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Abstract—The advent of beyond 5G/6G technologies is ex-
pected to revolutionize the development of digital twins. Recent
development of sensors and deep learning techniques has sig-
nificantly improved the precision of perception of surroundings,
and multimodal object recognition approaches, which play an
important role in the realization of the digital twin, have been
studied. Previously, we developed a multimodal object recognition
method using RGB and depth images. Although our method
handled multimodal data sets, there are two problems with this
method: Low accuracy of the depth image and dependence on the
results of video recognition. The dependence is due to the fact that
the recognition results of the RGB images are used to determine
the distance between the object and the camera. In this paper,
we propose advanced multimodal object recognition methods
that expand on our previous method. The proposal includes
an additional location-modal approach that utilizes PointNet for
semantic segmentation and location estimation. We evaluate our
method using our prepared data set consisting of RGB-D images
and 3D point clouds, considering the situations where workers
and robots collaborate in the warehouse. Our results show that
multimodal recognition achieves a better precision score than
only the video modality under uncertain measurements.

Index Terms—Digital twin, Object recognition, Multimodality,
Bayesian attractor model, Bayesian causal inference

I. INTRODUCTION

In next-generation mobile communication systems (beyond
5G/6G), the recognition of various objects in a real world by
computers will form the essential foundation of the future
digital world [1]. Massive advances in sensor technology,
including visual, tactile, and LiDAR (Light Detection And
Ranging) sensors, are poised to enhance the machine’s ability
to perceive environments with more precision and create more
detailed digital twins [2], [3]. Furthermore, sensor data analy-
sis methodologies are rapidly evolving, driven by the growth
of deep learning technologies [4]. In the expected applications
in 6G networks, for example warehouse robotics, where robots
work with human workers, the need for precise sensing and
operation is paramount for safety and efficiency [5].

However, as the use of various sensors becomes more
prevalent for recognition tasks, a critical limitation arises when
relying on a single sensor for comprehensive environment
sensing. Single-sensor systems often provide incomplete un-
derstanding of environments influenced by various uncertain-
ties [6]. For example, in video camera-based sensing, the way

light reflects influences the recorded data clarity. Additionally,
the distribution of the target’s movement affects the instance
analysis. Therefore, recognition that takes these uncertainties
into account is becoming important.

Our previous study has successfully realized multimodal
object recognition under uncertainties utilizing two models in-
spired by brain information processing, which make decisions
under uncertain multimodal observations [7]. For instance of
the advantages of multimodal recognition, at the decision-
making level, when it is difficult to visually distinguish
between a dog and a cat –it indicates that the information
obtained from vision is uncertain–, the sound of barking heard
by the ears can lead us to recognize that the object is a dog. We
have adapted two models based on this brain system for object
recognition, the Bayesian Attractor Model (BAM) [8] for the
sensory level, and the Bayesian Causal Inference (BCI) [9],
[10] for the decision-making level. The BAM simulates how
a person makes decisions based on the observed information,
using Bayesian estimation, and the BCI represents the process
by which humans identify a signal source using various
sensory modalities, such as vision and auditory.

Since we have shown the effectiveness of multimodal object
recognition with brain architecture, several challenges remain.
One is that recognition using 2D video information is difficult
to grasp three-dimensional movements of objects. In addition,
the depth acquired by stereo cameras, which many 2D cameras
use, is not as precise as the distance that can be handled.
Another is that the feature extraction techniques that we use
have dependencies before the integration of modality in the
decision-making level.

The purpose of this paper is to propose a stochastic object
recognition method by expanding our previous methods [7]
using multimodal input with a mutually independent feature
extract network (Fig. 1). We use a modality that captures
location information more directly than depth images. To do
so, we propose a new object recognition method that leverages
point-cloud data obtained from a LiDAR sensor, which can
achieve a reliable detection range greater than the depth
perception by a stereo camera. We use a semantic segmentation
technique (PointNet [11]) for obtaining the location of an
object. To evaluate our method, we also created a data set



Fig. 1. Flow of multimodal object recognition. RGB images and 3D point
clouds are utilized for object recognition in our experiments. These data sets
are analyzed using separate networks and inferences will be generated for each
objects with confidence independently. Finally, these results are integrated and
the final decision is made taking into account their confidence.

using a LiDAR sensor and an RGB camera, combining a three-
dimensional point cloud with an RGB image. In our model,
we confirmed that a multimodal approach achieves a higher
perception rate than a unimodal method that uses only the
video modality. We also observed that this approach reduces
the errors caused by the dependence on both modalities, which
occurred in our previous method.

The key contributions of our work are as follows:
• Enhancing multimodal object recognition for location

modalities
• Demonstrating the applicability of brain architecture in

processing diverse multimodal inputs
Section II introduces our previous research and related

studies. Our proposed methodology is described in Section III,
and we verify its effectiveness using our new data set in
Section IV. Section V concludes with a brief summary.

II. OBJECT RECOGNITION METHOD INSPIRED BY BRAIN
PERCEPTION

In this section, we present our previous research that is
strongly related to the proposal in this paper. First, we show
a unimodal object recognition method that uses the Bayesian
Attractor Model (BAM) [8]. The BAM computes subjective
confidence in what is being observed. Details are described in
Section II-A. Subsequently, we detail the modality integration
model using the Bayesian Causal Inference (BCI) [9] in Sec-
tion II-B. Finally, we present an overview of the multimodal
object recognition method [7] in Section II-C. This paper
shows an extension of this method.

A. Bayesian attractor model

Bayesian attractor model [8] represents a human perceptual
decision making by merging two prominent ideas into a new
model. This model combines attractor dynamics and Bayesian
inference. The model consists of an observed value xt, an
internal state zt for time t, and attractor ϕi for decision
option i. The BAM makes a decision by updating zt from
the accumulated evidence for different decision options, as
the activity of neurons is mutually inhibitory. Using Bayesian

theory, the posterior distribution of zt, i.e., P (zt), is updated
with observed values and a generative model.

The generative model of zt is based on the Hopfield
dynamics f , which has constant points in the internal state,
called attractors. This is given by:

zt − zt−∆t = ∆tf (zt−∆t) +
√
∆twt (1)

where ∆t represents a small amount of time and wt represetns
process noise. wt follows multivariate normal distribution
N (0, (q2/∆t)I) where q means uncertainty of dynamics.

The present observed value is then forecasted on the basis
of the internal state. This is given by:

xt = Mσ(zt) + vt (2)

where the vt represents measurement noise at t, and vt follows
multivariate normal distribution N (0, r2I) where r means
uncertainty of sensory. r is the amount of noise expected in
the observed data. σ represents a sigmoid function, mapping
the arguments to the range [0, 1]. The relationship between an
attractor and its representative value of xt is represented by
the matrix M = [µ1 . . . µN ]. Since the authors of [8] define ϕi

so that σ(ϕi) is close to a vector with 1 in the ith dimension
and 0 in all other dimensions, xt ≃ µi when zt = ϕi.

Using Eq. (1) and Eq. (2), Bayes’ theorem allows us to
estimate P (zt|xt) from the actual observed values xt. When
the BAM observes values associated with decision option i, zt
is close to ϕi and P (zt = ϕi|xt) takes a large value. We can
consider that sufficient evidence has been collected to adopt
option i and therefore P (zt = ϕi|xt) is called the confidence
level for decision option i.

The BAM can adjust and refine its internal state and
predictions despite any observational inaccuracies, so utilizing
it can provide robustness for a decision-making task with data
including noise.

B. Bayesian causal inference

Bayesian causal inference [9] is a statistical method to esti-
mate the probability of a causal relationship between variables
using Bayes’ theorem and has been used to explain multimodal
information processing in the human brain.

In this section, we explain the integration of two modalities
represented by A (audio) and V (visual). The BCI estimates
whether the observations in each modality (xA, xV ) originate
from the same source (C = 1) or from different sources (C =
2). The prior probability of C = 1 is pcommon and is usually
set to 0.5. Ref. [9] gives models for the location distribution
of a common source and the distribution of observed values in
each modality when C = 1, and for the location distribution
of two sources and the distribution of observed values in each
modality when C = 2.

From these prior distributions it is possible to infer the
posterior probability of the causal structure (C = 1 or C = 2)
using Bayes’ rule:

p(C|xA, xV ) =
p(xA, xV |C)pcommon

p(xA, xV )
(3)



In the context of multisensory perception of the brain, model
averaging can be used to combine the predictions of different
causal models that explain how different sensory signals are
related to each other. That is, the integrated estimate of x̂A is
derived from the following equation with the estimated value
x̂A,C at C = 1 and C = 2, with P (C = 1|xA, xV ) and
P (C = 2|xA, xV ) as weights (The same applies to x̂V ).

x̂A = P (C = 1|xA, xV )x̂A,C=1 + P (C = 2|xA, xV )x̂A,C=2

(4)
By averaging the predictions of different models with causal

structure, it can make more accurate and reliable perceptual
decision making, taking into account the relative strengths
and weaknesses of different models. The detailed derivation
of x̂A,C is omitted here as it depends on the generative model.
The BCI-based model integration yields two results, x̂A and
x̂V , as described above. For example, x̂V would be used for
visual tasks and x̂A for auditory tasks to make decisions.

C. Multimodal object recognition

Using brain-based models, the BAM and the BCI, robust
multimodal object recognition has been realized in our pre-
vious work [7]. In this method, the BAM performs object
recognition for video and depth modalities. In each modality,
the BAM associates the features of the observed targets with
the attractors as training. Inference is made using the input
observations and then outputs the similarity for each target
with confidence. The results obtained from these modalities
are integrated using the BCI to obtain the final result.

This method becomes possible to make more accurate
decision-making by compensating for each other’s recognition
results in situations where a unimodal method cannot make a
decision, such as when a video modality has low visibility due
to filming in a dark room. However, our previous method used
video-based information to obtain the distance between the
camera and the objects. Therefore, a decrease in the accuracy
of the observed video information was directly related to a
decrease in the accuracy of the depth information.

In this paper, we use 3D point-cloud data obtained from a
LiDAR to directly observe the position of objects and use it to
solve the simultaneous loss of accuracy in the two modalities.
Our method could recognize objects even if there is a loss of
accuracy in one modality. A detailed description of the method
is given in the next section.

III. METHOD

In this section, we show the multimodal information pro-
cessing method that integrates 2D-video modality and 3D-
location modality from an RGB-video camera and a LiDAR.

A. Object recognition based on information processing model
of brain

Integration of information acquired from multiple modalities
has been studied in our previous work [7]. As described in
the previous section, the problem of inaccuracy in multiple
modalities can arise at the same time in our previous method.

There were two reasons for this. One was that the information
obtained from one modality was used to extract features from
the other modality. The other is that the integration model did
not include which of the two modalities should be prioritized
in the integration of information using BCI.

In this paper, we expand our previous method [7] by adding
a new location modal object recognition approach (Fig. 2).

Our proposal also employs a video and location modal-
ity for object recognition. For the video modality, an RGB
camera is the tool of choice, and for the location modality,
a LiDAR is used. A LiDAR is useful for obtaining high-
precision 3D point-cloud data [13]. We gather 2D images
and 3D point clouds from each device, process them through
Siamese RPN [12] and PointNet [11], and subsequently extract
modality-specific features.

Siamese RPN [12] takes a template image and a detection
image as input and outputs the position of the detected similar-
ities as a bounding box. It is composed of a SiameseNetwork
and a Region Proposal Network. The SiameseNetwork extracts
the features of the images, while the Region Proposal Network
uses the extracted features to calculate the similarities between
the template image and the detected image. In [7], we use this
extracted feature for the input of BAM.

PointNet [11] is a neural network architecture designed to
process and analyze point cloud data, which is a type of spatial
data representation commonly used in computer vision and
3D perception tasks. Point clouds are sets of data points in a
3D coordinate system, where each point represents a specific
position in space.

When dealing with the location modality with PointNet, it
produces labeled point clouds of detected objects. This output
is then converted to each centroid of the object to reduce
the data dimension fed to the BAM, since we prevent the
BAM from increasing the calculation time when handling
high-dimensional features.

For the BCI, we use the probability distribution of each
object sourced from the BAM and then merge the results
across the modalities. Through this approach, we can achieve
multi-modal object recognition leveraging different modalities
originating from different devices.

B. Location-modal object recognition

We developed a new object recognition method using Point-
Net to incorporate the location modality into our previous
method. At first, we feed the inputted 3D point clouds into
PointNet, which can perform semantic scene segmentation.
Subsequently, we aggregated the semantic segmented data and
calculated the centroids of each object. The aggregation is
essential in this context, as the BAM tends to exhibit unstable
behavior with high-dimensional input. When the data are
provided to the BAM, probabilistic analysis using confidence
in location modality becomes possible.

C. Weighted object fusion using BCI

Following the object estimation process in the BAM for
every modality, the BCI performs causal inference. The BCI



Fig. 2. Object recognition system using 2D and 3D data based on brain system. The data fusion method is constructed based on our previous research [7].
The diagram illustrates the process when using an RGB camera for the video modality and a LiDAR for the location modality. Our proposed approach employs
Siamese RPN [12] for video modality analysis and PointNet [11] for location modality. The video-modal input for the BAM consists of a feature extracted
from the image in the Bounding Box that wraps around each object for the video modality. The location-modal input for BAM consists of the center position
of the objects. Using BCI for the fusion of the results of two modalities, the model allows for probabilistic recognition of objects.

(a) A common source (b) Separate sources

Fig. 3. Causal inference model. In the left case, representing the forced-
fusion model, both RGB and PC inputs come from one common source,
suggesting they identify the same subject: a worker. However, in the right case,
showcasing the task-relevant model, RGB and PC are derived from separate
sources, indicating different objects.

takes the confidence of the BAM as its observed value.
Using causal inference, it assesses whether both the video and
location modalities identify the same object. This assessment
averages the results from two sensory input models: the forced-
fusion model (indicating a common source) and the task-
relevant unisensory segregation model (indicating separate
sources). A typical example of a causal structure with a
common case is shown in Fig. 3. Following this approach,
model averaging (Eq. (4)) is employed to produce the object
estimation from the results.

To perform BCI, we define the generative models
P (cV , cL|C = 1) and P (cV , cL|C = 2) where cV and
cL are the confidence obtained from the video and location
modalities, respectively.

P (cV , cL|C = 1) =

{
0.5 + σc=1 if LV = LL,
σc=1 otherwise.

(5)

P (cV , cL|C = 2) =

{
1 if LV ̸= LL

0 otherwise
(6)

where σc=1 = 0.5σ(max(cV ))+0.5∗σ(max(cL)), σ = 1/(1+
exp(−x−λbci)), LV = argmax(cV), and LL = argmax(cL).
The generative model assumes that the confidence obtained
from the BAM increases in at least one of the modalities when
observing the same object. It also assumes that the recognition
results in the two modalities differ when observing separate
objects. The sigmoid function is used to indicate whether the
confidence obtained exceeds the threshold value (λbci).

IV. EVALUATION AND RESULTS

A. Evaluation metrics

We adopt Precision as the primary evaluation metric. When
provided with features representing “worker”, we check how
much our proposal confidently recognizes the observed object
as “worker.” When the stakes of false positives are high or
the objective is to minimize erroneous detection, precision is
a key factor. It quantifies the percentage of correct positive
identifications made. For instance, in applications where robots
are employed in tasks involving human interaction, precision is
especially crucial to avoid false positives, which are instances
where an object is mistakenly identified as something else,
potentially leading to significant consequences.

B. Data set description

We need to prepare images and 3D point clouds in a time
series for evaluation that meet the following requirements:

• Scenarios envisioned within a warehouse
• Captured using actual, physical equipment
• Moving entities including both workers and robots
Therefore, we created a data set with images and point

clouds using the Intel RealSense D455 and Livox AVIA. We
shot 60 sequences for training and 495 sequences for testing.
We annotated 3D point clouds to be manageable inside the



TABLE I
KEY PARAMETERS

Name Value
Dynamics uncertainty(q) 1.0× 100

Video-modal sensory uncertainty (rv) 1.0× 101

Depth-modal sensory uncertainty(rd) 1.0× 100

Location-modal sensory uncertainty (rl) 3.0× 10−1

Confidence threshold (λbci) 1.0× 10−5

program with 7 types of objects, “worker,” “robot,” “ceiling,”
“floor,” “wall,” “container,” and “clutter.” An example of the
shots is shown in Fig. 1. For the analysis of the video
image, the model learned in previous studies [7] was used.
siameseRPN is a one-shot learning method and can be applied
to the current study.

C. Setting of model parameters

We set several parameters that affect results (Table I). The
dynamics uncertainty and the sensory uncertainty are the main
factor in the BAM, and the confidence threshold plays a role
in determining the outcome of the BCI. These values should
be determined on the basis of the characteristics of the input
data. Inspecting the data set collected, we adjusted the values
to match those presented in Table I. We also set the features
obtained from the 1st frame as attractor in the BAM.

D. Results

To begin with, we tested unimodal object recognition using
the BAM in each modality; the video modality, the depth
modality, and the location modality (Figs. 4(a)–4(f)). The
blue line indicates the confidence of the “worker,” and the
orange line indicates that of the “robot.” In the video modality,
recognition appears to be unstable at certain points when
detecting the “worker,” possibly because the two observed
objects have a similar coloration and area after the worker
crouching (Fig. 4(a)). As mentioned above, since depth modal-
ity utilizes the results of the video modality analysis, errors in
the video modality can lead to mistakes in the depth modality
analysis as well in Fig. 4(b). In contrast, for the location
modality, the graph clearly indicates continuous attention to
the same object when detecting the “worker” (Fig. 4(c)). This
is because there are only two categories to identify and they
are sufficiently distanced from each other in the first frame.

Subsequently, we combined the findings from the modali-
ties, the video and the depth modality declined in our previous
research [7], video and location modality we proposed, to
conduct object recognition(Figs. 5(a)–6(d)). In the previous
research method, even when multiple modalities are integrated,
there is a tendency to have a higher confidence in incorrect
options and a lower confidence in correct ones in areas where
errors are present (Fig. 5(a)). However, in our method, when
the primary modality is incorrect, it is possible to maintain
high confidence in the correct object in our proposed method
(Fig. 6(c)). For example, if the video modality errs in recogni-
tion, but the location modality is correct with high confidence,
the result of fusion will still favor the video modal with greater

TABLE II
RECOGNITION PRECISION

Modality Worker Robot
Single modality (video) 1.000 0.594
Single modality (depth) 1.000 0.806
Single modality (location) 0.788 1.000
Multi-modalities (video based with depth) 1.000 0.784
Multi-modalities (video based with location) 0.936 0.869
Multi-modalities (depth based with video) 1.000 0.786
Multi-modalities (location based with video) 0.741 1.000

confidence in the incorrect object, though the confidence in the
other remains high (Fig. 6(a)).

Finally, we present the precision for each object using
different methods (only video modality, only location modality,
primarily integrating the video modality and primarily integrat-
ing the location modality, Table II). We calculate the precision
according to the following (7):

Precision =
TP

TP + FP
(7)

TP represents the total number of frames where the confidence
in the correct object is higher, while FP refers total number
of frames that is lower.

The results of multimodal integration both yield relatively
high Precision for both “worker” and “robot.” The precision in
the video modality increases in robot recognition by integrat-
ing with the location modality. However, we also observe that
if one modality is highly confident but incorrect, its influence
can lead to a decrease in precision, in location modality-based
fusion.

E. Discussion

In this study, we have shown that robust and scalable
multimodal object recognition can be achieved by extracting
different features from independent modalities using different
networks. However, we must consider the limitations of our
experience, the simplicity of the task, and how to combine the
results of independent recognition.

First, the simplicity of the task can be identified as one
of the limitations. Presently, our tests are conducted with a
binary classification task, where each class corresponds to a
single object. For practical applications, especially in a real-
word environment, there is a need to employ multi-class and
multi-object data sets for evaluation. This limitation occurs
because the feature extraction network in use is tailored for
one-class-one-object recognition. Since the component can be
replaced with other networks, we believe that adopting this
approach will lead to a successful resolution.

Secondly, the integration of independent modal recognition
results is highlighted as a limitation. There are video and loca-
tion modalities, and in both modalities, observation results are
produced for both workers and robots. The premise here is that,
in multimodal integration, each modality provides recognition
results for “workers” and “robots” individually. Currently, the
system processes integration separately for the output results
observed for “workers” and those for “robots”. The design



(a) Video modality: Worker (b) Depth modality: Worker (c) Location modality: Worker

(d) Video modality: Robot (e) Depth modality: Robot (f) Location modality: Robot

Fig. 4. Object recognition using BAM (unimodality). The results for the video modality are shown in Fig. 4(a) and Fig. 4(d), and those for the depth
modality are shown in Fig. 4(b) and Fig. 4(e). The location modal results, obtained from the method we proposed in this paper, are shown in Fig. 4(c) and
Fig. 4(f). In these figures, the vertical axis signifies the logarithmic confidence that the supplied features identify the object, and the horizontal axis signifies
the temporal sequence of the input frames, each frame being updated every 33.3 milliseconds. The blue line indicates the confidence of identifying “worker,”
and the orange line indicates that of “robot.” In the video modality and the depth modality, the probabilities show a fluctuating pattern, while in the location
modality, the estimation remains constant for the same object.

(a) Video-based integration: Worker (b) Depth-based integration: Worker

(c) Video-based integration: Robot (d) Depth-based integration: Robot

Fig. 5. Multimodal Object Recognition Using BCI (Previous Research).
Figs. 5(a) and 5(c) show the results when primarily using the video modality
for the fusion, while Figs. 5(b) and 5(d) show the results when primarily using
the depth modality. The blue line indicates the confidence of identifying the
“worker,” and the orange line indicates that of “robot.” Our findings indicate
that it can be observed that the benefit of acquiring diverse information through
multimodal integration is not fully utilized.

(a) Video-based integration: Worker (b) Loc.-based integration: Worker

(c) Video-based integration: Robot (d) Loc.-based integration: Robot

Fig. 6. Multimodal Object Recognition Using BCI (This Research).
Figs. 6(a) and 6(c) show the results when primarily using the video modality
for the fusion, while Figs. 6(b) and 6(d) show the results when primarily using
the location modality. The blue line indicates the confidence in identifying
“worker,” and the orange line indicates that of “robot.” Our findings indicate
that fusion in decision level enables the system to continue to recognize with
high confidence, even when the main modality’s recognition is incorrect.



should evolve to automatically handle the combination of
recognition results, which are the product of the number of
modalities and the number of objects. To address this, our
team is conducting research to solve this issue by incorporating
additional models.

V. CONCLUSION

The fusion method inspired by brain information processing
is applicable to object recognition using data from different
sensors. Previously, the efficacy of the method was verified
only in experiments using data obtained from a single sensor.
Therefore, we focused on whether it could be applied to mul-
timodal data obtained from different sensors by expanding the
prior research using the location modality. With the expansion,
we develop a new object recognition method that employs
PointNet to handle point clouds and calculate the object
locations, and integrate this with our previous methodologies.
Our experiment indicates that precision improves when the
video modal analysis is adjusted with the location modality in
robot recognition. Furthermore, the fact that our approach can
maintain high confidence in the correct candidate, even when
recognition errors occur, shows its effectiveness in representing
scenarios probabilistically.

We primarily aimed to prove our system’s flexibility in using
different sensors, so processing efficiency was not part of our
scope. While existing methods that depend on a single sensor
did not have issues identifying objects, our system has not
yet considered several practical challenges, like how to deal
with combinations of different modalities’ recognition. These
challenges will need to be addressed for real-world application.
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