the
position and velocity of robot. Both of them are generated
based on the model introduced in Section III-B. I(g, r) is 1
if [g ̸= r] , otherwise 0. The function V(v, g, r) calculates
the projection of the velocity v on the vector formed by the
destination g and the position r,

V(v, g, r) = v · g − r

||g − r||+ ε
, (17)

where ε is a small constant added to prevent division by zero.
To summarize the function Jt([v

0
r]), the first term of (16)

calculate the required travel time to the destination for the
robot r after a time horizon of H∆t, and the second term
is added for the case if the robot arriving at the destination
within the time horizon H∆t.

However, merely minimizing the function Jt might lead to
a local optimum solution. Therefore, we add a penalty function
related to the robot’s movement velocity, Pv([v

0
r]), defined by

Pv([v
0
r]) =

t+H∆t∑
i=t+∆t

[
vmax
r − V

(
vr(i, [v

0
r]), gr, rr(i, [v

0
r])

)]
.

(18)

The addition of a penalty function related to the robot’s
movement velocity aims to ensure the velocity is maximized.

For safety, we also add a penalty function related to the
distance between both subjects, Pd([v

0
r]) defined by

Pd([v
0
r]) =

t+H∆t∑
i=t+∆t

a · ekd

(
dmin−||dr,o(t,[v

0
r])||

)
, (19)

where ||dr,o(t, [v
0
r])|| denotes the distance between the robot

and the obstacle, calculated by on the model in Section II.
a and kd are parameters to determine the behavior of the
function, and dmin is the parameter to decide the minimum
distance between the robot and the obstacle. If the distance
between both subjects becomes less than dmin, the value of
the function rises sharply. By adding a distance-related penalty
function, it’s possible to avoid the computational issues of
providing the minimum distance between both subjects as a
constraint condition up to the time horizon H∆t.

The values of the two penalty functions, Pv([v
0
r]) and

Pd([v
0
r]), will be repeatedly calculated until the time horizon

H∆t.

IV. EVALUATION

In this research, we conduct a simulation using the MAT-
LAB Optimization Toolbox to validate the effectiveness of the
proposed method. In the simulation, we simulate a robot and
a moving obstacle. Subsequently, we analyze the minimum

TABLE I
SETTINGS FOR THE ROBOT AND THE OBSTACLE

Obstacle o Robot r
Initial position r(0) [1.5, 0.8] [1.5, 2.2]
Initial velocity v(0) [0, 1] [0, -1]

Goal g [1.5, 2.2] [1.5, 0.8]
Maximum speed vmax 1.5m/s 1.5m/s

TABLE II
SETTING OF THE PARAMETER VALUES

Parameter Value
Time slot ∆t 0.1s

Parameter to control the strength of
repulsive force on robot Ar 20

Parameter to control the influence range of
the repulsive force B 2

Relaxation time τ 0.1s
Observation error covariance Σ 0.1 · I

Time horizon H∆t 15∆t
a in (19) 20
kd in (19) 20

Minimum distance dmin 1m

distance between the robot and the moving obstacle during
their interaction to demonstrate the safety of the proposed
method. Additionally, we evaluate the robot’s movement time
to validate the movement efficiency of our approach.

A. Experimental Setup

We set a flat area of size 3m × 3m as the evaluation
environment, without static obstacles. The settings for the
robot and the obstacle are presented in Table I. We ensure
that the trajectories of the robot and the obstacle inevitably
intersect, leading to an interaction between the two. We
generated the obstacles to behave following the Social Force
Model, introduced in Section II. In this evaluation, we simulate
two cases; the case that the obstacle avoids the robot (this
involves assuming the parameter Ao, used in (3) to decide the
tendency to avoid the robot, is set to 20) and the case that the
obstacle maintains its original trajectory without any deviation
(this involves assuming the parameter Ao = 0). We generate
the observation errors of the obstacle’s position as follow a
normal distribution N (0, 0.12). In this evaluation, we set the
parameters as shown in Table II. We ran the simulation 100
times.

In this evaluation, we compare our method with a method
that calculates the desired velocity using a fixed estimation Âo

to evaluate the significance of estimating Ao.

B. Results

1) Estimation of the obstacles behavior: Before comparing
with the cases of fixed parameters, we investigate the param-
eter estimation result produced by our method. Figures 3 and
4 show examples of the estimated parameter at each time
slot. Figure 3 indicates that Âo is estimated to be a small
value in the early time slots even when the actual value of
Ao = 20. That is, our method considers a case where the
obstacle may not change its trajectory. However, as the time

Fig. 3. Estimation result Âo when the
actual value of Ao is set to 20.

Fig. 4. Estimation result Âo when the
actual value of Ao is set to 0.

slot continues, Âo is estimated to have a large value. This
change is attributed to our method detecting that the obstacle
is actively avoiding the robots. Consequently, our approach
can predict the behavior of obstacles that maneuver to avoid
robots. On the other hand, Figures 4 indicates that our method
estimates Âo to have a small value when the actual value of
Ao = 0. As a result, our method can handle the obstacle as
the obstacle that does not change its trajectory.

2) Result when the obstacle will avoid the robot (Ao =
20): Figure 5 presents the results for the scenario where the
obstacle will avoid the robot, means that the actual value of
Ao is set to 20. In this scenario, obstacles avoided the robot.
By accurately predicting the behavior of the obstacles (in the
case of the method with a fixed parameter Âo = 20), we
can set an optimal strategy for controlling the robot to avoid
collisions with obstacles and achieve efficient movement. In
contrast, a method that assumes the obstacle does not change
its trajectory, implying that the estimation of the parameter
Âo is fixed at 0, requires more substantial evasive actions.
As a result, more time is required to reach its goal. Actually,
Figure 5 shows that the minimum distance from the obstacle
is slightly far and the movement time is large in the case of
the method with the fixed parameter Âo = 0. Figure 5 also
indicates that our method achieves similar movement time to
the method with a fixed Âo = 20. This is because our method
estimated Âo as the values indicating that the obstacle avoids
the robot.

3) Result when the obstacle will not avoid the robot (Ao =
0): Figure 6 presents the results for the scenario where the
obstacle will not avoid the robot, means that the actual value
of Ao is set to 0. In this scenario, the obstacle did not change
its trajectory. In contrast, a method that assumes the obstacle
will avoid the robot, implying that the estimation of the
parameter Âo is fixed at 20, results in ineffective robot control.
Consequently, the minimum distance between the robot and
the obstacle becomes less than 1, which violates our behavioral
constraint, as shown in Figure 6(a). On the other hand, the
method with the correct estimation Âo = 0 keeps the minimum
distance larger than 1 in most cases, though the results for our
method did exhibit a few outliers. Figure 6 also indicates that
our method achieves a result similar to that of the method with
the correct estimation Âo = 0. This is because our method
can estimate Ao accurately even when the obstacle does not

Fig. 5. Comparison with the scenario without parameter estimation. The
results for the case where the actual value of Ao = 20, indicate that the
obstacle will attempt to avoid the robot.

Fig. 6. Comparison with the scenario without parameter estimation. The
results for the case where the actual value of Ao = 0, indicate that the
obstacle will not attempt to avoid the robot.

change its trajectory.
4) Discussion: From our simulations, it is evident that by

estimating the obstacle’s intention to avoid the robot, our
method consistently calculates an appropriate desired velocity
even if the observation includes errors. This ensures that the
robot not only moves efficiently towards its target, but also
maintains a safe distance from moving obstacles, even in
the presence of observational errors. The robustness of our
approach was demonstrated across 100 iterations with varying
noise levels. Although inevitable path intersections test the
capabilities of our method, it is worth noting that potential
prediction inaccuracies can compromise either the safety or
efficiency of our method. Our method demonstrated a strong
balance between these two crucial aspects in most situations.

V. CONCLUSION

In this paper, we utilized the Social Force Model to under-
stand and predict obstacle avoidance behaviors, then applied
these insights to calibrate the robot’s control input, striking
a balance between efficiency and safety. In the future, we
will delve deeper into the practical application of our method,
encompassing deployment on real robots and testing in real-
world environments. Additionally, we will consider the volume
of obstacles and extend the obstacles to humans, individuals
who might exhibit irrational behavior.

ACKNOWLEDGMENT

These research results were partly obtained from the com-
missioned research (JPJ012368C00701) by National Insti-
tute of Information and Communications Technology (NICT),
Japan.

REFERENCES

[1] Milos Vasic and Aude Billard. Safety issues in human-robot interactions.
In 2013 IEEE International Conference on Robotics and Automation
(ICRA), pages 197–204, 2013.

[2] H.J.S. Feder and J.-J.E. Slotine. Real-time path planning using harmonic
potentials in dynamic environments. In Proceedings of International
Conference on Robotics and Automation (ICRA), volume 1, pages 874–
881 vol.1, 1997.

[3] Omur Arslan and Daniel E. Koditschek. Exact robot navigation using
power diagrams. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 1–8, 2016.

[4] Marcell Missura and Maren Bennewitz. Predictive collision avoidance
for the dynamic window approach. In 2019 International Conference
on Robotics and Automation (ICRA), pages 8620–8626, 2019.

[5] Peter Trautman and Andreas Krause. Unfreezing the robot: Navigation in
dense, interacting crowds. In 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 797–803, 2010.

[6] Dirk Helbing and Peter Molnar. Social force model for pedestrian
dynamics. Physical review E, 51(5):4282, 1995.

[7] Dirk Helbing and Anders Johansson. Pedestrian, Crowd and Evacuation
Dynamics, volume 16, pages 697–716. Springer, 04 2010.

[8] Gonzalo Ferrer, Anaı́s Garrell, and Alberto Sanfeliu. Robot companion:
A social-force based approach with human awareness-navigation in
crowded environments. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1688–1694, 2013.

[9] Masahiro Shiomi, Francesco Zanlungo, Kotaro Hayashi, and Takayuki
Kanda. Towards a socially acceptable collision avoidance for a mobile
robot navigating among pedestrians using a pedestrian model. Interna-
tional Journal of Social Robotics, 6(3):443–455, 2014.

[10] Mitsuhiro Kamezaki, Yusuke Tsuburaya, Taichi Kanada, Michiaki Hi-
rayama, and Shigeki Sugano. Reactive, proactive, and inducible prox-
imal crowd robot navigation method based on inducible social force
model. IEEE Robotics and Automation Letters, 7(2):3922–3929, 2022.

[11] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P. How. Socially
aware motion planning with deep reinforcement learning. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1343–1350, 2017.

[12] Tetsushi Ikeda, Yoshihiro Chigodo, Daniel Rea, Francesco Zanlungo,
Masahiro Shiomi, and Takayuki Kanda. Modeling and prediction of
pedestrian behavior based on the sub-goal concept. Robotics, 10:137–
144, 2013.

[13] Graeme Best and Robert Fitch. Bayesian intention inference for trajec-
tory prediction with an unknown goal destination. In 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 5817–5823. IEEE, 2015.

