
Network Forensics of Ransomware and Sensor
Integrity in Machine Learning; Toward Building

Robust Systems against Cyberattacks

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2024

Ade KURNIAWAN

List of publication

Journal papers

1. A. Kurniawan and I. Riadi, “Detection and Analysis Cerber Ransomware Using Net-

work Forensics Behavior Based,” International Journal Network and Security, vol.

20, no. 5, pp. 1–8, 2018, doi: 10.6633/IJNS.201809_20(5).04.

2. A. Kurniawan, Y. Ohsita, and M. Murata, “Experiments on Adversarial Examples

for Deep Learning Model Using Multimodal Sensors,” Sensors, vol. 22, no. 22, p.

8642, Nov. 2022, doi: 10.3390/s22228642.

Refereed Conference Papers

1. Ade Kurniawan, Yuichi Ohsita, and Masayuki Murata, “Toward Robust Systems

against Sensor-Based Adversarial Examples Based on the Criticalities of Sensors,” to

be presented at IEEE 3rd International Conference on AI in Cybersecurity (ICAIC),

Houston, Texas, February 7–9, 2024.

. i .

Preface

As the information technologies become important infrastructures, cyberattacks have be-

come major concerns. These attacks not only compromise information system integrity but

can also lead to substantial economic losses, reputation damage, and physical safety risks.

Therefore, the information systems should be more robust against such cyberattacks.

To make the system more robust against attacks, it is important to comprehend how

existing attacks emerge and spread by analyzing them in detail by reconstructing events of

cyberattacks. Based on the knowledge obtained by the analysis of the existing attacks, we

can make the system more robust against cyberattacks.

In this thesis, we first analyze ransomware-based cyberattacks using network foren-

sics. We introduce a methodology to reconstruct the event chain of such attacks from

packet capture data, which helps identify infected hosts and their routes of infection.

We apply this method to the case of the CERBER ransomware. As a result, we found

the event chain related to this ransomware; the user’s search on bing.com led them to

www.homeimprovement.com, a website compromised by cybercriminals. We also found

that they used a pseudoDarkleech script to redirect visitors to a server that deployed the

RIG Exploit Kit, resulting in the download of CERBER Ransomware.

While the initial parts of the thesis focused on traditional information systems such

as servers, PCs, and smartphones, we also extended our analysis to systems based on

machine learning models. With the widespread adoption of machine-learning and sensor

technologies, these models have become new targets for cyberattacks. Therefore, protecting

these models is crucial to ensuring robust defense mechanisms against such evolving cyber

. iii .

threats.

Adversarial examples (AEs) are one of the largest vulnerabilities of the machine learning

models. In this attacks, an adversary generates inputs that causes a machine learning

system to generate incorrect outputs. Especially in the system using multiple sensors, some

sensors may be vulnerable and can be used to generate AEs. Even if an attacker can attack

a machine learning model by using only a small part of sensors, the vulnerabilities of sensors

have a significant risk. However, the impact of hacking a small part of the sensor has not

been discussed thus far.

Therefore, we also discuss the impact of a small part of sensors on the machine learning

models and demonstrate that the attacker can change the output of the ML models using

multiple sensors if the attacker can manipulate the values from a part of sensors in this

thesis. We call this attack sensor-based AEs. We performed experiments using the human

activity recognition model with three sensor devices attached to the chest, wrist, and ankle

of a user, and demonstrate that attacks are possible by hacking one of the sensor devices.

Then, we also discuss the countermeasure against sensor-based AEs. One of the ap-

proach to protecting the system from the sensor-based AEs is to protect all sensor devices.

However, it is difficult to protect all sensor devices, because the risk of the existence of the

vulnerable sensor devices increases as the number of sensor devices increases. Therefore, we

need a method to protect machine learning models even if a part of sensors are compromised

by the attacker.

Therefore, in this thesis, we propose a new countermeasure focusing on the sensor-

based AEs. This method detects sensor-based AEs and the sensors used by the attackers

by checking the inconsistency of the output of the machine learning model obtained by

changing the features used by the model. By detecting the sensors used by the attackers,

we can check and replace them. Our method is based on the features of the sensor-based

AEs that the attacker cannot avoid; the output of the machine learning model is altered

when the values from the sensors used by the attacker are incorporated. We evaluated our

method using a human activity recognition model with sensors attached to the user’s chest,

wrist, and ankle. We demonstrate that our method can accurately detect sensors used by

. iv .

the attacker and achieves an average Recall of Detection of 0.92, and the average Precision

of Detection is 0.72.

. v .

Acknowledgments

I am profoundly grateful for the guidance and support I received from many individuals

during the course of my Ph.D. studies, each of whom has contributed immensely to my

academic journey.

Foremost, I extend my deepest appreciation to my supervisor, Professor Masayuki

Murata, for his invaluable guidance, insightful comments, and continuous encouragement

throughout my research. His creative suggestions and patient mentorship have been pivotal

in shaping my academic pursuits.

I would like to express my heartfelt thanks to the esteemed members of my thesis

committee: Professor Takashi Watanabe, Professor Toru Hasegawa, and Professor Hirozumi

Yamaguchi from the Graduate School of Information Science and Technology at Osaka

University, along with Professor Hideyuki Shimonishi from the Cyber Media Center, Osaka

University. Their comprehensive reviews and perceptive feedback have greatly enriched my

work.

Special gratitude is owed to Associate Professor Yuichi Ohsita of Cyber Media Center,

Osaka University for his dedicated mentorship and invaluable advice, which were crucial in

the completion of my research.

I am also indebted to Associate Professor Shin’ichi Arakawa, Associate Professor Suyong

Eum, Assistant Professor Daichi Kominami, and Assistant Professor Masaaki Yamauchi of

Osaka University for their supportive comments and assistance. Their kindness and support

have been indispensable to my academic progress.

My sincere thanks go to Mrs. Shihoko Kazama and Mrs. Kyoko Teramae for their

. vii .

assistance and support throughout my doctoral program.

I wish to thank all members of the Advanced Network Architecture Research Laboratory

at the Graduate School of Information Science and Technology, Osaka University, for their

stimulating discussions and camaraderie.

A special acknowledgment to my in-laws, my mother, and my family, whose unwavering

support and prayers have been a source of strength and inspiration.

Lastly, I reserve my deepest gratitude for my wife, Lucy Ademula, and my daughters, Siti

Kumari Kanti Kaliani and Siti Kiaria Maznah. Their boundless support and encouragement

throughout my Ph.D. studies have been a beacon of hope and strength, and I am eternally

grateful for your promise of unwavering support in all my future endeavors.

. viii .

Contents

List of publication i

Preface iii

Acknowledgments vii

1 Introduction 1

1.1 Malware and Ransomware . 3

1.2 Attacks on Machine Learning Models . 6

1.3 Outline of Thesis . 7

2 Analysis of Cerber Ransomware Behavior Based on Network Forensics 11

2.1 Introduction . 11

2.2 Basic Theory . 13

2.2.1 Ransomware . 13

2.2.2 Cerber Ransomware . 15

2.2.3 Ransomware Detection Methods . 17

2.2.4 Network Forensics . 19

2.3 Methods . 21

2.3.1 OSCAR Methodology: A Comprehensive Framework for Network

Forensics Investigations . 21

2.4 Results . 24

. ix .

2.4.1 Analysis . 24

2.5 Conclusion . 29

3 Experiments on Adversarial Examples for Deep Learning Model Using

Multimodal Sensors 33

3.1 Introduction . 33

3.2 Related Work . 35

3.3 Definition of Adversarial Examples by Hacking a Small Number of Sensors . 39

3.3.1 Definition of Attack . 39

3.3.2 Generation of Attack . 41

3.4 Experiments . 42

3.4.1 Target Scenario . 42

3.4.2 Property of the Estimator. 51

3.4.3 Demonstration of the Attack. 52

3.4.4 Property of the Generated Attacks 54

3.5 Discussion . 56

3.6 Conclusions . 57

4 Detection of Sensors Used for Adversarial Examples Against Machine

Learning Models 59

4.1 Introduction . 59

4.2 Related Work . 62

4.3 Sensor-based Adversarial Examples. 65

4.4 Framework Against Sensor-based Adversarial Examples. 66

4.4.1 Feature Removable Model . 66

4.4.2 Detection of Attacks and Identification of Compromised Sensors . . 68

4.5 Experiment. 69

4.5.1 Original Target Model, Dataset, and Attacks 69

4.5.2 Property of the Feature Removable Model Without Attack 70

. x .

4.5.3 Property of the Attack . 73

4.5.4 Accuracy of Detection . 73

4.5.5 Accuracy of Detection of Sensors Used in Sensor-based AEs. 75

4.5.6 Mitigation of Sensor-based AEs by Excluding the Detected Sensors . 78

4.6 Criticality of Sensors. 80

4.6.1 Definition of Criticality . 81

4.6.2 Example of Criticality . 82

4.7 Discussion Toward Robust System Against Sensor-based AEs. 82

4.7.1 Building a System . 84

4.7.2 Assessment of Importance of Class Identification 84

4.7.3 Assessment of Risk . 84

4.7.4 Evaluation Based on Criticality and Update of the System 84

4.8 Conclusions. 85

5 Conclusion 87

Bibliography 91

. xi .

List of Figures

2.1 Five phases of ransomware . 14

2.2 OSCAR Methodology: A Comprehensive Framework for Network Forensics

Investigations . 21

2.3 Timestamp of the initial infection . 25

2.4 NBNS Traffic Analysis . 25

2.5 Information Gathering . 26

2.6 Google Search Results for CERBER Ransomware 26

2.7 The PCAP result uploaded to https://www.virustotal.com, highlighting

Suricata’s detection of the Cerber cybercriminal using RIG EK. 27

2.8 Snort Result for RIG Exploit Kit Detection 27

2.9 HTTP Requests to the Rig Exploit Kit Internet Protocol Address 28

2.10 Follow HTTP Stream to Find Referrer . 28

2.11 Export Object List and PseudoDarkleech Script 29

2.12 PseudoDarkleech Campaign . 29

2.13 The chain of events of a host PC was infected with cerber ransomware. . . . 30

3.1 Overview of the attacks . 39

3.2 Overview of architecture generated an adversarial example in multimodal

sensors . 41

3.3 The architecture of the target model . 44

3.4 Estimation model architecture . 46

. xiii .

3.5 The architecture of the generator model. 47

3.6 Impact result of input feature sensors for each class in the target model using

integrated gradients (IG). 50

3.7 Results of attacks on ankle sensors using full knowledge, results of success

attack rate using five subjects, and results of success attack rate on ankle

group sensor using three subjects. 53

3.8 Integrated gradients of the inputs that include attacks. 55

4.1 Illustration of countermeasure stage flow. 66

4.2 The target model architecture and the architecture of the generator AE model 70

4.3 The success ratio of generated sensor-based AEs 74

4.4 The results of impact when FNR and FPR were α value is changing AND β =

0.1: and result of impact when the β value is changing and α = 0.7 76

4.5 Recall Of Detected Sensors . 77

4.6 Precision Of Detected Sensors . 79

4.7 The criticality of each sensor device for each class pair 83

. xiv .

List of Tables

2.1 Ransomware Detection Techniques . 18

2.2 Network Forensics and Ransomware Attacks 20

3.1 Advantages and disadvantages of previous methods 37

3.2 Summary of Research in Adversarial Machine Learning 38

3.3 Description of Sensors and their Abbreviations. 44

3.4 Data that we used for each class and individual. 45

3.5 Complete results of the three other models with the target model using dif-

ferent training data. 49

3.6 Results of the MSE on the model estimator using five and three subjects. . 51

4.1 Comparison of different AE detection methods. 64

4.2 Data that we used for each class and individual. 71

4.3 The full results of the original model compared with the features-removed

model. 72

4.4 Performance comparison of the original target model without AEs and FRM

exluding the values from the sensors used in the AEs 80

. xv .

Chapter 1

Introduction

As the information technologies become important infrastructures, cyberattacks have be-

come major concerns [1]. These attacks not only compromise information system integrity

but can also lead to substantial economic losses, reputation damage, and physical safety

risks. A notable example of such a threat is the cyberattack on the UK Kingdom’s Na-

tional Health Service (NHS) in 2017 [2]. This attack exploits vulnerabilities in Windows

operating systems and spreads through networks, encrypting data on infected computers,

and demanding a ransom for decryption. Affecting over 200,000 computers in 150 coun-

tries, including numerous NHS systems, it has caused significant disruptions in healthcare

services.

Therefore, the information systems should be more robust against such cyberattacks.

Many methods to countermeasure against cyberattacks have been proposed. Some of them

focus on the detection of cyberattacks [3–5]. In these methods, the features of the attacks

are modeled as signatures and attacks are detected based on the signatures, or the normal

behavior of the systems are modeled and anomalous traffic are detected. However, it is

difficult to detect a new attack. To make the system more robust against attacks, it is

important to comprehend how existing attacks emerge and spread by analyzing them in

detail by reconstructing events of cyberattacks [6]. Based on the knowledge obtained by the

analysis of the existing attacks, we can make the system more robust against cyberattacks.

– 1 –

Chapter 1. Introduction

In this thesis, we first discuss the analysis of the ransomware-based cyberattacks based

on the network forensics. In this discussion, we propose an approach to reconstruct the

event chain of a cyberattack from a packet capture data. By reconstructing the event chain,

we can find the infected hosts and infected route.

The above discussion focuses on the traditional information systems based on servers,

personal computers and smartphones. In recent years, the systems based on machine learn-

ing models have become widely used. In industrial process environments, the object detec-

tion based on machine learning models are used to make safety workspace [7]. In mining [8],

the systems based on machine learning models ensures safer and more effective operations.

In agriculture [9], the system based on machine learning models enables precise monitor-

ing of soil and plant conditions, leading to improved yields. The systems based on the

machine learning model are becoming used even in critical areas such as healthcare and

safety [10,11].

However, machine learning models have also become the target of attacks as machine

learning and sensor technologies have become widely used. That is, we need to protect

machine-learning models to create a robust system against cyberattacks.

Adversarial examples (AEs) are one of the largest vulnerabilities in machine-learning

models. In these attacks, an adversary generates inputs that cause the machine learning

system to generate incorrect outputs. Finlayson et al. showed that an adversary can exploit

the vulnerability of machine learning (ML) models by creating AEs in critical domains, such

as medicine [12]. These AEs contain subtle changes that are invisible to humans but can

mislead the model’s predictions. This poses a significant threat to systems based on ML

models, particularly in sensitive fields.

In particular, in systems that use multiple sensors, certain sensors may be vulnerable and

can be used to generate AEs. Manipulation of sensor data by compromising the software

in the sensor device has been demonstrated [13]. Monjur et al. demonstrated that data

manipulation is also possible by modifying the hardware if an attacker can physically access

the sensor device [14]. Even if an attacker can attack a machine learning model using only a

small number of sensors, the vulnerabilities of the sensors pose a significant risk. However,

– 2 –

Chapter 1. Introduction

the impact of hacking a small part of the sensor has not yet been discussed. Therefore,

we also discuss the impact of a small part of sensors on the machine learning models and

demonstrate that the attacker can change the output of the ML models using multiple

sensors if the attacker can manipulate the values from a part of sensors in this thesis. We

call this attack sensor-based AEs.

We also discuss countermeasures for sensor-based AEs. One approach to protecting the

system from sensor-based AEs is to protect all the sensor devices. However, it is difficult

to protect all sensor devices because the risk of vulnerable sensor devices increases as the

number of sensor devices increases. Therefore, we need a method to protect machine-

learning models, even if some sensors are compromised by the attacker.

Many countermeasures to mitigate the risks posed by AEs have been proposed [15–24].

However, existing methods can be avoided by modifying the AE generation process [25].

This is caused by the features used by the methods; the existing methods use features of the

AEs, but an attacker with the knowledge of the countermeasure can change the features.

That is, the detection method should use the features of the AEs that cannot be avoided

by an attacker.

Therefore, in this thesis, we propose a new countermeasure focusing on the sensor-

based AEs. This method detects sensor-based AEs and the sensors used by the attackers

by checking the inconsistency of the output of the machine learning model obtained by

changing the features used by the model. By detecting the sensors used by the attackers,

we can check and replace them. Our method is based on the features of the sensor-based

AEs that the attacker cannot avoid; the output of the machine learning model is altered

when the values from the sensors used by the attacker are incorporated.

1.1 Malware and Ransomware

In the ever-evolving realm of cybersecurity, malware and ransomware have emerged as

prominent threats, posing significant risks to individuals, organizations, and critical infras-

tructure. Understanding the nature of these threats and implementing effective mitigation

– 3 –

1.1 Malware and Ransomware

strategies is crucial for safeguarding sensitive data and ensuring the continued operation of

critical systems.

Malware, an abbreviation for malicious software, encompasses a broad spectrum of

software programs designed to harm a computer system or its users [26]. This diverse

category includes viruses, worms, trojan horses, spyware, and ransomware, each with its

unique modus operandi.

Ransomware, a particularly insidious form of malware, encrypts a victim’s files, ren-

dering them inaccessible [27]. This act essentially holds the victim’s data hostage, with

cybercriminals demanding a ransom payment in exchange for the decryption key. The fi-

nancial repercussions of ransomware attacks can be severe, and the disruption to operations

can be devastating [28].

The concept of ransomware can be traced back to 1989 with the creation of the PC

Cyborg by Dr. Joseph Popp [29]. This early iteration concealed file folders and encrypted

files on the C:/ drive, demanding a ransom for their release. Since then, ransomware

has evolved considerably, incorporating sophisticated encryption techniques and becoming

a major cybersecurity concern.

In recent years, several high-profile ransomware attacks have captured headlines, high-

lighting the severity of this threat. TeslaCrypt, Locky, and CERBER are just a few ex-

amples of notorious ransomware strains that have wreaked havoc on individuals and busi-

nesses [30]. A particularly notable instance occurred in 2016 when a Los Angeles hospital

fell victim to a ransomware attack. Cybercriminals disabled the network and computers,

demanding a ransom of $17,000 to restore the system containing sensitive patient informa-

tion.

Ransomware typically spreads through network-based methods, often exploiting vulner-

abilities in software or taking advantage of human error [31]. Common infection vectors

include [28,32]:

Downloading infected files: Malicious actors may distribute ransomware through

– 4 –

Chapter 1. Introduction

email attachments, file-sharing sites, or compromised websites. Clicking on a seem-

ingly innocuous link or opening an infected file can trigger the ransomware installa-

tion.

Email phishing: Phishing emails often contain deceptive attachments or links that,

when opened, unleash ransomware payloads onto unsuspecting users’ systems.

Drive-by downloads: Visiting compromised websites can trigger the automatic

download of ransomware, without any user interaction.

Exploit kits: These software packages exploit vulnerabilities in outdated software

or operating systems to inject ransomware into vulnerable systems.

Several methods exist for detecting ransomware infections, each with its own strengths

and limitations [3, 33,34]:

• Static feature-based methods:These methods analyze the characteristics of a file

or program to identify known patterns associated with ransomware. However, attack-

ers can easily modify their malware to evade detection by these methods.

• Dynamic-based methods:These methods monitor the behavior of a running pro-

gram to identify suspicious activities indicative of ransomware infection. While more

effective than static methods, they can generate false positives and may not detect

new malware samples.

• Network behavior analysis:This approach involves capturing and analyzing net-

work traffic to identify patterns and anomalies that suggest the presence of ran-

somware or other malicious activity. It can provide valuable insights into the attack’s

propagation and potential targets

Network forensics plays a crucial role in investigating and responding to ransomware

attacks. By analyzing network traffic, forensic investigators can reconstruct the events

leading up to the attack, identify the initial infection point, and uncover the methods

– 5 –

1.2 Attacks on Machine Learning Models

used by the attackers. This information is invaluable for preventing future attacks and

potentially recovering encrypted data.

Thus, in this thesis, we encompass analysis of ransomware, and creating and explaining

a chain of cyberattack events.

1.2 Attacks on Machine Learning Models

The advancement of machine learning technologies, particularly in the field of deep neural

networks, has been enhancing various aspects of human life, including security, efficiency,

automation, and accuracy. Many applications of machine learning technologies have been

used in many areas such as smart nations [35], agriculture [36], medicine [37], industry [38],

and human activity recognition (HAR) [39].

However, deep neural networks are vulnerable to adversarial examples (AEs) [15], which

are inputs designed to mislead AI models into producing incorrect outputs [40]. AEs can be

generated by the gradient-based attacks [15,41–44]. In these attacks, the attacker generates

the input by adding perturbations calculated from the loss function’s gradient or calculated

by the optimization based on the adversarial training using GAN architectures.

Because systems based on machine learning models are being used even in critical areas

such as medical AI systems, the impact of these attacks is also large. The possibility of

AEs occurring in such critical areas has been demonstrated [12,45,46].

The risk of adversarial attacks escalates with the increasing number of sensor devices

in a system if an attacker can generate AEs from some sensors. Therefore, in this thesis,

we discuss the possibilities of such sensor-based AEs and demonstrate that the attacker

can change the output of ML models using multiple sensors if the attacker can manipulate

the values from a part of the sensors. In addition, we also discuss countermeasures against

sensor-based AEs and propose a method to detect sensors used in sensor-based AEs.

– 6 –

Chapter 1. Introduction

1.3 Outline of Thesis

Analysis of Cerber Ransomware Behavior Based on Network Forensics [47]

Ransomware is becoming popular among cyber criminals. Ransomware are made more so-

phisticated and more effective as to avoid detection and analysis. In this thesis, we analyze

ransomware-based cyberattacks using network forensics. We introduce a methodology to

reconstruct the event chain of such attacks from packet capture data, which helps identify

infected hosts and their routes of infection. We applied this method to the case of the

CERBER ransomware. As a result, we found the event chain related to this ransomware;

the user’s search on bing.com led them to www.homeimprovement.com, a website com-

promised by cybercriminals. We also found that they used a pseudoDarkleech script to

redirect visitors to a server that deployed the RIG Exploit Kit, resulting in the download

of CERBER Ransomware.

Experiments on Adversarial Examples for Deep Learning Model Using
Multimodal sensors [48]

Recently, artificial intelligence (AI) based on IoT sensors has been widely used, increasing

the risk of attacks targeting AI. Adversarial examples are among the most serious types of

attacks, in which an attacker designs inputs that can cause the machine learning system

to generate incorrect outputs. Considering the architecture using multiple sensor devices,

hacking even a few sensors can create a significant risk; an attacker can attack the machine

learning model through the hacked sensors. Some studies have demonstrated the possibility

of adversarial examples on deep neural network (DNN) models based on IoT sensors, but

it was assumed that an attacker must access all features. The impact of hacking only a

few sensors has not yet been discussed. Therefore, in this study, we discuss the possibility

of attacks on DNN models by hacking only a small number of sensors. In this scenario,

the attacker first hacks a few sensors in the system, obtains their values of the hacked

sensors, and changes them to manipulate the system. However, an attacker cannot obtain

and change the values of the other sensors. We performed experiments using the human

– 7 –

1.3 Outline of Thesis

activity recognition model with three sensor devices attached to the chest, wrist, and ankle

of a user and demonstrated that attacks are possible by hacking a small number of sensors.

Detection of Sensors Used for Adversarial Examples Against Machine
Learning Models [49,50]

Machine learning (ML) systems that use sensors obtain observations from the sensors and

use them to recognize and interpret the current situation. Such systems are susceptible to

sensor-based adversarial example attacks (AEs). If some sensors are vulnerable and can be

compromised by an attacker, the attacker can change the output of the system by changing

the values of the sensors. The detection of compromised sensors is important to defend the

system against sensor-based AEs because we can check the sensors and replace them by

detecting the sensors used by the attacker. In this thesis, we propose a method to detect

the sensors used in sensor-based AEs by utilizing the features of an attack that cannot be

avoided. In this method, we introduce a model called the feature-removable model (FRM),

which allows us to select the features used as inputs into the model. Our method detects

the sensors used in sensor-based AEs by determining inconsistencies between the outputs

of the FRM obtained by changing the selected features. We evaluated our method using

a human activity recognition model with sensors attached to the user’s chest, wrist, and

ankle. We demonstrate that our method can accurately detect the sensors used by the

attacker and achieves an average Recall of Detection of 0.92, and the average Precision of

Detection is 0.72.

In this thesis, we also discuss a strategy to make the system robust against sensor-

based AEs proactively. A system with enough redundancy can work after removing the

features from the sensors used in the AEs. That is, we need a metric to check if the

system has enough redundancy. In this thesis, we define groups of sensors that might be

compromised by the same attacker. Then, we also use the FRM to define a metric called

criticality that indicates how important each group of sensors is for classification between

two classes. Based on the criticality, we can make the system robust against sensor-based

– 8 –

Chapter 1. Introduction

AEs by interactively adding sensors so as to decrease the criticality of any groups of sensors

for the classes that must be distinguished.

– 9 –

Chapter 2

Analysis of Cerber Ransomware

Behavior Based on Network

Forensics

2.1 Introduction

In 2016, a cyber attack on a Los Angeles hospital dramatically exposed the vulnerabilities in

cybersecurity systems. This attack, involving ransomware, encrypted sensitive patient data

and compelled the hospital to pay a $17,000 ransom to regain access [51]. This event is a

stark example of the escalating threat posed by ransomware, which has become a preferred

tool for cybercriminals engaged in financial extortion.

Ransomware, by design, encrypts the victim’s data, denying them access until a ran-

som is paid for the decryption key [27, 51]. The growing reliance on digital data across

various sectors has made such attacks increasingly common and destructive. This surge in

ransomware incidents highlights the need for robust cybersecurity measures.

The ease of deployment and potential for high financial returns have driven the pro-

liferation of ransomware. Cybercriminals can easily acquire ransomware kits from online

– 11 –

2.1 Introduction

platforms, lowering entry barriers for initiating attacks. The success of these attacks is of-

ten guaranteed by the victims’ willingness to pay ransoms, which inadvertently encourages

the cycle of cyber extortion [28].

Beyond financial losses, ransomware attacks have broader implications, including oper-

ational downtime and reputational damage. The public nature of such breaches often leads

to a loss of trust among customers and stakeholders. Equally important is the psycho-

logical impact on employees, manifesting as increased stress and decreased productivity, a

consequence that is frequently overlooked [52,53].

The year 2016 marked a significant increase in ransomware incidents, with rates soaring

by 100-300%. The dramatic rise of 4000% in incidents from 2015 to 2016 underscores the

growing sophistication and impact of these cyber threats [27,54]. This period also saw the

emergence of ransomware strains like TeslaCrypt, Locky, and CERBER, which have since

dominated the cybercrime landscape.

The development of more complex and resilient ransomware variants to evade detection

presents a formidable challenge to cybersecurity experts [28, 55, 56]. Traditional antivirus

solutions, relying on static feature-based detection, are increasingly ineffective against these

sophisticated techniques. Moreover, methods such as dynamic analysis in virtual machine

environments are not foolproof, as contemporary malware can detect these environments

and alter their behavior accordingly [4, 5, 33].

The case of Cerber ransomware exemplifies these challenges. Known for causing substan-

tial damage and financial losses, Cerber typically infiltrates systems through network-based

methods like file downloads, email phishing, and compromised websites [28]. A comprehen-

sive understanding of these attacks, encompassing both detection and analysis, is crucial

for developing effective countermeasures.

This thesis proposes a network forensics behavior-based approach to analyze Cerber ran-

somware attacks. This methodology goes beyond mere detection, focusing on reconstructing

the sequence of events in a malware attack for both defensive and legal purposes [57]. By

mapping the infection and dissemination process, this research aims to provide actionable

insights for legal cases and recommendations for enhancing network security.

– 12 –

Chapter 2. Detection and Analysis Cerber Ransomwar

Employing this approach, the research identifies abnormal network traffic patterns to

gain insights into the attackers’ methodologies [58–60]. A thorough understanding of the

malware attack lifecycle, from initial penetration to proliferation, is sought to contribute

significantly to the fields of judicial and preventative cybersecurity.

Specifically, this study aims to reconstruct the events leading to a CERBER ransomware

infection on a host computer named STIWIE PC. It involves tracing the initial infection

vectors, such as the Trojan Godzilla and pseudoDarkleech script, and analyzing the ran-

somware payload used by cybercriminals.

The remaining sections of this chapter are structured for clarity and comprehensive

coverage. Section 2.2 provides an in-depth exploration of ransomware and network forensics,

with a particular focus on the Cerber variant. Section 2.3 outlines the methodology used in

this research, detailing the hardware and software tools employed for the network forensics

behavior-based analysis of Cerber ransomware. Section 2.4 discusses the results and key

findings from this analysis. Finally, Section 2.5 concludes the chapter, summarizing the

study’s implications and suggesting directions for future research in this critical and evolving

field.

2.2 Basic Theory

2.2.1 Ransomware

Ransomware has rapidly ascended as a predominant threat in the digital realm, presenting

substantial risks to both individual users and organizations. This evolution from simple

origins to a complex and widespread menace underscores the dynamic nature of cyber

threats. Ransomware, notorious for encrypting vital files and extorting substantial ransoms

for their release, has caused widespread disruption in both personal and professional spheres.

The inception of ransomware can be traced back to 1989 with the creation of PC Cy-

borg by Dr. Joseph Popp. This early form of ransomware targeted floppy disks, employing

basic encryption methods and demanding a $189 ransom for file restoration [29]. Since

this nascent stage, ransomware has undergone significant evolution, increasingly employing

– 13 –

2.2 Basic Theory

Figure 2.1: Five phases of ransomware

sophisticated techniques to outpace advancements in cybersecurity. Early forms combined

virus and Trojan horse strategies, utilizing public key cryptography to secure encryption

keys. These methods, known as ”crypto virological attacks,” represented a critical junc-

ture in ransomware development, elevating both its sophistication and the level of threat

posed [61].

As ransomware has evolved, it has become increasingly sophisticated, continuously

adapting to counter cybersecurity measures. Contemporary ransomware attacks generally

adhere to a structured five-phase cycle [28], as illustrated in Figure 2.1.

1. Exploitation and Infection: This phase marks the initiation of the attack, where

the ransomware file is executed on the target computer. Phishing emails and ex-

ploit kits are common vectors, exploiting vulnerabilities in widely-used software like

Adobe Flash and Internet Explorer. For instance, the notorious CryptoLocker attacks

employed the Angler Exploit Kit for this purpose.

2. Delivery and Execution: Following successful exploitation, the ransomware exe-

cutable is delivered and activated on the compromised system. It establishes persis-

tence mechanisms to remain operational even after a system reboot. The executable

is often encrypted, which hinders detection, and is strategically placed in directories

like %APPDATA% or %TEMP%.

3. Backup Spoliation: In this stage, ransomware aims to eliminate backup files and

– 14 –

Chapter 2. Detection and Analysis Cerber Ransomwar

folders to thwart recovery efforts. Techniques like using the vssadmin tool to delete

volume shadow copies are common, and some variants may aggressively delete backup

folders, irrespective of their usage.

4. File Encryption: The malware conducts a secure key exchange with a command-

and-control server to obtain encryption keys. Variants of ransomware exhibit different

methodologies in file naming and encryption processes, which can be used to identify

specific types of malware. The encryption duration is variable and depends on factors

like network conditions, file size, and the number of infected devices.

5. User Notification and Cleanup: The final phase involves notifying the victim with

ransom payment instructions, often under a time-sensitive deadline. These instruc-

tions may provide clues to the specific variant of ransomware used. Subsequently, the

malware typically attempts to erase its traces from the system to complicate forensic

analysis.

This comprehensive overview of ransomware’s evolution, tactics, and attack methodolo-

gies highlights the critical need for vigilant cybersecurity practices. Understanding these

phases and the methods employed by ransomware can aid in developing more effective

defenses and response strategies against this ever-evolving cyber threat.

2.2.2 Cerber Ransomware

Cerber Ransomware stands as a sophisticated and formidable threat in the ever-evolving

cybersecurity landscape. Operating under the Ransomware as a Service (RaaS) business

model [62], this malicious software has wreaked havoc since its inception in Russia on

March 4, 2016. Its primary mode of infection involves exploiting vulnerabilities in botnets,

spam emails, and drive-by downloads [63]. Once Cerber gains access to a victim’s system,

it unleashes its potent AES encryption algorithm, effectively rendering the victim’s data

files inaccessible. To regain control over their precious data, victims are confronted with a

chilling ultimatum: a ransom demand payable in digital currency, such as Bitcoin [64].

– 15 –

2.2 Basic Theory

Cerber’s nefarious tactics extend beyond mere encryptions. It employs a cunning strat-

egy to identify the country of origin of each victim by scrutinizing IP geolocation data. If

the victim’s computer is located in one of the following countries: Armenia, Azerbaijan,

Belarus, Georgia, Kyrgyzstan, Kazakhstan, Moldova, Russia, Turkmenistan, Tajikistan,

Ukraine, Uzbekistan, Cerber will mercifully spare the system from encryption and termi-

nate itself.

Upon successful execution in other countries, Cerber establishes a persistent presence

within the victim’s system by embedding itself deep within the ‘%AppData%{2ED2A2FE-8

72C-D4A017ACE301404F1CBA}’ folder. To further entrench its hold, Cerber manipulates

Windows boot settings, ensuring that it automatically launches into Safe Mode upon the

next system reboot. This stealthy maneuver allows Cerber to operate undetected and

execute malicious plans without interruption.

When the user logs into Windows, Cerber springs into action and seamlessly launches

itself without alerting the user. It remains vigilant and continuously runs the screensaver

when the system becomes idle. This tactic serves a dual purpose: to keep Cerber’s presence

hidden and to disrupt the normal workflow of the user, adding to their distress. In addition,

Cerber bombards the user with bogus system alerts, further sowing confusion and panic.

This relentless barrage of fake notifications aims to pressure the victim to pay the ransom,

believing that their system is on the verge of collapse.

To ensure that the victim’s desperation reaches its peak, Cerber leaves a trail of ominous

notes in each encrypted folder: ‘#DECRYPT MY FILES#.html’, ‘#DECRYPT MY FILES#.txt’,

and ‘#DECRYPT MY FILES#.vbs’. These cryptic messages serve as stark reminders of the

victim’s dire predicament and the looming threat of losing valuable data forever.

Cerber Ransomware represents a significant threat to organizations and individuals.

Its sophisticated tactics and relentless pursuit of ransom payments make it a formidable

adversary in the field of cybersecurity. Therefore, organizations must implement robust

cybersecurity measures and educate their employees on the dangers of phishing emails and

drive-by downloads to minimize the risk of Cerber infection. Additionally, maintaining

regular backups of critical data provides a crucial lifeline in the event of a ransomware

– 16 –

Chapter 2. Detection and Analysis Cerber Ransomwar

attack.

2.2.3 Ransomware Detection Methods

Malware detection involves a range of techniques aimed at identifying malicious software in

computer systems and networks. Broadly, these techniques fall into two main categories:

static feature analysis and dynamic behavior analysis, as shown in Table 2.1. Each approach

offers unique advantages in combating ransomware threats.

• Static Feature Analysis: This method entails examining the code and structure

of a program or executable file. Static analysis detects patterns or characteristics

indicative of malware, making it particularly effective for identifying known malware

variants. It relies on signature-based detection, heuristic analysis, and file structure

analysis. These techniques are instrumental in recognizing pre-established signatures

or suspicious code structures, hence, valuable in catching well-documented malware

strains. However, static analysis may fall short in detecting new, modified, or heav-

ily obfuscated ransomware variants due to its reliance on pre-existing knowledge of

malware characteristics [33].

• Dynamic Behavior Analysis: Unlike static analysis, dynamic behavior analysis

monitors the behavior of a system or program during its execution. This method

is crucial for identifying malware that attempts to conceal its presence or manipu-

late system processes. It involves observing real-time actions such as file encryption

activities, changes to system files, or anomalous Windows API function calls. Dy-

namic analysis can detect novel and sophisticated ransomware strains, as it focuses

on the behavioral patterns rather than pre-known signatures. This approach in-

cludes host behavior analysis, which monitors system behavior for anomalies, and

network-based behavior analysis, which scrutinizes network traffic for signs of mali-

cious activity like communication with remote servers or attempts to spread across

the network [27,56,59].

– 17 –

2.2 Basic Theory

While static and dynamic analyses are integral to ransomware detection, their scope is

primarily limited to the identification of malware presence. Static analysis excels in quickly

detecting known threats, and dynamic analysis offers insights into the behavior of malware,

aiding in identifying newer or more complex ransomware variants. However, both methods

predominantly focus on detection and do not delve into the deeper aspects of ransomware

attacks, such as the precise timing, methodologies, and pathways of the infection.

This thesis introduces the use of network forensics, a more investigative approach that

goes beyond mere detection. Network forensics allows for an in-depth exploration of the

ransomware attack lifecycle, uncovering crucial details such as when, how, and through what

means attackers infiltrate computer systems and networks. This comprehensive approach

not only aids in understanding the specifics of ransomware attacks but also enhances the

strategies for prevention and mitigation.

Table 2.1: Ransomware Detection Techniques

Technique Description References
Static Signature-Based Detection: Identifies malware

based on known signatures or patterns.
[65, 66]

Static Heuristic Analysis: Examines code for suspi-
cious characteristics indicative of malware.

[67]

Static File Structure Analysis: Analyzes the structure
of files to identify potential malware.

[68]

Dynamic Monitored Windows API calls to identify ran-
somware behavior; focused on dynamic aspects
of file manipulation.

[69]

Dynamic Analyzed dynamic behavior patterns, including
file encryption and API call sequences, to differ-
entiate ransomware from legitimate processes.

[70, 71]

Dynamic Focused on dynamic behavioral patterns of ran-
somware, particularly in how files are encrypted
and manipulated.

[72]

Dynamic Emphasized the importance of dynamic analy-
sis in detecting ransomware through behavioral
heuristics and pattern analysis.

[62]

Dynamic Investigated dynamic ransomware detection
through analysis of API function calls and user-
level operations.

[73]

– 18 –

Chapter 2. Detection and Analysis Cerber Ransomwar

2.2.4 Network Forensics

Network forensics, a vital branch of digital forensics, employs rigorous scientific techniques

to gather, analyze, and preserve digital evidence from network traffic. It is essential in

identifying, linking, and examining evidence from a variety of sources, including electronic

devices and digital networks [74–76].

A landmark study in the application of network forensics to ransomware analysis was

conducted in ”This Thesis” by Kurniawan (2018) [47]. This research stands out as the first

to apply a network forensic methodology specifically to the study of ransomware. Focusing

on the Cerber Ransomware, the study emphasizes a behavioral-based network forensic

approach. It aims to reconstruct attack timelines, identify infected hosts, and analyze the

chain of infection, highlighting the increasing sophistication of ransomware.

Network forensics are invaluable in capturing network traffic to and from specific hosts,

shedding light on the channels, methods, and spread of malicious code [76,77]. This analysis

enables investigators to reconstruct event sequences, identify compromised systems, and

trace the origin of attacks.

Despite its utility, network forensics faces unique challenges. The dynamic and ephemeral

nature of network-based data makes evidence gathering more complex compared to tradi-

tional digital forensics, which deals with static storage devices [59, 78]. This necessitates

sophisticated collection techniques.

Furthermore, the interpretation of network forensic evidence is challenging due to the

vast amount of data involved. Understanding this data requires a deep knowledge of network

protocols, communication patterns, and potential attack vectors.

Investigators in network forensics often work with live systems, like routers and servers,

which complicates evidence gathering [59]. These systems must remain online to avoid dis-

rupting critical operations, requiring real-time evidence collection while maintaining net-

work functionality.

Despite these challenges, network forensics remains an indispensable tool in cybersecu-

rity. By analyzing network traffic, investigators can uncover traces of cybercrime, gaining

– 19 –

2.2 Basic Theory

Table 2.2: Network Forensics and Ransomware Attacks

Authors Brief Description
This Thesis (Kur-
niawan, 2018) [47]

The first study to employ network forensic methods in ransomware analy-
sis, focusing on the Cerber Ransomware. Emphasizes a behavioral-based
approach to reconstruct attack timelines, identify infected hosts, and
analyze infection chains. Highlights the increasing sophistication of ran-
somware.

Paul Joseph &
Norman, 2020 [79]

Reviews the role of memory forensics in analyzing ransomware, specif-
ically WannaCry. Focuses on the importance of memory forensics, its
tools, and practical application on affected computers. Discusses in-depth
analysis techniques like DLL tracing and reverse engineering.

Umar et al.,
2021 [80]

examine Conti ransomware, focusing on its network behavior and im-
pact. Uses a three-stage process: simulation, network forensics via live
methods, and malware analysis. The study results in detailed forensic
data useful for identifying ransomware traffic and coping with zero-day
threats.

Surya Kusuma et
al., 2021 [81]

Focuses on reconstructing Ryuk ransomware attacks and analyzing infec-
tion sources using the TAARA method. Utilizes tools like Wireshark for
forensic data collection. Achieves detailed insights into the attack source,
timeline, and infection process.

insights into attack methods, compromised systems, and potential perpetrators. This in-

formation is crucial for preventing future attacks, bringing perpetrators to justice, and

protecting sensitive data.

Comprehensive Overview of Ransomware Research in Network Forensics

We present a comprehensive overview of distinct research papers, as shown in Table 2.2.

These studies represent various methodologies, addressing different ransomware types and

offering insights into their operational mechanisms and network impact.

.

– 20 –

Chapter 2. Detection and Analysis Cerber Ransomwar

Figure 2.2: OSCAR Methodology: A Comprehensive Framework for Network Forensics
Investigations

2.3 Methods

Preparation Stage

The preparation stage involved the establishment of the hardware and software resources

required for this study. The hardware employed consists of a Notebook Processor: Intel®

Core™ i7-6500U CPU @ 2.30GHz, 8GB RAM, 250GB SSD, and an Intel 530 Graphics

Card. The software utilized includes Wireshark Version 2.2.5 and a malware traffic dataset

obtained from http://www.malware-traffic-analysis.net/.

2.3.1 OSCAR Methodology: A Comprehensive Framework for Network
Forensics Investigations

The OSCAR methodology [60], is shown in Figure 2.2. OSCAR an acronym for Obtain,

Strategize, Collect, Analyze, and Report, serves as a structured framework for conducting

network forensics investigations. This systematic approach ensures that investigations are

conducted in a rigorous and defensible manner, maximizing the likelihood of successful

outcomes.

1. Obtain Information

The initial phase of the OSCAR methodology involves gathering comprehensive in-

formation about the incident and the environment in which it occurred. This crucial

step entails understanding:

– 21 –

http://www.malware-traffic-analysis.net/

2.3 Methods

• Incident Details: Accurately understanding the nature of the incident, includ-

ing its date, time, method of discovery, individuals involved, affected systems

and data, actions taken to date, and any relevant summaries of internal discus-

sions.

• Environmental Context: Gaining a thorough understanding of the organi-

zation’s network topology, available sources of network evidence, organizational

structure, incident response procedures, communication systems, and available

resources, including personnel, equipment, funding, and time constraints.

2. Strategize

Based on the gathered information, the next step involves strategizing the investiga-

tion approach. This includes:

• Evidence Prioritization: Carefully evaluating the potential value, acquisition

effort, and volatility of each evidence source to prioritize those most likely to

yield relevant and reliable data.

• Acquisition Planning: Developing a detailed plan for acquiring evidence from

each prioritized source, considering factors such as evidence volatility, available

resources, and chain of custody requirements.

3. Collect Evidence

With a well-defined strategy in place, the evidence-collection phase commences, ad-

hering to strict protocols to ensure data integrity and chain of custody maintenance.

This involves:

• Thorough Documentation: Maintaining a meticulous log of all systems ac-

cessed, actions are taken, and evidence-handling procedures to ensure trans-

parency and audibility.

• Evidence Capture: Employing appropriate techniques to capture evidence

from each source, such as copying logs, imaging hard drives, or capturing network

– 22 –

Chapter 2. Detection and Analysis Cerber Ransomwar

packets.

• Secure Storage: Storing evidence in a secure and controlled environment,

maintaining the chain of custody to preserve its admissibility in legal proceed-

ings.

4. Analyze

The collected evidence undergoes rigorous analysis to identify patterns, trends, and

anomalies that may shed light on the incident. This entails:

• Evidence Correlation: Correlating data from multiple sources to establish

connections and gain a holistic understanding of the incident timeline.

• Timeline Construction: Creating a detailed timeline of events, including

timestamps, actions taken, and individuals involved, to reconstruct the sequence

of events.

• Event Identification: Identifying and prioritizing events of interest that are

most relevant to the investigation and may provide clues about the root cause

and perpetrator.

• Evidence Corroboration: Corroborating evidence from different sources to

enhance its reliability and credibility.

• Additional Evidence Recovery: As new insights emerge, identifying and

recovering additional evidence to supplement the existing dataset.

5. Report

The culmination of the OSCAR methodology is the comprehensive investigation re-

port, which communicates the findings and conclusions to stakeholders. The report

should:

• Target a Nontechnical Audience: Utilize a clear and concise language that

is understandable to individuals without a technical background.

– 23 –

2.4 Results

• Maintain Defensibility: Base the report on verifiable evidence and provide

supporting documentation to uphold its credibility in legal or administrative

settings.

• Adhere to Factual Reporting: Avoid speculation or personal opinions, en-

suring that the report presents an objective and unbiased account of the inves-

tigation.

By diligently following the OSCAR methodology, investigators can conduct network

forensics investigations with rigor, efficiency, and defensibility, maximizing the likelihood of

uncovering the truth and bringing perpetrators to justice.

2.4 Results

This study meticulously examines the intricate processes underlying ransomware infections

and their dissemination across network systems. A critical preventive strategy for organiza-

tions is the deployment of packet capture tools. These tools assiduously record all network

traffic, enabling the identification of malicious activities, whether internal or external, re-

gardless of their origin. The captured data serve as indispensable digital evidence during

forensic investigations of legal transgressions.

2.4.1 Analysis

Timestamps play a crucial role in digital forensics as they provide information about the

specific time of events [59]. Our detection and forensic analysis, were conducted using the

Wireshark Network with an HTTP.request filter, aimed to ascertain the initial infection

time of the host computer. As illustrated in Figure 2.3, the infection first occurred on

January 27, 2017, at 22:53:54 UTC (January 28, 2017, 05:53:54 SE Asia Standard Time).

Identifying the date and time of infection led to the next phase of detecting and analyzing

the IP address, MAC Address, and hostname of the infected computer. For this purpose, we

used a NetBIOS Name Service (NBNS) filter. NetBIOS, a critical application for network

– 24 –

Chapter 2. Detection and Analysis Cerber Ransomwar

Figure 2.3: Timestamp of the initial infection

Figure 2.4: NBNS Traffic Analysis

communication, particularly in LAN environments, facilitated this analysis. Figure 2.4

displays the infected victim’s computer details, identifying the IP as 172.16.4.193, with

the MAC Address 5c:26:0A:02:a8:e4, a Dell network card, and the hostname Stewie

PC.

Once we had identified the IP, MAC Address, and hostname, our next objective was

to determine the specific malware infecting Stewie PC. In-depth packet analysis, as shown

in Figure 2.5, revealed traffic to the domain.top, a common domain used by malware

authors for criminal activities. A list of commonly used domains includes various domains.

onion links that are known to be associated with malicious activities. List of Domains:

lclebb6kvohlkcml.onion, bmacyzmea723xyaz.onion, and nejdtkok7oz5kjoc.onion.

Our analysis led to the discovery of a specific domain that is utilized by cybercriminals.

Using Google’s search engine with the keyword p27dokhpz2n7nvgr.1jw2lx.top, we found

– 25 –

lclebb6kvohlkcml.onion
bmacyzmea723xyaz.onion
nejdtkok7oz5kjoc.onion

2.4 Results

Figure 2.5: Information Gathering

Figure 2.6: Google Search Results for CERBER Ransomware

that the malware infecting Stewie PC was CERBER Ransomware, as depicted in Figure 2.6.

In Figure 2.7, we present a detailed analysis of the PCAP data that has been meticu-

lously uploaded to https://www.virustotal.com, a renowned online platform for virus

and malware detection. The figure prominently features an alert from Suricata, which is

an advanced network threat detection engine. This alert is critical, as it reveals the dis-

covery of a notorious ransomware, identified as Cerber, actively utilizing the RIG Exploit

Kit (EK). RIG EK is a sophisticated and widely used toolkit in the cybercriminal world

to exploit vulnerabilities in systems to distribute malware. Our analysis in Figure 2.7 not

only shows the effectiveness of Suricata in identifying such threats but also highlights the

– 26 –

https://www.virustotal.com

Chapter 2. Detection and Analysis Cerber Ransomwar

Figure 2.7: The PCAP result uploaded to https://www.virustotal.com, highlighting
Suricata’s detection of the Cerber cybercriminal using RIG EK.

Figure 2.8: Snort Result for RIG Exploit Kit Detection

intricate patterns and methods employed by RIG EK, providing valuable insights into the

evolving landscape of cyber threats and the importance of proactive detection and defense

mechanisms in cybersecurity.

Another important discovery was made when the Pcap file was analyzed using Snort,

as shown in Figure 2.8. We detected an RIG exploit kit’s landing page. Exploit Kits (EKs)

are server-based frameworks that exploit software vulnerabilities, often associated with web

browsers, to infect victims’ machines without their awareness. In particular, RIG EK serves

as a gateway for the delivery and distribution of malware payloads.

In Figure 2.9, we demonstrate the result of filtering http.request and ip.addr194.8

7.234.129, which highlights the IP address associated with Rig EK. Ransomware typically

– 27 –

https://www.virustotal.com

2.4 Results

Figure 2.9: HTTP Requests to the Rig Exploit Kit Internet Protocol Address

Figure 2.10: Follow HTTP Stream to Find Referrer

spreads through two methods: malicious spam (mail spam) and Exploit Kits. Malicious

spams directly target victims, prompting them to click on infected links or attachments.

By contrast, Exploit Kits operate covertly, automating the exploitation of security vulner-

abilities without requiring active victim participation.

The final phase involves filtering HTTP requests for all IP addresses associated with Rig

EK in Wireshark. This phase aimed to detect and analyze RIG EK and the domain website

that mediates the spread of infection. The results, as shown in figure 2.10, revealed that the

host computer was accessing www.homeimprovement.com. Further analysis indicated that

the victim accessed this site while searching for "remodeling your kitchen cabinets"

on https://www.bing.com/.

In conclusion, our analysis confirmed that www.homeimprovement.com was a compro-

mised website used in spreading RIG EK. This malware distribution method is sophisticated

and involves various stages and components. The final figure, Figure 2.11, illustrates the

– 28 –

www.homeimprovement.com
https://www.bing.com/
www.homeimprovement.com

Chapter 2. Detection and Analysis Cerber Ransomwar

Figure 2.11: Export Object List and PseudoDarkleech Script

Figure 2.12: PseudoDarkleech Campaign

pseudoDarkleech script, a common campaign used by Cerber authors, designed to stealthily

redirect traffic to the Exploit Kit server.

The pseudoDarkleech campaign, as detailed in Figure 2.12, followed a specific chain of

events. Initially, the victim visits a compromised website, which then makes an HTTP

request to the Exploit Kit Landing Page. The EK then assesses the computer for vulner-

abilities, primarily in browser-based applications and Adobe Flash Player; if successful, it

delivers the ransomware payload for encryption and file access.

Overall, this study underscores the complexity of ransomware attacks and the impor-

tance of thorough digital forensic practices in understanding and combating cyber threats.

2.5 Conclusion

This research makes significant contributions to the field of cybersecurity, particularly in

the context of network forensics and the analysis of sophisticated cyber threats like Cer-

ber Ransomware. Through the application of network forensic-behavior-based methods,

this study has successfully identified and reconstructed the event chain of the Cerber Ran-

somware attack, as illustrated in Figure 2.13.

– 29 –

2.5 Conclusion

Figure 2.13: The chain of events of a host PC was infected with cerber ransomware.

The sequence of events begins with the STIWIE PC host computer, where an innocent

search on Bing.com leads the user to the compromised website, www.homeimprovement.com.

This website, tainted by a pseudoDarkleech script, plays a pivotal role in the cybercrim-

inals’ campaign, redirecting victims to a server that deploys the RIG Exploit Kit (EK).

This exploit kit is crucial for the downloading of the Cerber Ransomware malware payload,

highlighting a sophisticated method of cyber attack.

The findings emphasize the critical need for heightened awareness and proactive mea-

sures against cyber threats. Users of host PCs must regularly update their system’s security,

and network defenses, and patch vulnerabilities to mitigate such risks.

Further, in-depth network forensic analyses are essential for compromised websites and

servers hosting Exploit Kits, particularly because these kits feature encrypted binary codes

that pose challenges in detection and analysis.

However, it is crucial to note that network forensics alone may not suffice to address ad-

versarial examples in sensor and machine-learning integrations. Adversarial attacks present

unique challenges that require specialized countermeasures. Therefore, future research will

– 30 –

Chapter 2. Detection and Analysis Cerber Ransomwar

focus on developing alternative strategies to counter adversarial attacks in sensor ML-

integrated systems. This includes exploring proactive measures for sensor robustness and

ML model resilience to mitigate the impact of sophisticated attacks. By understanding

the dynamics between sensors and ML models, we can devise more effective defenses that

go beyond traditional network forensics, thereby providing a comprehensive shield against

these emerging threats. Building a ’Human Firewall’ remains essential, but it should be

complemented with advanced technical strategies to strengthen the overall security infras-

tructure.

– 31 –

Chapter 3

Experiments on Adversarial

Examples for Deep Learning

Model Using Multimodal Sensors

3.1 Introduction

Artificial intelligence (AI) based on deep neural networks (DNNs) has significantly impacted

human lives by making them more secure, efficient, automated, and accurate. Currently,

AI is widely used in many areas, such as smart nations [35], agriculture [36], medicine [37],

industry [38], and human activity recognition (HAR) [39]. Many Internet of Things (IoT)

sensor devices are used to achieve accurate recognition of the real world. Observations

from these devices are collected via the Internet or a network managed by the service

provider. The machine learning model then recognizes the current situation using the

collected observations as its input. For example, an autonomous vehicle recognizes the

surroundings using multimodal sensors, such as cameras, radar, LiDAR, global navigation

satellite system (GNSS), gyroscopes, and magnetometers [82]. Many sensors have been

used in HAR. Ichino et al. used accelerometers, gyroscopes, magnetometers, and electro-

cardiogram sensors to recognize human activities [83]. Debauche et al. also proposed a

– 33 –

3.1 Introduction

model to recognize human activities based on accelerometer and gyroscope signals [84].

Although we celebrate advances in AI and sensors, state-of-the-art DNNs are vulnerable

to adversarial examples [15]. Adversarial examples are inputs designed by an adversary that

cause a machine learning system to generate incorrect outputs [40]. By creating an incorrect

output, an attacker can degrade the service that is based on AI. If the service is related

to users’ health, the degradation of the service may have a significant impact on the users’

health. By attacking such services, an attacker may consider users as hostages. Some

studies have demonstrated that an attacker can fool machine learning models for HAR,

which is closely related to healthcare [46,85,86].

Considering an architecture using multiple sensor devices, hacking a small number of

sensors creates a significant risk. As the number of sensor devices in a system increases,

the risk of attack by hacking some of these sensors increases. Some sensors may be located

near people. As a result, attackers may easily access them, find vulnerabilities, or replace

them. In fact, an attack on wearable sensors has already been demonstrated [13].

The attacker may attack the machine learning model using the hacked sensor. Even if

an attacker can hack only a small part of the sensor, the sensor may have a large impact on

the machine learning model. However, the impact of hacking a small part of the sensor has

not been discussed thus far. Some papers demonstrated that adversarial examples on the

DNN model based on IoT sensors are possible, but with the assumption that an attacker

can access all features of the model.

Therefore, we discuss the possibility of attacks on DNN models by hacking a small

number of sensors through experiments. In this experiment, we assume that the attacker

first hacks the sensor device. The attacker can obtain the values of the hacked sensors and

change them but cannot obtain and change the values of the other sensors. In this study,

we demonstrate that an attacker can manipulate a DNN model, even in this case.

To demonstrate the attacks, we introduce a generator that generates adversarial exam-

ples when a small number of sensor devices are hacked. The generator uses the values from

the hacked sensors as inputs and generates perturbations so that the features, including the

perturbations, are classified into the target class by the target model. In our experiments,

– 34 –

Chapter 3. Experiments on Adversarial Examples for Deep Learning

we use an open dataset for HAR based on three sensor devices attached to the chest, wrist,

and ankle of the subjects and demonstrate that the attacker can change the output of the

target model by hacking only one of those devices.

In summary, our main contributions are as follows:

1. We formulate the adversarial example by monitoring and changing the values of a

part of the sensors.

2. We demonstrate that adversarial examples are possible even if the attacker can mon-

itor and change only a part of the sensors.

The rest of this article is organized as follows. We discuss the work related to our

research in Section 3.2. In Section 3.3, we describe the attack definition and how to generate

the attacks. Section 3.4 presents adversarial attack examples for deep learning models using

multimodal sensors. The results are discussed in Section 3.5. Finally, we conclude the

chapter in Section 3.6.

3.2 Related Work

Szegedy et al. coined the phrase “adversarial example,” and since then the number of

publications related to adversarial examples has increased exponentially.

Several methods for generating adversarial examples have been proposed, as shown

in Table 3.1, such as the fast gradient sign method (FGSM) [15], basic iterative method

(BIM) [41], saliency map method [42], FGSM [15], and Carlini–Wagner method (C&W) [43]

and AdvGAN [44]. FGSM and BIM are examples of white-box attacks that access an en-

tire target model. Gradient-based attack methods, such as FGSM, determine the maximum

constrained max-norm perturbation of x′ = x + ϵ · sign(∇xL(x, y)) by computing the gra-

dient of the input’s loss function ∇xL(x, y) and multiplying a small chosen constant ϵ by

the gradient’s sign vector. Carlini and Wagner attacks [43] and other optimization-based

methods optimize adversarial perturbations, subject to several constraints. These methods

focus on the L0, L2, and L∞ distance metrics and generate perturbations by minimizing the

– 35 –

3.2 Related Work

loss function under the constraint that the distance metrics of the perturbations are less

than a predefined threshold. Although optimization-based methods generate adversarial

perturbations that fool the target model without violating the constraints, they take a long

time because the optimization problem must be solved to generate each perturbation.

Another approach for generating adversarial examples is to train the generator. Xiao et

al. [44] proposed adversarial examples using GAN architecture to efficiently generate more

realistic adversarial examples. This was followed by [87–89]. They proposed training a

feed-forward network that generates perturbations to create diverse adversarial examples

and a discriminator network to ensure that the generated examples are realistic. Once the

generator is trained, adversarial perturbations can be efficiently generated.

In this study, we used a method based on the generator. However, we assume that an

attacker can obtain only the values of the hacked sensors, whereas existing studies assume

that all features can be used as the input of the generator, as shown in Table 3.1.

Potential adversarial examples have also been discussed in many critical applications.

Table 3.2 shows the papers demonstrating adversarial examples. Finlayson et al. demon-

strated the danger of adversarial attacks in the medical domain [12]. By taking input

from the vision sensor and adding adversarial noise to a dermatoscopy image, they success-

fully changed the patient’s diagnosis from benign to malignant or vice versa. Han et al.

demonstrated an attack on a deep learning model based on a raw signal electrocardiogram

(ECG) [45]. Benegui et al. successfully attacked a DNN model for user identification based

on motion sensors and converted a discrete three-axis raw signal sensor into a grayscale

image representation [85]. Sah et al. demonstrated attacks on a machine learning model

for HAR based on multiple wearable sensors [86]. They generated adversarial examples

at the raw signal level and discussed their transferability. In this study, we use the same

dataset as Sah et al. to demonstrate the possibility of an attack, but the attack scenario is

different; we assume that the attacker can only access the hacked sensors, whereas Sah et

al. assumed that the attacker could access all raw signals directly.

– 36 –

Chapter 3. Experiments on Adversarial Examples for Deep Learning

Researchers Name of the
Proposed
Method

Advantages Disadvantages

Goodfellow
et al. [15]

FGSM One of the first attack meth-
ods in the domain of adver-
sarial examples

All features are required; low
attack success rate

Kurakin et
al. [41]

BIM Higher attack success ratio
than FGSM

All features are required;
many iterations are required

Papernot et
al. [42]

Saliency
map

Attack with a small pertur-
bation

All features are required;
computationally expensive

Carlini and
Wagner [43]

C&W Higher attack success ra-
tio than FGSM, BIM, and
saliency map

All features are required;
computationally expensive

Xiao et al.
[44] Jandial
et al. [87]
Liu et al.
[88] Kim et
al. [89]

GAN Higher attack success ratio
than FGSM and C&W in the
case that adversarial train-
ing is used to protect the
target model; the perturba-
tions can be generated im-
mediately by using the pre-
trained generator

All features are required;
training is required before
generating the attack

This study Trained
generator

The attack can be gener-
ated even when the attacker
can monitor only a part of
the features; the perturba-
tions can be generated im-
mediately by using the pre-
trained generator

Training is required before
generating the attack

Table 3.1: Advantages and disadvantages of previous methods

– 37 –

3.2 Related Work

Researchers Methods
are Used to
Generate
Attacks

Target Fea-
tures

Features
Required to
Be Moni-
tored and
Changed

Detail

Finlayson et
al. [12]

BIM Images All Demonstration of adversarial
examples against medical AI
systems

Han et
al. [45]

FGSM and
BIM

Raw sensor
values

All Demonstration of adversarial
examples on raw EEG signals;
the generated signals cannot
be distinguished from original
ECG signals and can fool the
target DNN model

Benegui et
a. [85]

FGSM and
saliency
map

Images All The first study attempts to
quantify the effect of ad-
versarial assaults on machine
learning models used for mo-
tion sensor-based user identi-
fication

Sah et
al. [46]

FGSM and
BIM

Raw sensor
values

All Demonstration of the trans-
ferability of adversarial exam-
ples on machine learning mod-
els based on wearable sensors

This study Trained
generator

Raw sensor
values

Part Demonstrates adversarial ex-
amples for the case that only
a part of the features is mon-
itored by the attacker

Table 3.2: Summary of Research in Adversarial Machine Learning

– 38 –

Chapter 3. Experiments on Adversarial Examples for Deep Learning

Figure 3.1: Overview of the attacks

3.3 Definition of Adversarial Examples by Hacking a Small

Number of Sensors

3.3.1 Definition of Attack

We focus on a system that gathers values from multiple sensors and performs classification

tasks based on a machine learning model. An attacker against this system hacks some

sensors; the attacker may hack sensors with the same vulnerabilities but cannot hack other

sensors. An attacker can obtain the values of the hacked sensors and change them. The

objective of the attack is to cause misclassification by changing the values of the hacked

sensors, as shown in Figure 3.1

Hereafter, we define f(x0:t) as a function of the target model; x0:t = (x0, x1, . . . , xt) is

the input of the target model constructed from the sensor values obtained from time 0 to

time t′; and xt is the vector corresponding to the sensor values at time t. f(x0:t) indicates

the classification result at time t; we denote the jth element of the output of the model by

fj(x0:t), and fj(x0:t) indicates the probability that the situation at time t is classified into

the ith class.

The attacker can monitor and change the features from the hacked sensors. We define

the vector B = (b1, b2, . . . , bm) indicating the features from the hacked sensors; bi = 1 if the

– 39 –

3.3 Definition of Adversarial Examples by Hacking a Small Number of Sensors

ith feature is from the hacked sensor. Using B, the features monitored by the attacker at

time t are ẋt = B ◦ xt, where ◦ indicates the element-wise product.

The attacker generates the perturbations so that the classification results become the

target class. That is, the objective of the attacker is argmaxi fi(x
′
0:t) = C, where x′0:t =

(x′0, x
′
1, . . . , x

′
t) is the input feature after adding the perturbation at time t and C is the

target class.

The attacker generates perturbations based only on the features from the hacked sensors.

That is, the attacker uses ẋt. We denote ẋ0:t = (ẋ0, ẋ1, . . . , ẋt). We define a function

G(ẋ0:t) whose inputs are the features monitored by the attacker and whose outputs are the

generated perturbations. By adding perturbations generated by the generator G(ẋ0:t), the

features that include the attacks become x′t = xt +B ×G(ẋ0:t).

In this study, we assume that the attacker has enough information about the target

model and some knowledge of the sensors. The attacker can obtain the same model if the

target uses an open model. Even if the model is not open, the information on the model

can be extracted by conducting a model extraction attack [90], which steals the architec-

ture, parameters, and hyperparameters of the target by monitoring the model’s output if

the attacker can use the model. This study assumes the case after obtaining accurate in-

formation on the target model. However, the stolen model may include estimation errors.

The demonstration of the attacks in the case that the information of the target model is

inaccurate is one of our future works.

On the other hand, knowledge of the sensors can be obtained through generally known

knowledge. If it is generally known that values of a sensor correlate with the other sensors’

values, attackers can use this knowledge. If the attackers can buy and use the same type

of sensors, they can perform experiments to obtain the knowledge of the sensors. In this

study, we model the knowledge of the sensors by an estimator x̂t = S(ẋt:0) whose input is

the feature that can be monitored by the attacker and whose output is all features.

– 40 –

Chapter 3. Experiments on Adversarial Examples for Deep Learning

(a) Generated an adversarial attack using a generator model

(b) Process trained the generator.

Figure 3.2: Overview of architecture generated an adversarial example in multimodal sen-
sors

3.3.2 Generation of Attack

In this study, the attack is generated using the generator G(ẋ0:t), as shown in Figure 3.2a.

The generator G(ẋ0:t) is trained in advance. The attacker can monitor the features of

the target from the hacked sensors. We denote the dataset monitored from the hacked

sensors as M . The attacker also has some knowledge of the other sensors and can estimate

the values of the other sensors using the estimator S(ẋt:0), although the estimation may

be inaccurate. Using the dataset M and estimator S(ẋt:0), the attacker can generate the

dataset that can be used to train the generator. Hereafter, we denote the generated training

data as M̂ . Each element of M̂ can be generated by:

x̂t = S
(
ẋ
(M)
t:0

)
, (3.1)

where ẋ
(M)
0:t = (ẋ

(M)
0 , ẋ

(M)
1 , . . . , ẋ

(M)
t), and ẋ

(M)
t is an element of data in the dataset M .

Figure 3.2b shows the process to train the generator using the dataset M̂ . When training

the generator, the attacker has the information on the target model f(·). Using f(·), the

attacker trains the generator by minimizing the following loss function:

– 41 –

3.4 Experiments

Lf
adv = Ext [lf (f(x̂t +B ◦G(x̂0:t)), Ct)] (3.2)

where x̂0:t = (x̂0, x̂1, . . . , x̂t), lf (y, C) is the loss function of the target model when the

output of the target model is y, the target class is C, and Ct is the target class at time t.

By generating the perturbation using the generator trained to minimize this loss function,

the features after the attack can be classified into the attacker’s desired class.

3.4 Experiments

3.4.1 Target Scenario

Overview

In this scenario, we use as a target model a machine learning model that identifies human

activities from three sensors. This model is used to recognize human activities for health-

care, smart-home environment, and so on. In this model, the user wears three sensor devices

on the chest, left ankle, and right wrist. All three sensor devices have 3D accelerometers.

Moreover, the sensor device on the chest has an ECG sensor, and the other sensor devices

have 3D gyroscopes and 3D magnetometers. The sensor devices send their monitored values

to the server with the machine learning model based on a DNN. The server recognizes the

user’s current activity by handling time-series data sent from the sensors.

In this experience, we focus on specific subjects as the target and generate perturbations

so that the activities of the specific subjects are identified as the target classes, which are

different from the ground-truth classes.

To generate the perturbations, we assume that the attacker has hacked one of the sensor

devices, the ankle sensor. The attacker can access and change the sensor values of the ankle

sensor but cannot access the values of the other sensors. By changing the sensor values

sent to the server, the attacker attempts to change the activity recognized by the machine

learning model.

In this study, we assume that the attackers use their knowledge to train the attack

– 42 –

Chapter 3. Experiments on Adversarial Examples for Deep Learning

generator. In this scenario, we simulate the attacker’s knowledge using an estimator trained

by a dataset without the target subjects. By changing the amount of dataset used to train

the estimator, we simulate the various cases—from the case that the attacker has accurate

knowledge to the case in which the attacker has inaccurate knowledge.

Dataset

We used an open dataset called the MHealth dataset [91]. This dataset includes 12 physical

activities (standing, sitting, lying down, walking, climbing stairs, bending forward, lifting

arms forward, knees, cycling, jogging, running, and jumping back and forth) for ten subjects.

They used wearable sensor devices located on the subject’s chest, right wrist, and left ankle,

and recorded the sensor values with a sampling frequency of 50 Hz. Table 3.3 lists the

sensors used in the dataset.

The Mhealth dataset includes the time-series of sensor values. From this dataset, we

extract the data with a length of 500 used for training and validation by using a sliding

window. The number of extracted data for each subject and each class is shown in Table

3.4

Among ten subjects, we used subjects 9 and 10 as the target subjects. The data from

the other subjects were used to train the target model and the estimator, but the data from

the target subjects were not used to train the target model and estimator. When training

the generator, we used the data of the target subjects but only the features of the hacked

sensors, assuming that the attacker can access the values of the hacked sensors of the target

subjects. The values of the other sensors used to train the generator are obtained using the

estimator.

Target Model

This dissertation uses a model based on the long short-term memory network (LSTM)

architecture proposed for HAR [92]. Figure 3.3 shows the architecture of the target model

used in this study.

– 43 –

3.4 Experiments

Sensor Locate Abbreviated
Acceleration from the chest sensor (X axis) Acx
Acceleration from the chest sensor (Y axis) Acy
Acceleration from the chest sensor (Z axis) On Chest Acz
Electrocardiogram signal (lead 1) EL1
Electrocardiogram signal (lead 2) EL2
Acceleration from the left-ankle sensor (X axis) Alax
Acceleration from the left-ankle sensor (Y axis) Alay
Acceleration from the left-ankle sensor (Z axis) Alaz
Gyro from the left-ankle sensor (X axis) Glax
Gyro from the left-ankle sensor (Y axis) On Ankle Glay
Gyro from the left-ankle sensor (Z axis) Glaz
Magnetometer from the left-ankle sensor (X axis) Mlax
Magnetometer from the left-ankle sensor (Y axis) Mlay
Magnetometer from the left-ankle sensor (Z axis) Mlaz
Acceleration from the right-lower-arm sensor (X axis) Arlax
Acceleration from the right-lower-arm sensor (Y axis) Arly
Acceleration from the right-lower-arm sensor (Z axis) Arlz
Gyro from the right-lower-arm sensor (X axis) Grlax
Gyro from the right-lower-arm sensor (Y axis) On Wrist Grlay
Gyro from the right-lower-arm sensor (Z axis) Grlaz
Magnetometer from the right-lower-arm sensor (X axis) Mrlax
Magnetometer from the right-lower-arm sensor (Y axis) Mrlay
Magnetometer from the right-lower-arm sensor (Z axis) Mrlaz

Table 3.3: Description of Sensors and their Abbreviations.

Figure 3.3: The architecture of the target model

– 44 –

Chapter 3. Experiments on Adversarial Examples for Deep Learning

Su
bj

ec
t

St
an

di
ng

Ly
in

g
D

ow
n

W
al

ki
ng

C
lim

bi
ng

St
ai

rs

W
ai

st
B

en
ds

Fo
rw

ar
d

Fr
on

ta
lE

le
va

ti
on

of
A

rm
s

K
ne

es
B

en
di

ng

C
yc

lin
g

Jo
gg

in
g

R
un

ni
ng

Ju
m

p
Fr

on
t

an
d

B
ac

k

1 3072 3072 3072 3072 3072 3132 3278 3179 3072 3072 1024
2 3072 3072 3072 3072 3132 3132 3380 3430 3072 3072 1024
3 3072 3072 3072 3072 3132 3132 3266 3379 3175 3072 1024
4 3072 3072 3072 3072 3132 3132 3266 3379 3175 3072 1024
5 3072 3072 3072 3072 3132 3132 7265 7141 2784 3072 1024
6 3072 3072 3072 3072 2766 2894 2816 3072 3072 3072 1024
7 3072 3072 3072 3072 2766 2894 2816 3072 3072 3072 1024
8 3072 3072 3072 3072 2458 2765 2867 3072 3072 3072 1025
9 3072 3072 3072 3072 2458 2765 2867 3072 3072 3072 1025
10 3072 3072 3072 3072 2458 2765 2867 3072 3072 3072 1025

Table 3.4: Data that we used for each class and individual.

– 45 –

3.4 Experiments

(a) Estimator model

(b) Discriminator model.

Figure 3.4: Estimation model architecture

We built the target model on top of TensorFlow and Keras and trained it using multiple

NVIDIA Quadro RTX 5000. We trained the model to minimize the cross-entropy of the

outputs and the corresponding labels in the training data using the Adam optimizer with

a learning rate of 0.001, batch size of 32, and 100 epochs. Data from eight subjects were

used to train the model. The data from the remaining subjects were used to evaluate the

target model and the attack. To train the target model, we used time-series data generated

by dividing the time-series data included in the training data into small sets of time-series

data with lengths of 500 using the sliding-window technique.

Estimator

In this study, we constructed an estimator to simulate the attacker’s knowledge. Estimator

S estimates sensor values that are not obtained by the attacker from the values of the

hacked sensors. In this study, we used the conditional-GAN training technique [93] to train

estimator S, as shown in Figure 3.4.

In this technique, the discriminator D is introduced. The discriminator D distinguishes

the output of the estimator from the training dataset. By training S to generate values

that cannot be distinguished by discriminator D, we construct S to estimate the original

values.

The discriminator D and the estimator S are trained alternatively. When training

discriminator D, the parameters of discriminator D are updated to minimize the loss func-

tion, indicating the accuracy of the classification using the original values and the values

– 46 –

Chapter 3. Experiments on Adversarial Examples for Deep Learning

Figure 3.5: The architecture of the generator model.

generated by S as the training dataset. However, when training estimator S, we input the

features of the hacked sensors of the training data to S, obtain the output from S indicating

the estimated features, including the values of the other sensors, and use the output from

S as the input for D. Finally, the output from D is obtained. Based on the output from

D obtained by this process, the parameters of S are updated to minimize the same loss

function of D by setting the target class of the generated values to the class for the original

data.

We use LSTM in the estimator and discriminator to handle the time-series data. Fig-

ure 3.4 also shows the structures of the estimator and discriminator used in this demonstra-

tion. In the estimator, the values of the other sensors were estimated using the CNN–LSTM

structure. Then, at the final layer, the estimator estimates the features of all the sensors,

including the values of the hacked sensors, by concatenating the estimated sensor values

and the values that can be monitored.

In this study, TensorFlow and Keras with multiple NVIDIA Quadro RTX 5000 were

used. We trained the estimator and discriminator using 50 iterations with a learning rate

of 0.002 and a batch size of 128. To train them, binary cross-entropy was used as the

loss function. The data used to train the estimator and discriminator were generated by

dividing the long time-series data using the sliding-window technique.

Generator

We use the generator based on 1D CNN and LSTM to handle the time-series data of the

hacked sensors as inputs. Figure 3.5 shows the generator used in this study.

We trained the generator using features estimated by the estimator from the values of

the hacked sensors of the target subjects. We used Adam optimization and set the batch

size to 256, learning rate to 0.002, epochs to 1, and epsilon ϵ to 0.3. Similar to the target

– 47 –

3.4 Experiments

model and estimator, we divided the time-series of features into time-series features with a

sliding window size of 500 and used the divided time-series features to train the generator.

Before demonstrating the attacks, we investigated the properties of the target model

by comparing it with a similar model using only one sensor device. In this comparison, we

used precision and recall as metrics. Precision and recall are defined as:

Precision =
tp

tp+ fp
(3.3)

Recall = tp

tp+ fn
(3.4)

where true positive (tp) is the number of data that can be classified correctly, false

positive (fp) is the number of data that are classified into a class but whose correct class is

different, and false negative (fn) is the number of data not classified into a class but whose

correct class is the class.

Table 3.5 lists the precision and recall values for each class. This table shows that the

model using only a single sensor device cannot recognize some classes. For example, the

chest sensor cannot distinguish between standing and sitting states. The recall result shows

that the wrist sensor cannot accurately recognize the walking class. The ankle sensor has

high precision and recall compared with other sensors. However, even the ankle sensors

achieve only 88% recall in the standing class. In contrast, the target model using all three

sensors can recognize any class. In other words, multiple sensor devices are required for

HAR.

In consideration of the limited space available on the page, the ”Ground-Truth Class

(GTC)” in our table has been effectively abbreviated to ensure conciseness without compro-

mising the clarity of information. The categories are now represented as follows: Standing

(St), Sitting (Si), Lying Down (LD), Walking (Wk), Climbing Stairs (CS), Waist Bends

Forward (WBF), Frontal Elevation of Arms (FEA), Knees Bending (KB), Cycling (Cy),

Jogging (Jg), Running (Rn), and Jump Front and Back (JFB).

We also investigate the impact of each sensor on the classification results. We use an

– 48 –

Chapter 3. Experiments on Adversarial Examples for Deep Learning

GTC Precision Recall
Target Model Wrist Ankle Chest Target Model Wrist Ankle Chest

St 100 96 96 41 100 100 88 48
Si 100 99 98 54 100 96 97 54
LD 100 96 99 100 100 98 99 100
Wk 100 94 99 99 100 53 99 98
CS 99 79 98 98 100 97 99 100
WBF 100 83 96 100 100 94 99 94
FEA 98 100 89 87 100 99 97 75
KB 100 76 99 100 96 80 97 66
Cy 96 98 98 76 100 100 98 98
Jg 98 99 98 87 93 100 93 94
Ru 94 97 93 92 97 99 98 89
JFB 95 97 92 100 97 89 94 94

Table 3.5: Complete results of the three other models with the target model using different
training data.

integrated gradient [94]. The integrated gradient is a method for evaluating the impact of

each feature on the results of a machine learning model.

The integrated gradient of the ith feature of the input x on the class j is defined as

IntegratedGradsi,j(x) := (x(i) − x′(i))×
∫ 1

α=0

∂fj(x+ α(x− x′))

∂x(i)
dα (3.5)

where x′ represents the baseline input, x(i) is the ith feature of x, and α is the interpo-

lation constant. The features whose integrated gradient is far from zero have a significant

impact on the output of the model. We calculate the integrated gradient for data of the

target subject and calculate the average of them for each class.

Figure 3.6 shows the integrated gradient for 12 classes. The vertical axis in Figure 3.6

is the integrated gradient for each feature. A large positive integrated gradient means that

the feature has a strong positive correlation to the class, and a large negative integrated

gradient means that the feature has a strong negative correlation. If the integrated gradient

is close to 0, the corresponding feature does not contribute to the classification.

Figure 3.6a indicates that Mlax from the ankle sensor and Arly, Mrlax, and Mrlaz from

the wrist sensor have a strong correlation to the classification into the Standing class and

– 49 –

3.4 Experiments

(a) Standing (b) Sitting (c) Lying down

(d) Walking (e) Climbing stairs (f) Waist bends forward

(g) Frontal elevation of arms (h) Knees bending (i) Cycling

(j) Jogging (k) Running (l) Jump front and back

Figure 3.6: Impact result of input feature sensors for each class in the target model using
integrated gradients (IG).

– 50 –

Chapter 3. Experiments on Adversarial Examples for Deep Learning

Ground-Truth Five Subjects Three Subjects
Standing 25.57 28.18
Sitting 19.11 26.31
Lying down 22.08 26.01
Walking 21.75 25.38
Climbing stairs 21.74 25.50
Waist bends forward 28.69 35.91
Frontal elevation of arms 22.30 28.54
Knees bending 22.24 33.81
Cycling 20.06 26.04
Jogging 22.71 35.52
Running 20.00 35.61
Jump front and back 21.76 34.13

Table 3.6: Results of the MSE on the model estimator using five and three subjects.

have a large impact on the classification results. Similarly, the other figures in Figure 3.6

indicate the features that contribute to the classification. From this figure, multiple sensors

contribute to classification into any classes in the target model. Namely, our target model

identifies all classes based not only on specific sensor devices, but also on multiple sensor

devices.

3.4.2 Property of the Estimator.

In Table 3.6, we show the results of the estimator trained using five and three subjects. In

this table, we evaluate the accuracy of the estimator using the mean square error (MSE)

as a metric. The MSE is defined as

MSE =

∑n
t=1

∑
i∈{i|oi=1}(xt,i − x̂t,i)

2

n
, (3.6)

where xt,i and x̂t,i are the actual and estimated values of the ith feature at time t, and n

is the length of the validation data. The smaller the MSE value is, the more accurate the

prediction results are.

In this study, we trained the estimator using three and five subjects and then evaluated

the accuracy of the data using data from two subjects that were not included in the training

– 51 –

3.4 Experiments

dataset for the target model and the estimator. Table 3.6 shows that the evaluation errors

increased as the number of subjects used to train the estimator decreased. In the remainder

of this subsection 3.4.2, we investigate whether attackers with these estimators can succeed

in the attack.

3.4.3 Demonstration of the Attack.

In this subsection 3.4.3, we describe the attacks. To evaluate the generated attacks, we

introduce a metric called the attack success ratio, which is defined as Nsuccess

Nattack , where Nattack

is the total number of time slots, including the attacks, and N success is the number of time

slots in which the results of the target model are the attacker’s desired classes. Figure 3.7

shows the results. The rest of this subsection 3.4.3 discusses the results.

Case That the Attacker Has Full Knowledge of All Sensors

Before discussing the results of the impact of the attacker’s knowledge, we first investigate

the case in which the attacker has sufficient knowledge. In this case, we use the actual

values of all the sensors to train the generator instead of using the estimated values. Note

that even in this case, the attacker does not have the values of the other sensors during

attacks but can monitor only the features from the hacked sensors.

Figure 3.7a shows the results that the attack success ratio depends on the ground truth

and target classes. For example, all attacks from frontal elevation of arms to knee bending

succeeded, whereas the attack success ratio of attacks from jogging to running was low.

However, even in the case with the lowest success ratio, more than half of the attacks

succeeded. That is, the attacks succeeded by changing the values of the ankle sensors,

although the other sensors also have a large impact on the classification results. We discuss

the property of the generated attacks in Subsection 3.4.2

– 52 –

Chapter 3. Experiments on Adversarial Examples for Deep Learning

(a) case with full knowledge

(b) case with estimator trained by five subjects

(c) case with estimator trained by three subjects

Figure 3.7: Results of attacks on ankle sensors using full knowledge, results of success attack
rate using five subjects, and results of success attack rate on ankle group sensor using three
subjects.

– 53 –

3.4 Experiments

The Impact on the Attacker’s Knowledge

Figures 3.7b, 3.7c show the attack success ratio for the cases in which the attacker has

the estimator trained by five and three subjects, respectively. As discussed above, as the

number of subjects used to train the estimator decreases, the estimation errors increase.

Consequently, the attack success ratio also decreases. Figure 3.7c also indicates that the

attacks for some classes succeeded even if the attacker did not have accurate information

on the other sensors. For example, the attacks from frontal elevation of arms to walking

succeeded with a high attack success ratio, while most attacks from frontal elevation of

arms to jogging or jumping front and back failed. We discuss the cause of these differences

in the results in Subsection 3.4.4

3.4.4 Property of the Generated Attacks

In this subsection 3.4.4, we discuss the properties of the generated attacks. We calculate the

IGs of the generated attacks. Figure 3.8 shows examples of the average integrated gradients

of the attack generated for data whose ground-truth class is frontal elevation of arms.

In Figure 3.8, compared with Figure 3.6, the features that include attacks that have a

large impact on the classification are very different from the data without attacks. This is

because the generator does not generate the perturbation to make the input of the model

similar to the normal data whose class is the target class. However, the generator generates

the perturbations to minimize the loss function of the target model. As a result, the features

are very different from the original data but are classified into the target class by the target

model.

Figure 3.8 also shows that the features of the sensors that are not hacked have a large

impact on the classification results in some cases. In this case, by changing the features

from the hacked sensor, the attacker moves the features to a location corresponding to the

target class in the feature space. Among the changed features, the features from the other

sensors contribute to the classification of the target class. However, to succeed in this type

of attack, the attacker must know the impact of the features from the other sensors on the

– 54 –

Chapter 3. Experiments on Adversarial Examples for Deep Learning

(a) Ground Truth: Frontal elevation of arms,
Target: Walking (case with full knowledge)
Target: Jogging (case with full knowledge)

(b) Ground Truth: Frontal elevation of
arms,Target: Jogging (case with full knowl-
edge)

(c) Ground Truth: Frontal elevation of arms,
Target: Jump front and back (case with full
knowledge)

(d) Ground Truth: Frontal elevation of arms,
Target: Walking (case with estimator trained
by three subjects)

Figure 3.8: Integrated gradients of the inputs that include attacks.

classification results. That is, accurate information from other sensors is required.

However, as shown in Figure 3.7, even if the attacker’s knowledge is inaccurate, attacks

on certain classes succeed. One example is the attack from frontal elevation of arms to

walking. Figure 8d shows the average IGs of the data with attacks generated in the case

with the estimator trained with three subjects. Figure 3.8d indicates that the features from

the ankle sensor have the largest impact on the classification results; therefore, this attack

succeeded even if the attacker does not have accurate knowledge of the other sensors. In this

case, the attacks cause the classification into the target class by increasing the contributions

of the features of the hacked sensors for the target class. The attacker can determine and

change the values of the features of the hacked sensors. That is, the attacker can accurately

calculate the contributions of the features of the hacked sensors and change the features to

increase the contributions. As a result, this attack succeeds even if the attacker does not

– 55 –

3.5 Discussion

have sufficient information from other sensors.

3.5 Discussion

In this study, we demonstrate that attacks that cause misclassification in target models

are possible even if the attacker hacked a part of the sensors. In particular, if the attacker

has sufficient knowledge of the other sensors, the attack succeeds with a high probability,

although the attacker cannot monitor the current values of the other sensors. We also

demonstrate that the attacks succeed in some cases, even if the attacker does not have

sufficient knowledge of other sensors.

In our experiment, we focus on one model as a target model. However, our approach is

not based on any assumptions about the target model. Thus, this kind of attack is possible

in the other models, though demonstration using the other models and a different dataset

is one of our future research topics.

In this study, we assume that the attacker has some knowledge of the legitimate sensors

and we simulated this knowledge by using the estimator. By using the estimator trained by a

limited amount of dataset, we simulated the case that the attacker’s knowledge is inaccurate.

In the actual situation, the attackers may obtain knowledge of the legitimate sensors by

using generally known knowledge of the sensors or performing experiments using the same

sensor by themselves. However, if the target has properties that are quite different from

the knowledge obtained by the attackers, the attacks become more difficult, the evaluation

of the attacks in the case that the properties of the target are quite different from the

attackers’ knowledge.

In this study, we also assume that the attacker has enough information on the target

models. The attacker, however, may have only insufficient information on the target model.

Especially, the target model may become different if it is updated. The adversarial examples

in the case that the attacker does not have information on the target models have also been

discussed [95], and the attacks combining the approach in this study with such methods

are possible. Demonstrating such attacks is one of our future research topics.

– 56 –

Chapter 3. Experiments on Adversarial Examples for Deep Learning

Though we need further research to demonstrate the attack in other cases, the results

of this study indicate that the service provider using a machine learning model based on

multiple sensors should consider the case in which some of the sensors may be hacked by

the attacker. By considering these attacks, we may be able to construct robust models.

One of the approaches to constructing robust models is to use the adversarial training,

considering the attacks [15]. However, the robustness of adversarial training against such

attacks has not yet been discussed, and further research is required. Another approach

against an attack from a part of the hacked sensor is to utilize the properties of this attack.

Because the attacker cannot access the other sensors, the generated signals may include

some inconsistency between the signals from the other sensors. These countermeasures will

be a future research topic.

In this study, we investigated the properties of generated attacks. The results indicate

that the attacker does not need to generate input signals that are similar to the actual

features of the target class. However, these results do not indicate that the signals generated

by hacking a small number of sensors are different from the actual features. By training

the generator, considering the difference from the actual features of the target class, it may

be possible to generate attacks that are difficult to detect based on the difference from the

normal features of the target class. Therefore, in Chapter 4, we aim to clarify the properties

of attacks that cannot be avoided by attackers.

3.6 Conclusions

In this chapter, we discussed the possibility of attacks on DNN models by hacking a small

number of sensors. In this scenario, the attacker first hacks a few sensors; then, the attacker

can obtain the values of the hacked sensors and change them, but the attacker cannot obtain

and change the values of the other sensors.

In this study, we introduced a generator that generates adversarial examples when

a small number of sensor devices are hacked. The generator uses the values from the

hacked sensors as inputs and generates perturbations so that the features, including the

– 57 –

3.6 Conclusions

perturbation, are classified into the target class by the target model.

We demonstrated the attack using an open dataset for HAR based on three sensor

devices located on the chest, wrist, and ankle of the subjects. We then clarified that the

attacker can change the output of the target model by hacking only one of the three devices.

The next chapter focuses on the properties of attacks, such as countermeasures against

attacks.

– 58 –

Chapter 4

Detection of Sensors Used for

Adversarial Examples Against

Machine Learning Models

4.1 Introduction

The integration of machine learning (ML) with multiple sensors has revolutionized various

critical domains, such as healthcare [10], autonomous vehicles [96], and other fields [97]. In

these systems, observations from sensor devices are collected via the Internet or a network

managed by the service provider. Then, ML models recognize the current situation using

the collected observations as their input. The utilization of observations from multiple

sensor devices in these systems has shown to significantly enhance recognition accuracy.

For instance, Namazi et al. developed a method to detect and track continuous objects

surrounding vehicles, locate objects in front of the vehicle, and mitigate occlusion issues

to provide more precise readings [11]. Similarly, multiple systems, Zhou et al. [98] and

Yuan et al. [99] proposed systems to recognize human activities in low-light indoor condi-

tions by using multiple sensor devices.

However, as systems using ML models have become more widely used, these models

– 59 –

4.1 Introduction

have also become the target of attacks. Adversarial examples (AEs) are inputs designed

by an adversary that causes a ML system to generate incorrect outputs. Finlayson et al.

showed that an adversary can exploit the vulnerability of ML models by creating AEs in

critical domains, such as medical [12]. These AEs contain subtle changes that are invisible

to humans but can mislead the model’s predictions. This poses a significant threat to the

systems based on ML models, particularly in sensitive fields.

Considering the systems using multiple sensors, some sensors may be vulnerable and

can be used to generate AEs. The data manipulation of sensor data by compromising the

software in the sensor device was demonstrated [13]. Monjur et al. have been demonstrated

that data manipulation is also possible by modifying the hardware if the attacker can

physically access the sensor device [14]. We also demonstrated that the attacker can change

the output of the ML models using multiple sensors if the attacker can manipulate the values

from a part of sensors [48]. That is, manipulation on all sensor values is not necessary for

the attacks to change the output values of the ML models. We call this attack sensor-based

AEs. However, it is difficult to protect all sensor devices, because the risk of the existence of

the vulnerable sensor devices increases as the number of sensor devices increases. Therefore,

we need a method to protect ML models even if a part of sensors are compromised by the

attacker.

Many countermeasures to mitigate the risks posed by AEs have been proposed. One

approach is to make the ML models robust against AEs. Adversarial training (AT) is

one of the methods used to enhance the robustness of ML models [15]. In this method,

ML models are iteratively trained using clean and adversarial examples generated for the

current model. By utilizing the AEs, this method enhances the robustness of the model.

However, the model trained by AT is only robust against the attack generated during the

training and may be vulnerable to new attacks [16].

Another approach to countering AEs is to detect attacks. Especially in the case of

sensor-based AEs, the detection of the sensors used in the sensor-based AEs is essential.

By detecting the sensors used in the attack, we can check the sensors and replace them.

Many methods to detect AEs have also been proposed [17–24]. Hendrycks and Gimpel

– 60 –

Chapter 4. Detection of sensors used for adversarial examples

introduced detection methods for adversarial examples based on identifying implausible

gradients [20,21]. Metzen et al. proposed a method based on Lipschitz continuity to detect

adversarial perturbations, which involve subtle changes applied to clean examples [23].

However, all existing detection methods only detect attacks and do not detect the

features changed by the attacker because they aim to detect the inputs to be blocked.

On the other hand, detecting the sensors used by the attacker is essential for systems with

multiple sensors, as discussed above. In addition, existing detection methods can be avoided

by modifying the AE generation process [25]. This is caused by the features used to detect

AEs; the existing methods use features of the AEs, but an attacker with the knowledge of

the detector can change the features. That is, the detection method should use the features

of the AEs that cannot be avoided by an attacker.

We propose a method to detect the attacks and the sensors used by the attackers. In

this method, we introduce a model called the feature-removable model (FRM) that allows

us to select the features used as an input into the model [49]. We obtain the outputs of the

FRM using all features and features from some of the sensors. If we find inconsistencies

between the outputs, our method detects the attacks. Then we also detect the sensors the

attacker uses by finding the sensors causing the inconsistency.

After detecting the sensors the attacker uses, we can check and replace them. Never-

theless, our FRM can also be used after the identification; we can obtain the output of

the FRM without using the features from the detected sensors to avoid the impact of the

attacks, though the accuracy of the model might decrease compared with the case that we

can use all features.

To the best of our knowledge, we are the first to propose a method that can detect the

sensors used in sensor-based AEs. Our method is based on the features of the sensor-based

AEs that the attacker cannot avoid; the output of the ML model is altered when the values

from the sensors used by the attacker are incorporated.

After detecting the sensors the attacker uses, we can use our FRM to keep the system

work; we can obtain the output of the FRM without using the features from the detected

sensors to avoid the impact of the attacks.

– 61 –

4.2 Related Work

However, such reactive defense method has limitations. If some critical sensors that are

necessary to distinguish required states are compromised by the attacker, we cannot obtain

the suitable output even if we use the FRM without using the features from the detected

sensors. As a result, we cannot keep the system work.

In this thesis, we discuss a strategy to make the system robust against sensor-based

AEs proactively. A system with enough redundancy can work after removing the features

from the sensors used in the sensor-based AEs. That is, we need a metric to check if the

system has enough redundancy. In this study, we define groups of sensors that might be

compromised by the same attacker, and propose a metric called criticality that indicates

how important each group of sensors is for classification between two classes [50]. Based on

the criticality, we can make the system robust against sensor-based AEs by interactively

adding sensors so as to decrease the criticality of any sensors for the classes that must be

distinguished.

The structure of this chapter is as follows: Section 4.2 offers an overview of existing

defense methods against adversarial examples (AEs). In Section 4.3, we provide a compre-

hensive discussion and definition of the sensor-based adversarial attacks that are the focus

of this chapter. Section 4.4 outlines our newly proposed framework, which is designed to

defend against attacks using sensor-based adversarial examples. Section 4.5 assesses the

effectiveness of our proposed countermeasures through a series of experiments. Section 4.6

explores the importance and impact of sensor vulnerabilities in relation to these attacks.

Section 4.7 discussion toward robust systems against sensor-based AEs Finally, Section 4.8

wraps up the chapter and looks ahead to future research possibilities in this field.

4.2 Related Work

Many countermeasures to mitigate the risks posed by AEs have been proposed. One of the

approaches is the AT. AT is a technique used to make the ML model robust against AEs by

incorporating AEs during the training process. AT minimizes the loss for clean inputs and

the generated AEs. Ensemble Adversarial Training (EAT) [16] is a method that improves

– 62 –

Chapter 4. Detection of sensors used for adversarial examples

the robustness of AT. In this method, multiple models are trained at the same time, and

AEs generated for a model is used to train the other models.

However, AT has a limitation. It relies on specific attacks generated during training,

which hampers its ability to defend against new and unseen attacks [100,101].

Another approach to mitigating the risks posed by AEs is to detect AEs. Hendricks

and Gimpel introduced three detection methods, referred to as the H&G detection methods

[20, 21]. They are based on 1) the coefficients in a PCA-whitened input, 2) the Softmax

distributions, and 3) the reconstruction errors of the inputs reconstructed by an auxiliary

decoder.

Another approach is based on ML models to detect AEs. Gong et al. [17] proposed a

method based on a binary classifier trained independently from the original model. They

trained the binary classifier to output 0 for the clean data and 1 for the AEs. Metzen

et al. [23] also proposed a method based on binary classifiers. They constructed binary

classifiers as subnetworks connected to each layer of the original main model. Grosse et

al. augmented an ML model with an additional output, in which the model is trained to

classify adversarial inputs [18]. Hosseini et al. trained an ML model to smoothly decrease

its confidence in the original label and instead predicted that the input is ”invalid” when it

is more perturbed [22]. Miller et al. proposed a detection method for anomaly detection,

which utilizes a separate unsupervised learning procedure to detect AEs inputs [24].

In this thesis, we discuss a method to detect sensors used in sensor-based AEs. This

method should satisfy the following requirements. 1) It should detect AEs accurately. 2) It

should detect sensors used in sensor-based AEs. 3) It should utilize the features of sensor-

based AEs that cannot be avoided by an attacker. If an attacker can avoid the features

used by the detector, AEs that cannot be detected are possible.

Table 4.1 shows the existing method to detect AEs and includes whether each method

meets the requirements. As shown in Table 4.1, none of the existing methods can detect

sensors used in sensor-based AEs, because they did not focus on the sensor-based AEs.

Furthermore, none of the existing methods utilizes features that cannot be avoided by the

attacker. If an attacker can change the features used by a detector, they can generate AEs

– 63 –

4.2 Related Work

Methods Overview Detection
of at-
tacks

Detection
of sen-
sors
used in
sensor-
based
AEs

Sure uti-
lization of
the un-
avoidable
features
of AEs

H & G
[20,21]

Detect AEs based on 1) the coefficients
in a PCA-whitened input, 2) the
Softmax distributions and 3) the
reconstruction errors.

Yes No No

Metzen
et al. [23]

Detect AEs by binary detector
sub-networks using the outputs of each
layer of the original model as inputs.

Yes No No

Gong et
al. [17]

Detect AEs by a binary classifier that
is trained independently from the
original model.

Yes No No

Grosse
et al. [18]

Augments a ML model with an
additional output, in which the model
is trained to classify adversarial inputs.

Yes No No

Hosseini
et al. [22]

Train a ML model so that it outputs
lower confidence on the original label
and instead predicts that the input is
“invalid”, as the input is more
perturbed

Yes No No

Miller et
al. [24]

Detect AEs using unsupervised
anomaly detectors.

Yes No’’ No

This
study

Detect AEs from a part of sensors and
identify the sensors used by the
attacker by finding the inconsistency
between the results using all features
and without using features from a part
of sensors

Yes Yes Yes

Table 4.1: Comparison of different AE detection methods.

– 64 –

Chapter 4. Detection of sensors used for adversarial examples

that cannot be detected. Carlini et al. evaluated AE detection methods in a white-box

setting and demonstrated that AEs capable of evading detection can be generated for all

the methods evaluated [25].

In this thesis, we propose a method to detect the sensors used in sensor-based AEs that

satisfies all of the above requirements. Our method utilizes the features of the attacks; that

the results of the classification are change by using the features from the sensors used in

the attack. Such features of the attacks cannot be avoided by the attacker.

4.3 Sensor-based Adversarial Examples.

In this thesis, we focus on the system that gathers values from multiple sensors and performs

classification tasks based on ML models. We call this system as the target system.

We model the target system as the function f(x0:t) where x0:t = (x0, x1, . . . , xt) is the

input of the target system built from the sensor data received from time 0 to time t and xt

is the vector corresponding to the sensor values at time t. We refer to the j-th element of

the model’s output as fj(x0:t), and fj(x0:t) denotes the probability that the state at time t

is classified into the i-th class. f(x0:t) represents the classification outcome at time t.

The vector xt is constructed of the values from multiple sensors. The values of the

compromised sensors can be monitored and modified by the attacker. The information

of the compromised sensors are represented by the vector B, which is defined as B =

(b1, b2, . . . , bm); bi = 1 if the i-th value is from the compromised sensor. The sensor values

that the attacker can monitor and modify at times t are given by ẋt = B ◦ xt, where ◦

stands for the element-wise product.

Based on the sensor values of the compromised sensors, the attacker creates perturba-

tion. The sensor values including the attacks become x′t = xt+B ◦G(ẋ0:t) where G(ẋ0:t) is

the attack generator and ẋ0:t = (ẋ0, ẋ1, . . . , ẋt). The attacker can generate the attacks by

training G(ẋ0:t) so that the output becomes the class the attacker wants. In this study, we

assume that an attacker has sufficient information about the target system.

On the other hand, the victim who manages the target system does not know the

– 65 –

4.4 Framework Against Sensor-based Adversarial Examples.

Figure 4.1: Illustration of countermeasure stage flow.

compromised sensors but knows the set of sensors with the same risk. For example, sensors

connected to the same computer might be compromised at the same time if the computer

is vulnerable. The same type of sensors may have the same vulnerability. In this study, we

denote the set of risks by R and the set of sensors with risk r ∈ R by Sr. We assume that

the victim has the information of Sr for all r ∈ R.

4.4 Framework Against Sensor-based Adversarial Examples.

The attacker aims to change the classification results by changing the values of the com-

promised sensors. That is, the classification results obtained from compromised sensors

are different from those obtained without using compromised sensors. Our method de-

tects not only sensor-based AEs but also the sensors used in the attack by detecting these

inconsistencies.

Figure 4.1 shows an overview of our method. In our method, we introduce a model

called the feature-removed model (FRM), which allows us to select the features used for

classification. By using the FRM, we can obtain multiple results by changing the features

used for classification. Then, we detect attacks and sensors used in the attack by comparing

the results and identifying any inconsistencies

4.4.1 Feature Removable Model

In this subsection, we propose a model called the FRM. The FRM is a model that allows

us to exclude specific features. The FRM can be constructed by modifying the first and

– 66 –

Chapter 4. Detection of sensors used for adversarial examples

last layers of the original model.

At the first layer, we add a function to exclude the features that are marked to be

excluded. The eliminated features are set to 0. Then we apply the scaling based on the

dropout [102]. The output of the first layer after scaling is obtained by

o1,i = a

(
Nall

N selected

∑
k

(w0,k,io0,k) + b1,i

)
(4.1)

where oi,j is the value of the j-th node at the i-th layer, w0,k,i and b1,i are the weight and

bias, and a(·) is the activation function. The number of all features is Nall and the number

of selected features is N selected. By this scaling, we have a similar number of activated nodes

to the case of using all features even if we exclude some features.

In the final layer, we employed the sigmoid activation function to allow the outputs for

multiple classes to be large. If essential features are excluded, the FRM may be unable to

identify the class. By allowing large outputs for multiple classes, the FRM can handle such

cases by outputting large probabilities for all possible classes.

We train the FRM so that the outputted probabilities for all possible classes become

large even if we exclude some features. In this thesis, we train the FRM by selecting the

features to be excluded randomly. During the training, we use the following loss function.

L”removed-feature”(Y, T) = −
∑
i

w(ti)(ti log yi + (1− ti) log (1− yi)) (4.2)

where Y is the model’s output, ti is the i-th element of T , yi is the i-th element of

Y , and T is the training label. If the training label is i, ti is set to 1. If not, 0. w(ti) is

defined as the weight for ti. We set w(0)≪ w(1) to include the training label in the output.

By using this loss function, we set a large penalty for the case that the actual class is not

included in the output classes.

– 67 –

4.4 Framework Against Sensor-based Adversarial Examples.

4.4.2 Detection of Attacks and Identification of Compromised Sensors

Our method detects the sensor-based AE attacks and the sensors used in the attack by

comparing the results of the FRM. If the outputted probability for a class obtained by

using all features is high but the corresponding probability obtained by excluding values

from a set of sensors, the sensors are suspicious. Based on such inconsistencies, our method

detects sensors used in the sensor-based AEs.

Algorithm 1 Detection of sensors used to generate AEs
Require: α (threshold for prediction), β (threshold for inconsistency), FF (features), model

(trained feature removable model), SS (set of sensors), Sr (set of sensors with the risk
r), RR (set of risks)

Ensure: DetectedSensors
1: Pall ← model.predict_using_selected_sensors(F, S)
2: indices← extract_indices_exceeding_threshold(Pall, α)
3: P ′

all ← extract_result_for_indices(Pall, indices)
4: for each r in RR do
5: Ppart ← model.predict_using_selected_sensors(F, S\Rs)
6: P ′

part ← extract_result_for_indices(Ppart, indices)
7: if |P ′

all − P ′
part| > β then

8: for each s in Sr do
9: DetectedSensor.Add(s)

10: end for
11: end if
12: end for
13: return DetectedSensor

Algorithm 1 shows the steps for detecting sensor-based AEs and the suspicious sensors

used in the AEs. In these steps, we focus on the classes whose probabilities in the prediction

results using all features exceed the threshold (α). Such classes are extracted as indices

at Line 2 in Algorithm 1. Then, we obtain the results by excluding the values from the

sensors with the risk (r ∈ R) and compare the results of the classes in the indices. If the

difference exceeds a threshold (β) (Lines 7-11 in Algorithm 1), we detect the attacks and

mark the sensors with the risk (r) as suspicious.

Algorithm 1 returns the set of suspicious sensors. Thus, if no suspicious sensors are

found, we regard the current input as clean. But if at least one sensor is included in the

– 68 –

Chapter 4. Detection of sensors used for adversarial examples

set of suspicious sensors, we detect sensor-based AEs.

4.5 Experiment.

4.5.1 Original Target Model, Dataset, and Attacks

In our experiment, we used a system that recognized human activity as the target system.

In this system, three devices were mounted at three places on the chest, left ankle, and

right wrist. All three devices had 3D accelerometers; the device on the chest had an ECG

sensor, and the other devices had 3D gyroscopes and 3D magnetometers. Each device sends

its monitored value to the server. The server recognizes the user’s current activity by using

the deep neural network (DNN) to handle time-series data sent from the devices.

Figure 4.2a depicts the DNN structure utilized in our experiment, which was inspired by

the HAR model proposed by [92]. In this experiment, we use this structure as the original

model. In this structure, we construct a vector by concatenating the sensor values obtained

at each time slot and use it as an input. This model handles the continuous inputs by using

an LSTM layer, and outputs the probabilities of the activities for the inputs.

From this original model, we constructed an FRM, modifying only the first and last

layers, as detailed in Section 4.4. To train the FRM, we utilized the Adam optimizer with

a learning rate of 0.001 and a batch size of 32 for 100 epochs. We used a custom binary

cross-entropy loss function for training FRM with weight parameters. We set ww (0) to 1.0

and ww (1) to 20.0.

In this experiment, we use the MHealth dataset [91]. This dataset includes 12 physical

activities (standing, sitting, lying down, walking, climbing stairs, bending forward, lifting

arms forward, knees, cycling, jogging, running, and jumping back and forth) for ten subjects.

In this experiment, we regard subjects 9 and 10 as the target subjects for whom the attacks

are generated, and the data from the other subjects are used to train the FRM.

The Mhealth dataset includes time series of sensor values. We extract the data with a

length of 500 from this dataset for training and validation by using a sliding window. Table

4.2 shows the number of data extracted for each subject and each class.

– 69 –

4.5 Experiment.

(a)

(b)

Figure 4.2: The target model architecture and the architecture of the generator AE model

In this study, we assume that the attacker has compromised one of the three devices

and can change the values of all the sensors on the compromised device. We assumed that

the victim did not know the compromised sensor, but was aware that the sensors in the

same device carry the same risk.

We generate the attack by using the attack generator trained for the target model

(FRM) [48]. Figure 4.2b shows the structure of the generator. The generator is trained so

that the outputs of the FRM using all features become the class the attacker wants. When

training the generator, we assume that the attacker has enough information about the

target model (FRM), and we use the data from subjects 1 to 8. For training the generator,

we used the Adam optimizer with a learning rate of 0.002 and a batch size of 256 for 25

epochs.

On top of TensorFlow and Keras, we constructed the FRM, original model, and gener-

ator models and trained them with four NVIDIA Quadro RTX 6000 GPU cards.

4.5.2 Property of the Feature Removable Model Without Attack

Before demonstrating our method to detect the attacks, we present the properties of the

FRM, comparing them with the original model. We define the identified class as the class

whose corresponding output exceeds the threshold, where the threshold = 0.60. We use

Precision and Recall as metrics for this comparison. The definitions of Precision and Recall

– 70 –

Chapter 4. Detection of sensors used for adversarial examples

Su
bj

ec
t

St
an

di
ng

Ly
in

g
D

ow
n

W
al

ki
ng

C
lim

bi
ng

St
ai

rs

W
ai

st
B

en
ds

Fo
rw

ar
d

Fr
on

ta
lE

le
va

ti
on

of
A

rm
s

K
ne

es
B

en
di

ng

C
yc

lin
g

Jo
gg

in
g

R
un

ni
ng

Ju
m

p
Fr

on
t

an
d

B
ac

k

1 3072 3072 3072 3072 3072 3132 3278 3179 3072 3072 1024
2 3072 3072 3072 3072 3132 3132 3380 3430 3072 3072 1024
3 3072 3072 3072 3072 3132 3132 3266 3379 3175 3072 1024
4 3072 3072 3072 3072 3132 3132 3266 3379 3175 3072 1024
5 3072 3072 3072 3072 3132 3132 7265 7141 2784 3072 1024
6 3072 3072 3072 3072 2766 2894 2816 3072 3072 3072 1024
7 3072 3072 3072 3072 2766 2894 2816 3072 3072 3072 1024
8 3072 3072 3072 3072 2458 2765 2867 3072 3072 3072 1025
9 3072 3072 3072 3072 2458 2765 2867 3072 3072 3072 1025
10 3072 3072 3072 3072 2458 2765 2867 3072 3072 3072 1025

Table 4.2: Data that we used for each class and individual.

– 71 –

4.5 Experiment.

Original Model Features-removed Model
Activities Precision Recall Precision Recall

Standing 1.00 1.00 0.98 1.00
Sitting 1.00 1.00 0.99 1.00
Lying down 1.00 1.00 0.99 1.00
Walking 1.00 1.00 0.97 1.00
Climbing stairs 0.98 1.00 0.96 0.99
Waist bends forward 1.00 1.00 0.99 1.00
Frontal elevation of arms 0.98 1.00 0.99 1.00
Knees bending 1.00 0.96 0.99 0.97
Cycling 0.96 1.00 0.98 1.00
Jogging 0.98 0.93 0.95 1.00
Running 0.94 0.97 0.98 1.00
Jump front and back 0.95 0.97 0.98 1.00
Average 0.98 0.98 0.98 0.99

Table 4.3: The full results of the original model compared with the features-removed model.

are:

Precision =
tp

tp+ fp
(4.3)

Recall = tp

tp+ fn
(4.4)

where tp is the number of activities that are correctly identified as the target class, fp is the

number of activities that are identified as the target class but whose actual class is different,

and fn is the number of activities whose actual class is the target class but that are not

identified as the target class. The FRM can output probabilities larger than the threshold

for multiple classes. If probabilities for multiple classes are lager than the threshold, we

independently count all classes to calculate tp and fp.

Table 4.3 shows the comparison between the original model and FRM using all features.

Table 4.3 indicates that the FRM is similar to the original model, while the Precision of

the FRM is slightly lower than that of the original model. The Precision of the FRM is

caused by that the FRM allows large probabilities for multiple classes. However, the FRM

achieves a sufficiently high Precision, which is greater than 0.95.

– 72 –

Chapter 4. Detection of sensors used for adversarial examples

4.5.3 Property of the Attack

In this subsection, we evaluate the attacks on FRM using all the features. Figure 4.3 shows

the attack success rates based on sensors located on the ankle, wrist, and chest, respectively.

In this Figure 4.3, we consider attacks that result in the outputted probability of the

FRM using all features for the target class exceeding 0.60 as successful attacks. We define

the attack success ratio as Nsuccess
Nattack

, where Nsuccess is the number of successful attacks and

Nattack is the number of generated attacks.

Figure 4.3 shows that the ankle, wrist, and chest sensors group is susceptible to a wide

range of adversarial attacks. Many of the ground-truth classes were highly vulnerable in

this figure. However, Figure 4.3 also shows that some attacks were difficult to succeed. The

rest of this section focuses on the successful attacks.

4.5.4 Accuracy of Detection

In this subsection 4.5.4, we evaluate our attack detection by using two metrics, false negative

rate (FNR) and false positive rate (FPR) defined by

FNR =
FN

FN + TP (4.5)

FPR =
FP

FP + TN (4.6)

where TP is the number of sensor-based AEs that are correctly detected by our method,

FN is the number of sensor-based AEs that cannot be detected, FP is the number of clean

data that are mistakenly detected as sensor-based AEs, and TN is the number of clean data

that are not detected by our method.

Our detection method has two parameters: α and β. These parameters have a large

impact on the detection of sensor-based AEs. In this evaluation, we changed these parame-

ters to investigate their impact on both FNR and FPR. Figure 4.4 shows the results. This

figure shows a trade-off between the FPR and FNR. A higher value of these parameters

tends to decrease FPR at the expense of an increased FNR.

– 73 –

4.5 Experiment.

Figure 4.3: The success ratio of generated sensor-based AEs

– 74 –

Chapter 4. Detection of sensors used for adversarial examples

This figure also shows that we can achieve the FNR less than 0.03 without letting the

FPR exceed 0.06.

4.5.5 Accuracy of Detection of Sensors Used in Sensor-based AEs.

Our method also detects the sensors used in sensor-based AEs. In this subsection 4.5.5, we

evaluate the accuracy of the detection by using two metrics, Precision Of Detected Sensors

and Recall Of Detected Sensors as defined by

Precision Of Detected Sensors = Truly Detected Sensors
Truly Detected Sensors + Falsely Detected Sensors

(4.7)

Recall Of Detected Sensors = Truly Detected Sensors
Truly Detected Sensors + Misses Detected Sensors (4.8)

where Truly Detected Sensors is the number of sensors that are correctly detected as the

sensors used in the sensor-based AEs, Falsely Detected Sensors is the number of sensors

detected as the sensors used in the sensor-based AEs but are not used in the AEs, and

MissedDetected is the number of sensors that are used in the sensor-based AEs but are not

detected as the sensors used in the AEs. If our method detects all sensors used in the AEs,

the Recall Of Detected Sensors becomes 1.00. It is important to detect sensors used by

attackers as suspicious, even if some legitimate sensors are mistakenly detected. Therefore,

the Recall Of Detected Sensors is more important than Precision Of Detected Sensors.

Figure 4.5 shows the Recall Of Detected Sensors. In this Figure, the green cells are the

cells whose values are larger than 0.50, the yellow cells are the cells whose values are larger

than 0.50 and less than 0.80, and the red cells are the cells whose values are larger than

0.80.

Figure 4.5 shows that our method achieves high Recall Of Detected Sensors. Recall Of

Detected Sensors calculated for all cases is 0.92. That is, most of the sensors used in the

AEs can be detected by our method. This is because our method uses the features of the

attack, which causes the prediction results to change when the attacker uses the features

from sensors. This feature cannot be avoided by the attacker because they are unable to

– 75 –

4.5 Experiment.

(a)

(b)

Figure 4.4: The results of impact when FNR and FPR were α value is changing AND β =
0.1: and result of impact when the β value is changing and α = 0.7

– 76 –

Chapter 4. Detection of sensors used for adversarial examples

Figure 4.5: Recall Of Detected Sensors

– 77 –

4.5 Experiment.

alter the results of the FRM, which extracts the features from the sensors used by the

attacker.

However, the Recall Of Detected Sensors for some cases are not 1.00; for example, it

is 0.79 in the case of the AEs from standing class to sitting class by compromising the

wrist sensor. Such misdetection occurs when the target class cannot be distinguished from

the actual class. In this case, the FRM, excluding the values from the sensors used in

the AEs, outputs a high probability even for the target class. One approach to solving this

problem is to add more sensors to make the system more redundant so that any class can be

distinguished even if we exclude some sensors, which are elaborated in detail in Sections 4.6

and 4.7 of this chapter.

Figure 4.6 shows Precision Of Detected Sensors. This figure indicates that our method

achieves high Precision Of Detected Sensors in most cases. The Precision Of Detected

Sensors calculated for all cases is 0.72.

But Precision Of Detected Sensors becomes low in some cases. For example, the Preci-

sion Of Detected Sensors for the case that values from the chest sensor device are changed so

that the state of lying down is miss-classified into the state of knee bending is 0.22. In such

cases, inconsistencies are found by extracting the features from the other sensors. However,

even in such cases, we can successfully detect sensors used in the AEs as suspicious sensors.

Therefore, our method can be used as a trigger to check suspicious sensors.

4.5.6 Mitigation of Sensor-based AEs by Excluding the Detected Sensors

The FRM can be used after detection of sensor-based AEs and compromised sensors, be-

cause the FRM can output the classification results even if some features are excluded.

Therefore, we demonstrate the performance of the FRM by excluding the values from the

detected sensors.

Table 4.4 presents the Precision (P) and Recall (R) of the FRM excluding the values

from the sensors used in the AEs. This table also includes the results of the original model

in the cases without attacks.

– 78 –

Chapter 4. Detection of sensors used for adversarial examples

Figure 4.6: Precision Of Detected Sensors

– 79 –

4.6 Criticality of Sensors.

Ground Truth Class Original Model Ankle Wrist Chest
P R P R P R P R

Standing 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
Sitting 1.00 1.00 0.99 0.99 0.76 0.99 1.00 1.00
Lying down 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99
Walking 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99
Climbing stairs 0.99 1.00 0.71 0.99 1.00 1.00 0.99 0.99
Waist bends forward 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00
Frontal elevation of arms 0.98 1.00 0.99 0.99 0.99 0.99 0.99 0.99
Knees bending 1.00 0.96 1.00 0.99 0.99 0.99 0.75 0.99
Cycling 0.96 1.00 1.00 0.99 0.99 0.99 0.99 0.99
Jogging 0.98 0.93 1.00 0.99 0.99 0.99 0.99 0.99
Running 0.94 0.97 0.99 0.99 1.00 1.00 0.99 0.99
Jump front and back 0.95 0.97 0.99 0.99 0.99 0.99 0.99 0.99
Average 0.98 0.98 0.97 0.99 0.97 0.99 0.99 0.99

Table 4.4: Performance comparison of the original target model without AEs and FRM
exluding the values from the sensors used in the AEs

Table 4.4 indicates that the FRM excluding sensors used in the AEs achieves high

Precision and Recall in most cases. In some cases, the Precision becomes low. For example,

Precision for the class of climbing stairs is 0.71 when excluding the values from the sensors of

the ankle device. This is because the values from the ankle device are essential to distinguish

the classes. Even in this case, the FRM can output the actual classes by outputting large

probabilities for multiple possible classes.

4.6 Criticality of Sensors.

In the previous sections 4.5, we proposed a method to detect the sensors used by the

attacks. However, reactive defense method based on detection has limitations. If some

critical sensors that are necessary to distinguish required states are compromised by the

attacker, we cannot obtain the suitable output. On the other hand, a system with enough

redundancy can work after removing the features from the sensors used in the AEs. That

is, we need a metric to check if the system has enough redundancy.

– 80 –

Chapter 4. Detection of sensors used for adversarial examples

In this section 4.6, we define groups of sensors that might be compromised by the same

attacker, and we propose a metric called criticality that indicates how important each group

of sensors are for classification between two classes. Based on the criticality, we can make

the system robust against sensor-based AEs by interactively adding sensors so as to decrease

the criticality of any groups of sensors for the classes that must be distinguished.

4.6.1 Definition of Criticality

In this subsection 4.6.1, we define groups of sensors that might be compromised by the same

attacker and define a metric called criticality that indicates how important each group of

sensors is for classification between two classes. We define the criticality based of if the

classes can be distinguished without the sensors.

The FRM is also useful to check if the class can be distinguished without the sensors,

because the FRM allows us to select the features used as an input into the model. Therefore,

we define the criticality based on the output of the FRM. We can check if the group of

sensors g is critical to distinguish the classes i and j by the output of the FRM without

using the values from the sensors in the group g. If the sensors in the group g is necessary to

distinguish the class i from j, the output probability of the FRM without using the values

from the group of the sensor g for the class j becomes large when the data whose actual

class is i.

So we define the criticality of the sensor group g for the classes i and j by

Cs(i, j) =

∑
d∈Di

Y g
j (d)

|Di|
(4.9)

where Di is the set of data whose actual class is i and Y g
j (d) is the output probability of

the FRM without using the values from the sensor group g for the class j.

A large value of Cs(i, j) indicates that it is difficult to distinguish the class i from the

class j without values from the sensor s.

– 81 –

4.7 Discussion Toward Robust System Against Sensor-based AEs.

4.6.2 Example of Criticality

We train the FRM by using the Adam optimizer with a learning rate of 0.001 and batches

of 32 for 100 epochs. We set weights in Eq 4.2 so that w(0) is 1.0 and w(1) is 20.0. We use

the MHealth dataset [91], which includes 12 distinct physical activities for ten individuals.

In this subsection 4.6.2, we evaluate the criticality of the system used in the previous

section. This system recognize human activity from three devices mounted at the chest,

left ankle, and right wrist. We consider the risk that each of the sensor devices can be

compromised by an attacker. The values from the compromised sensors can be changed by

the attacker. So, the system should be able to distinguish the classes without using one of

the sensor devices.

Figure 4.7 shows the criticality calculated by considering these risks. In this figure, we

colored red for the cell with a criticality higher than 0.9, and yellow for the cell with a

criticality higher than 0.5. This figure indicates that the criticality of most class pairs was

very low. That is, this system have enough redundancy and can distinguish such classes

without using one of the sensor devices.

However, ”Walking” and ”Climbing stairs” are difficult to be distinguished without the

ankle sensor device. ”Sitting”, ”Frontal elevation of arms” and ”Standing” are also difficult

to be distinguished without the wrist sensor device. That is, if these classes are required to

be distinguished, we need to add more sensors to make this system robust against sensor-

based AEs.

4.7 Discussion Toward Robust System Against Sensor-based

AEs.

The system is robust against sensor-based AEs, if the criticality of any risk groups is small

for all class pairs required to be distinguished. However, it may requires a large cost to

achieve that any classes can be distinguished in any cases of the risks. Therefore, we should

focus on the risks with high probability and the important class pairs.

– 82 –

Chapter 4. Detection of sensors used for adversarial examples

Figure 4.7: The criticality of each sensor device for each class pair

– 83 –

4.7 Discussion Toward Robust System Against Sensor-based AEs.

Considering the above points, we can create a robust system against sensor-based AEs

as follows.

4.7.1 Building a System

We make a system based on the existing sensors. Then, we train the FRM by using the

training data from the existing sensors.

4.7.2 Assessment of Importance of Class Identification

We assess the importance of the class identification. In some applications, misclassification

of some similar classes does not have a significant impact. Considering that, we need to

evaluate the importance of the distinguishment of classes and focus on the important class

pairs.

4.7.3 Assessment of Risk

We also assess the possible risk of compromised sensors. The sensors with the same location,

the same kind of sensors, or the sensor devices with the same OS might be compromised

by the same attacker. We consider the cases that such sensors are compromised. We asses

risk of each case. We also define the sensors compromised in each case.

4.7.4 Evaluation Based on Criticality and Update of the System

We then calculate the criticality for the set of the sensors whose risk to be compromised

is high or the important class pairs. If the calculated criticality exceeds the threshold, we

regard the current system as the system vulnerable to the sensor-based AEs and add more

sensors. After adding the sensors, we asses the risk of compromised sensors and evaluate

the system again. By continuing the addition of the sensors, we make the system robust

against the sensor-based AEs.

– 84 –

Chapter 4. Detection of sensors used for adversarial examples

4.8 Conclusions.

In this thesis, we propose a method for detecting the sensors used in sensor-based AEs. Our

method utilizes the features of sensor-based AEs that attackers cannot avoid. The output of

the ML model changed when the values from the sensors used in the AE were incorporated.

To assess the impact of sensor values, we introduced a feature-removable model (FRM),

allowing feature selection for use. The FRM outputs the possible classes that are classified

using the selected features. By comparing the FRM results with different feature selections,

we can detect the inconsistencies and identify the sensors that cause them. After the sensors

used in the AEs are detected, they can be verified and replaced. Furthermore, FRM can

be employed post-detection, excluding features from detected sensors to mitigate attack

impacts, although this may reduce the accuracy.

Through an experimental evaluation, a model for human activity recognition was tested

using three devices attached to the user’s chest, wrist, and ankle. Our method successfully

detected the sensors used in AEs, even though one-third of the sensors were compromised

by an attacker.

In multisensor systems, the risk of vulnerable sensor devices producing AEs increases

with the number of sensors. Protecting all sensor devices is challenging, necessitating

methods to safeguard ML models even when some sensors are compromised. One approach

is to detect and remove the sensors involved in the attacks. However, this reactive defense

system has limitations, particularly when the critical sensors necessary for accurate state

distinction are compromised.

Furthermore, we discuss a proactive strategy to enhance system robustness against

AEs. A system with sufficient redundancy can function effectively after removing features

from the sensors involved in the AEs. Hence, we introduced a metric for assessing system

redundancy. We defined sensor groups potentially compromised by the same attacker and

proposed a metric called ‘criticality’ to gauge the importance of each sensor group in class

classification. By interactively adding sensors to reduce the criticality of any group for

essential class distinctions, we can bolster system resilience against sensor-based AEs.

– 85 –

4.8 Conclusions.

In future research, we will investigate the design of robust multisensor systems in real-

world scenarios and demonstrate their robustness against sophisticated adversarial exam-

ples. This proactive approach ensures continued system robustness against potential ad-

versarial challenges.

– 86 –

Chapter 5

Conclusion

As the information technologies become important infrastructures, cyberattacks have be-

come major concerns. These attacks not only compromise information system integrity but

can also lead to substantial economic losses, reputation damage, and physical safety risks.

Therefore, the information systems should be more robust against such cyberattacks.

To make the system more robust against attacks, it is important to comprehend how

existing attacks emerge and spread by analyzing them in detail by reconstructing events of

cyberattacks [2,6]. Based on the knowledge obtained by the analysis of the existing attacks,

we can make the system more robust against cyberattacks.

In this thesis, we begin by analyzing ransomware cyberattacks using the lens of network

forensics. We introduced a method to reconstruct the event chain of an attack using packet

capture data, allowing us to identify infected hosts and their infection paths. We applied

this method to the case of the CERBER ransomware. As a result, we found the event

chain related to this ransomware; the user’s search on bing.com led them to www.homeimpr

ovement.com, a website compromised by cybercriminals. We also found that they used a

pseudoDarkleech script to redirect visitors to a server that deployed the RIG Exploit Kit,

resulting in the download of CERBER Ransomware.

We expand our discussion beyond traditional information systems, such as servers and

personal computers, to include machine-learning models, which have increasingly become

– 87 –

www.homeimprovement.com
www.homeimprovement.com

Chapter 5. Conclusion

targets for cyberattacks in recent years. The increase in the use of machine learning and sen-

sor technologies necessitates enhanced protection for these models, ensuring robust defense

against such attacks.

Adversarial examples (AEs) are one of the largest vulnerabilities of the machine learning

models. In this attacks, an adversary generates inputs that causes a machine learning

system to generate incorrect outputs. Especially in the system using multiple sensors, some

sensors may be vulnerable and can be used to generate AEs. Even if an attacker can attack

a machine learning model by using only a small part of sensors, the vulnerabilities of sensors

have a significant risk. However, the impact of hacking a small part of the sensor has not

been discussed thus far.

Therefore, we also discussed the impact of a small part of sensors on the machine learning

models and demonstrate that the attacker can change the output of the ML models using

multiple sensors if the attacker can manipulate the values from a part of sensors in this

thesis. We call this attack sensor-based AEs. We performed experiments using the human

activity recognition model with three sensor devices attached to the chest, wrist, and ankle

of a user, and demonstrate that attacks are possible by hacking one of the sensor devices.

Then, we also discuss the countermeasure against sensor-based AEs. One of the ap-

proach to protecting the system from the sensor-based AEs is to protect all sensor devices.

However, it is difficult to protect all sensor devices, because the risk of the existence of the

vulnerable sensor devices increases as the number of sensor devices increases. Therefore, we

need a method to protect machine learning models even if a part of sensors are compromised

by the attacker.

Therefore, in this thesis, we proposed a new countermeasure focusing on the sensor-

based AEs. This method detects sensor-based AEs and the sensors used by the attackers

by checking the inconsistency of the output of the machine learning model obtained by

changing the features used by the model. By detecting the sensors used by the attackers,

we can check and replace them. Our method is based on the features of the sensor-based

AEs that the attacker cannot avoid; the output of the machine learning model is altered

when the values from the sensors used by the attacker are incorporated. We evaluated our

– 88 –

Chapter 5. Conclusion

method using a human activity recognition model with sensors attached to the user’s chest,

wrist, and ankle. We demonstrate that our method can accurately detect sensors used by

the attacker and achieves an average Recall of Detection of 0.92, and the average Precision

of Detection is 0.72.

In our future work, we will explore the design of the robust system in real-world scenarios

and demonstrate that the system is sufficiently robust against sophisticated attacks.

– 89 –

Bibliography

[1] A. Chowdhury, “Recent cyber security attacks and their mitigation approaches–an

overview,” in Applications and Techniques in Information Security: 6th International

Conference, ATIS 2016, Cairns, QLD, Australia, October 26-28, 2016, Proceedings

7. Springer, 2016, pp. 54–65.

[2] R. Clarke and T. Youngstein, “Cyberattack on britain’s national health service—a

wake-up call for modern medicine,” New England Journal of Medicine, vol. 377, no. 5,

pp. 409–411, 2017.

[3] P. Shijo and A. Salim, “Integrated static and dynamic analysis for malware

detection,” Procedia Computer Science, vol. 46, pp. 804–811, 2015, proceedings of the

International Conference on Information and Communication Technologies, ICICT

2014, 3-5 December 2014 at Bolgatty Palace Island Resort, Kochi, India. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S1877050915002136

[4] E. Popoola and A. Adewumi, “Efficient feature selection technique for network intru-

sion detection system using discrete differential evolution and decision tree,” Inter-

national Journal of Network Security, vol. 19, no. 5, pp. 660–669, 2017.

[5] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based online malware

detection: Towards efficient real-time protection against malware,” IEEE transactions

on information forensics and security, vol. 11, no. 2, pp. 289–302, 2015.

– 91 –

https://www.sciencedirect.com/science/article/pii/S1877050915002136

BIBLIOGRAPHY

[6] H. Al-Mohannadi, Q. Mirza, A. Namanya, I. Awan, A. Cullen, and J. Disso, “Cyber-

attack modeling analysis techniques: An overview,” in 2016 IEEE 4th International

Conference on Future Internet of Things and Cloud Workshops (FiCloudW), 2016,

pp. 69–76.

[7] M. Groneberg, O. Poenicke, C. Mandal, and N. Treuheit, “Lidar and ai based surveil-

lance of industrial process environments,” Transport and Telecommunication Journal,

vol. 24, no. 1, pp. 13–21, 2023.

[8] J. Havisto, T. Matselyukh, M. Paavola, S. Uusitalo, M. Savolainen, A. Sobre-

cueva González, A. Knobloch, and K. Bogdanov, “Golden ai data acquisition and

processing platform for safe, sustainable and cost-efficient mining operations,” in 2021

IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, pp.

5775–5778.

[9] M. Javaid, A. Haleem, I. H. Khan, and R. Suman, “Understanding the potential

applications of artificial intelligence in agriculture sector,” Advanced Agrochem, vol. 2,

no. 1, pp. 15–30, 2023.

[10] S. Miao, Y. Dang, Q. Zhu, S. Li, M. Shorfuzzaman, and H. Lv, “A Novel Approach

for Upper Limb Functionality Assessment Based on Deep Learning and Multimodal

Sensing Data,” IEEE Access, vol. 9, pp. 77 138–77 148, 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9431090/

[11] E. Namazi, R. Mester, J. Li, C. Lu, M. Tang, and Y. Xiong, “Traffic

Awareness Through Multiple Mobile Sensor Fusion,” IEEE Sensors Journal,

vol. 22, no. 12, pp. 11 903–11 914, june 2022. [Online]. Available: https:

//ieeexplore.ieee.org/document/9764739/

[12] S. G. Finlayson, J. D. Bowers, J. Ito, J. L. Zittrain, A. L. Beam, and

I. S. Kohane, “Adversarial attacks on medical machine learning,” Science,

– 92 –

https://ieeexplore.ieee.org/document/9431090/
https://ieeexplore.ieee.org/document/9764739/
https://ieeexplore.ieee.org/document/9764739/

BIBLIOGRAPHY

vol. 363, no. 6433, pp. 1287–1289, March 2019. [Online]. Available: https:

//www.sciencemag.org/lookup/doi/10.1126/science.aaw4399

[13] J. Classen, D. Wegemer, P. Patras, T. Spink, and M. Hollick, “Anatomy of

a Vulnerable Fitness Tracking System,” Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 1, pp. 1–24, March 2018.

[Online]. Available: https://dl.acm.org/doi/10.1145/3191737

[14] M. M. R. Monjur, J. Heacock, J. Calzadillas, M. S. Mahmud, J. Roth,

K. Mankodiya, E. Sazonov, and Q. Yu, “Hardware Security in Sensor and

its Networks,” Frontiers in Sensors, vol. 3, May 2022. [Online]. Available:

https://www.frontiersin.org/articles/10.3389/fsens.2022.850056/full

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial

examples,” 3rd International Conference on Learning Representations, ICLR 2015 -

Conference Track Proceedings, pp. 1–11, 2015.

[16] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel,

“Ensemble Adversarial Training: Attacks and Defenses,” 6th International

Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings,

pp. 1–20, May 2017. [Online]. Available: http://arxiv.org/abs/1705.07204

[17] Z. Gong and W. Wang, “Adversarial and Clean Data Are Not Twins,”

in Proceedings of the Sixth International Workshop on Exploiting Artificial

Intelligence Techniques for Data Management. New York, NY, USA: ACM,

June 2023, pp. 1–5. [Online]. Available: http://arxiv.org/abs/1704.04960https:

//dl.acm.org/doi/10.1145/3593078.3593935

[18] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel, “Adversarial

Examples for Malware Detection,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

– 93 –

https://www.sciencemag.org/lookup/doi/10.1126/science.aaw4399
https://www.sciencemag.org/lookup/doi/10.1126/science.aaw4399
https://dl.acm.org/doi/10.1145/3191737
https://www.frontiersin.org/articles/10.3389/fsens.2022.850056/full
http://arxiv.org/abs/1705.07204
http://arxiv.org/abs/1704.04960 https://dl.acm.org/doi/10.1145/3593078.3593935
http://arxiv.org/abs/1704.04960 https://dl.acm.org/doi/10.1145/3593078.3593935

BIBLIOGRAPHY

in Bioinformatics), 2017, vol. 10493 LNCS, pp. 62–79. [Online]. Available:

http://link.springer.com/10.1007/978-3-319-66399-9_4

[19] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel, “On the (sta-

tistical) detection of adversarial examples,” arXiv preprint arXiv:1702.06280, 2017.

[20] D. Hendrycks and K. Gimpel, “Early Methods for Detecting Adversarial

Images,” 5th International Conference on Learning Representations, ICLR 2017

- Workshop Track Proceedings, pp. 1–9, August 2016. [Online]. Available:

http://arxiv.org/abs/1608.00530

[21] ——, “A baseline for detecting misclassified and out-of-distribution examples in neural

networks,” 5th International Conference on Learning Representations, ICLR 2017 -

Conference Track Proceedings, pp. 1–12, 2019.

[22] H. Hosseini, Y. Chen, S. Kannan, B. Zhang, and R. Poovendran, “Blocking trans-

ferability of adversarial examples in black-box learning systems,” arXiv preprint

arXiv:1703.04318, 2017.

[23] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On Detecting Adversarial

Perturbations,” 5th International Conference on Learning Representations, ICLR

2017 - Conference Track Proceedings, pp. 1–12, February 2017. [Online]. Available:

http://arxiv.org/abs/1702.04267

[24] D. Miller, Y. Wang, and G. Kesidis, “When not to classify: Anomaly detection of

attacks (ADA) on DNN classifiers at test time,” pp. 1624–1670, August 2019.

[25] N. Carlini and D. A. Wagner, “Adversarial examples are not easily detected:

Bypassing ten detection methods,” Proceedings of the 10th ACM Workshop

on Artificial Intelligence and Security, 2017. [Online]. Available: https:

//api.semanticscholar.org/CorpusID:207599948

[26] M. F. A. Razak, N. B. Anuar, R. Salleh, and A. Firdaus, “The rise

of “malware”: Bibliometric analysis of malware study,” Journal of Network

– 94 –

http://link.springer.com/10.1007/978-3-319-66399-9_4
http://arxiv.org/abs/1608.00530
http://arxiv.org/abs/1702.04267
https://api.semanticscholar.org/CorpusID:207599948
https://api.semanticscholar.org/CorpusID:207599948

BIBLIOGRAPHY

and Computer Applications, vol. 75, pp. 58–76, 2016. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1084804516301904

[27] K. Cabaj and W. Mazurczyk, “Using Software-Defined Networking for Ransomware

Mitigation: The Case of CryptoWall,” IEEE Network, vol. 30, no. 6, pp. 14–20,

November 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7764294/

[28] R. Brewer, “Ransomware attacks: detection, prevention and cure,” Network Security,

vol. 2016, no. 9, pp. 5–9, 2016.

[29] P. Zavarsky, D. Lindskog et al., “Experimental analysis of ransomware on windows

and android platforms: Evolution and characterization,” Procedia Computer Science,

vol. 94, pp. 465–472, 2016.

[30] Symantec, “Ransomware and businesses 2016,” Symantec Corporation, Tech. Rep.,

2016, executive Summary. [Online]. Available: https://conferences.law.stanford.edu

/cyberday/wp-content/uploads/sites/10/2016/10/5c_ISTR2016_Ransomware_and

_Businesses.pdf

[31] K. Gangwar, S. Mohanty, and A. Mohapatra, “Analysis and detection of ransomware

through its delivery methods,” in Data Science and Analytics: 4th International Con-

ference on Recent Developments in Science, Engineering and Technology, REDSET

2017, Gurgaon, India, October 13-14, 2017, Revised Selected Papers 4. Springer,

2018, pp. 353–362.

[32] P. Raunak and P. Krishnan, “Network detection of ransomware delivered by exploit

kit,” ARPN Journal of Engineering and Applied Sciences, vol. 12, no. 12, pp. 3885–

3889, 2017.

[33] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, X. Wang et al.,

“Effective and efficient malware detection at the end host.” in USENIX security sym-

posium, vol. 4, no. 1, 2009, pp. 351–366.

– 95 –

https://www.sciencedirect.com/science/article/pii/S1084804516301904
http://ieeexplore.ieee.org/document/7764294/
https://conferences.law.stanford.edu/cyberday/wp-content/uploads/sites/10/2016/10/5c_ISTR2016_Ransomware_and_Businesses.pdf
https://conferences.law.stanford.edu/cyberday/wp-content/uploads/sites/10/2016/10/5c_ISTR2016_Ransomware_and_Businesses.pdf
https://conferences.law.stanford.edu/cyberday/wp-content/uploads/sites/10/2016/10/5c_ISTR2016_Ransomware_and_Businesses.pdf

BIBLIOGRAPHY

[34] C. Pascariu and I.-D. Barbu, “Ransomware–an emerging threat,” International Jour-

nal of Information Security and Cybercrime, vol. 4, no. 2, pp. 27–32, 2015.

[35] E. S. Chia, “Singapore’s smart nation program — Enablers and challenges,” in 2016

11th System of Systems Engineering Conference (SoSE). IEEE, June 2016, pp. 1–5.

[Online]. Available: https://ieeexplore.ieee.org/document/7542892/

[36] R. Rayhana, G. Xiao, and Z. Liu, “Internet of Things Empowered Smart Greenhouse

Farming,” IEEE Journal of Radio Frequency Identification, vol. 4, no. 3, pp. 195–211,

September 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9051987/

[37] G. Xu, Y. Peng, W. Che, Y. Lan, W. Zhou, C. Huang, W. Li, W. Zhang, G. Zhang,

E. Y. K. Ng, and Y. Cheng, “An IoT-Based Framework of Webvr Visualization for

Medical Big Data in Connected Health,” IEEE Access, vol. 7, pp. 173 866–173 874,

2019. [Online]. Available: https://ieeexplore.ieee.org/document/8918431/

[38] I. Bin Aris, R. K. Z. Sahbusdin, and A. F. M. Amin, “Impacts of IoT and big data to

automotive industry,” in 2015 10th Asian Control Conference (ASCC). IEEE, May

2015, pp. 1–5. [Online]. Available: http://ieeexplore.ieee.org/document/7244878/

[39] N. H. Goddard, Human Activity Recognition Challenge, ser. Smart Innovation,

Systems and Technologies, M. A. R. Ahad, P. Lago, and S. Inoue, Eds. Singapore:

Springer Singapore, 2021, vol. 199. [Online]. Available: http://link.springer.com/10

.1007/978-94-015-8935-2_7http://link.springer.com/10.1007/978-981-15-8269-1

[40] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and

R. Fergus, “Intriguing properties of neural networks,” 2nd International Conference

on Learning Representations, ICLR 2014 - Conference Track Proceedings, December

2013. [Online]. Available: http://arxiv.org/abs/1312.6199

[41] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial Machine Learning at

Scale,” 5th International Conference on Learning Representations, ICLR 2017

– 96 –

https://ieeexplore.ieee.org/document/7542892/
https://ieeexplore.ieee.org/document/9051987/
https://ieeexplore.ieee.org/document/8918431/
http://ieeexplore.ieee.org/document/7244878/
http://link.springer.com/10.1007/978-94-015-8935-2_7 http://link.springer.com/10.1007/978-981-15-8269-1
http://link.springer.com/10.1007/978-94-015-8935-2_7 http://link.springer.com/10.1007/978-981-15-8269-1
http://arxiv.org/abs/1312.6199

BIBLIOGRAPHY

- Conference Track Proceedings, pp. 1–17, November 2016. [Online]. Available:

http://arxiv.org/abs/1611.01236

[42] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,

“The Limitations of Deep Learning in Adversarial Settings,” in 2016 IEEE European

Symposium on Security and Privacy (EuroSP). IEEE, March 2016, pp. 372–387.

[Online]. Available: http://ieeexplore.ieee.org/document/7467366/

[43] N. Carlini and D. Wagner, “Towards Evaluating the Robustness of Neural Networks,”

in 2017 IEEE Symposium on Security and Privacy (SP). IEEE, May 2017, pp.

39–57. [Online]. Available: http://ieeexplore.ieee.org/document/7958570/

[44] C. Xiao, B. Li, J. Y. Zhu, W. He, M. Liu, and D. Song, “Generating adversarial exam-

ples with adversarial networks,” IJCAI International Joint Conference on Artificial

Intelligence, vol. 2018-July, pp. 3905–3911, 2018.

[45] X. Han, Y. Hu, L. Foschini, L. Chinitz, L. Jankelson, and R. Ranganath,

“Deep learning models for electrocardiograms are susceptible to adversarial

attack,” Nature Medicine, vol. 26, no. 3, pp. 360–363, 2020. [Online]. Available:

http://dx.doi.org/10.1038/s41591-020-0791-x

[46] R. K. Sah and H. Ghasemzadeh, “Adar: Adversarial activity recognition in wear-

ables,” IEEE/ACM International Conference on Computer-Aided Design, Digest of

Technical Papers, ICCAD, vol. 2019-November, pp. 1–8, 2019.

[47] A. Kurniawan and I. Riadi, “Detection and analysis cerber ransomware using network

forensics behavior based.” International Journal Network and Security, vol. 20, no. 5,

pp. 836–843, 2018.

[48] A. Kurniawan, Y. Ohsita, and M. Murata, “Experiments on Adversarial Examples for

Deep Learning Model Using Multimodal Sensors,” Sensors, vol. 22, no. 22, p. 8642,

November 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/22/8642

– 97 –

http://arxiv.org/abs/1611.01236
http://ieeexplore.ieee.org/document/7467366/
http://ieeexplore.ieee.org/document/7958570/
http://dx.doi.org/10.1038/s41591-020-0791-x
https://www.mdpi.com/1424-8220/22/22/8642

BIBLIOGRAPHY

[49] A. Kurniawan, Y. Ohsita, S. Maisuria, and M. Murata, “Detection of sensors used

for adversarial examples against machine learning models,” Preprints, vol. 2023, p.

2023110328, 2023.

[50] A. Kurniawan, Y. Ohsita, and M. Murata, “Toward robust systems against sensor-

based adversarial examples based on the criticalities of sensors,” in 2024 IEEE 3rd

International Conference on AI in Cybersecurity (ICAIC). Houston, Texas, USA:

IEEE Conference Publications, 2024.

[51] R. Leong, C. Beek, C. Cochin, N. Cowie, and C. Schmugar, “Understanding ran-

somware and strategies to defeat it,” White Paper (McAfee Labs), pp. 1–16, 2016.

[52] McAfee Labs, “Understanding ransomware and strategies to defeat it,” Tech. Rep.,

2016. [Online]. Available: https://whitepapers.theregister.com/paper/view/4959/un

derstanding-ransomware-and-strategies-to-defeat-it

[53] S. Mansfield-Devine, “Ransomware: taking businesses hostage,” Network Security,

vol. 2016, no. 10, pp. 8–17, 2016.

[54] C. Beek, D. Dinkar, Y. Gund, G. Lancioni, N. Minihane, F. Moreno, E. Peterson,

T. Roccia, C. Schmugar, R. Simon et al., “Mcafee labs threats report,” McAfee, Santa

Clara, CA, USA, Tech. Rep, 2017.

[55] A. A. Ahmed and N. A. K. Zaman, “Attack intention recognition: A review.” Inter-

national Journal Network and Security, vol. 19, no. 2, pp. 244–250, 2017.

[56] T. Shibahara, T. Yagi, M. Akiyama, D. Chiba, and T. Yada, “Efficient dynamic

malware analysis based on network behavior using deep learning,” in 2016 IEEE

Global Communications Conference (GLOBECOM). IEEE, 2016, pp. 1–7.

[57] Sudhakar and S. Kumar, “An emerging threat fileless malware: a survey and research

challenges,” Cybersecurity, vol. 3, no. 1, p. 1, 2020.

– 98 –

https://whitepapers.theregister.com/paper/view/4959/understanding-ransomware-and-strategies-to-defeat-it
https://whitepapers.theregister.com/paper/view/4959/understanding-ransomware-and-strategies-to-defeat-it

BIBLIOGRAPHY

[58] M. H. Mate and S. R. Kapse, “Network forensic tool–concept and architecture,”

in 2015 Fifth International Conference on Communication Systems and Network

Technologies. IEEE, 2015, pp. 711–713.

[59] S. Davidoff and J. Ham, Network forensics: tracking hackers through cyberspace.

Prentice hall Upper Saddle River, 2012, vol. 2014.

[60] ——, Network forensics: tracking hackers through cyberspace. Prentice hall Upper

Saddle River, 2012, vol. 2014.

[61] A. Young and M. Yung, “Cryptovirology: Extortion-based security threats and coun-

termeasures,” in Proceedings 1996 IEEE Symposium on Security and Privacy. IEEE,

1996, pp. 129–140.

[62] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu, “Automated dynamic

analysis of ransomware: Benefits, limitations and use for detection,” arXiv preprint

arXiv:1609.03020, 2016.

[63] S. S. Ganorkar and K. Kandasamy, “Understanding and defending crypto-

ransomware,” ARPN Journal of Engineering and Applied Sciences, vol. 12, no. 12,

pp. 3920–3925, 2017.

[64] A. Provataki and V. Katos, “Differential malware forensics,” Digital Investigation,

vol. 10, no. 4, pp. 311–322, 2013.

[65] J. Li, Q. Li, S. Zhou, Y. Yao, and J. Ou, “A review on signature-based detection

for network threats,” in 2017 IEEE 9th International Conference on Communication

Software and Networks (ICCSN). IEEE, 2017, pp. 1117–1121.

[66] P. Szor, “The Art of Computer Virus Research and Defense,” 2005. [Online].

Available: https://api.semanticscholar.org/CorpusID:109797805

– 99 –

https://api.semanticscholar.org/CorpusID:109797805

BIBLIOGRAPHY

[67] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A survey on heuristic

malware detection techniques,” in The 5th Conference on Information and Knowledge

Technology. IEEE, 2013, pp. 113–120.

[68] S. M. Tabish, M. Z. Shafiq, and M. Farooq, “Malware detection using statistical

analysis of byte-level file content,” in Proceedings of the ACM SIGKDD Workshop on

CyberSecurity and Intelligence Informatics, 2009, pp. 23–31.

[69] N. Andronio, S. Zanero, and F. Maggi, “Heldroid: Dissecting and detecting mo-

bile ransomware,” in Research in Attacks, Intrusions, and Defenses: 18th Interna-

tional Symposium, RAID 2015, Kyoto, Japan, November 2-4, 2015. Proceedings 18.

Springer, 2015, pp. 382–404.

[70] J. K. Lee, S. Y. Moon, and J. H. Park, “Cloudrps: a cloud analysis based enhanced

ransomware prevention system,” The Journal of Supercomputing, vol. 73, pp. 3065–

3084, 2017.

[71] P. Zavarsky, D. Lindskog et al., “Experimental analysis of ransomware on windows

and android platforms: Evolution and characterization,” Procedia Computer Science,

vol. 94, pp. 465–472, 2016.

[72] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda, “{UNVEIL}: A

{large-scale}, automated approach to detecting ransomware,” in 25th USENIX secu-

rity symposium (USENIX Security 16), 2016, pp. 757–772.

[73] N. Zscaler, “White paper: Ransomware is costing companies millions. could it cost

you your job,” Tech. rep., Zscaler, 110 Rose Orchard Way, San Jose, CA 95134, USA,

Tech. Rep., 2016.

[74] A. Kurniawan, I. Riadi, and A. Luthfi, “Forensic analysis and prevent of cross site

scripting in single victim attack using open web application security project (OWASP)

framework,” Journal of Theoretical and Applied Information Technology, vol. 95, no. 6,

pp. 1363–1371, 2017.

– 100 –

BIBLIOGRAPHY

[75] N. Benchikha, M. Krim, K. Zeraoulia, and C. Benzaid, “IWNetFAF: An integrated

wireless network forensic analysis framework,” in Proceedings - 2016 Cybersecurity

and Cyberforensics Conference, CCC 2016, 2016.

[76] R. Joshi and E. S. Pilli, Fundamentals of Network Forensics. Springer, 2016.

[77] I. Riadi, J. E. Istiyanto, A. Ashari et al., “Log analysis techniques using clustering in

network forensics,” arXiv preprint arXiv:1307.0072, 2013.

[78] M. Baca, J. Cosic, and Z. Cosic, “Forensic analysis of social networks (case study),” in

Proceedings of the ITI 2013 35th International Conference on Information Technology

Interfaces. IEEE, 2013, pp. 219–223.

[79] D. Paul Joseph and J. Norman, “A review and analysis of ransomware using memory

forensics and its tools,” in Smart Intelligent Computing and Applications: Proceedings

of the Third International Conference on Smart Computing and Informatics, Volume

1. Springer, 2020, pp. 505–514.

[80] R. Umar, I. Riadi, and R. S. Kusuma, “Analysis of conti ransomware attack on com-

puter network with live forensic method,” IJID (International Journal on Informatics

for Development), vol. 10, no. 1, pp. 53–61, 2021.

[81] R. S. Kusuma, R. Umar, and I. Riadi, “Network forensics against ryuk ransomware

using trigger, acquire, analysis, report, and action (taara) method,” Kinetik: Game

Technology, Information System, Computer Network, Computing, Electronics, and

Control, 2021.

[82] D. J. Yeong, G. Velasco-hernandez, J. Barry, and J. Walsh, “Sensor and sensor fusion

technology in autonomous vehicles: A review,” Sensors, vol. 21, no. 6, pp. 1–37, 2021.

[83] H. Ichino, K. Kaji, K. Sakurada, K. Hiroi, and N. Kawaguchi, “HASC-PAC2016:

large scale human pedestrian activity corpus and its baseline recognition,” in

Proceedings of the 2016 ACM International Joint Conference on Pervasive and

– 101 –

BIBLIOGRAPHY

Ubiquitous Computing: Adjunct. New York, NY, USA: ACM, September 2016, pp.

705–714. [Online]. Available: https://dl.acm.org/doi/10.1145/2968219.2968277

[84] I. Debache, L. Jeantet, D. Chevallier, A. Bergouignan, and C. Sueur, “A lean and

performant hierarchical model for human activity recognition using body-mounted

sensors,” Sensors (Switzerland), vol. 20, no. 11, 2020.

[85] C. Benegui and R. T. Ionescu, “Adversarial attacks on deep learning systems for

user identification based on motion sensors,” in Neural Information Processing: 27th

International Conference, ICONIP 2020, Bangkok, Thailand, November 18–22, 2020,

Proceedings, Part V 27. Springer, 2020, pp. 752–761.

[86] R. Kumar Sah and H. Ghasemzadeh, “Adversarial Transferability in Wearable Sensor

Systems,” arXiv, vol. 1, no. 1, pp. 1–23, 2020.

[87] S. Jandial, P. Mangla, S. Varshney, and V. Balasubramanian, “AdvGAN++: Har-

nessing latent layers for adversary generation,” Proceedings - 2019 International Con-

ference on Computer Vision Workshop, ICCVW 2019, pp. 2045–2048, 2019.

[88] A. Liu, X. Liu, J. Fan, Y. Ma, A. Zhang, H. Xie, and D. Tao, “Perceptual-Sensitive

GAN for Generating Adversarial Patches,” Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 33, pp. 1028–1035, July 2019. [Online]. Available:

https://aaai.org/ojs/index.php/AAAI/article/view/3893

[89] Y. Kim, H. Kang, N. Suryanto, H. T. Larasati, A. Mukaroh, and H. Kim, “Ex-

tended spatially localized perturbation gan (Eslp-gan) for robust adversarial camou-

flage patches†,” Sensors, vol. 21, no. 16, pp. 1–18, 2021.

[90] W. Hackett, S. Trawicki, Z. Yu, N. Suri, and P. Garraghan, “Pinch: An ad-

versarial extraction attack framework for deep learning models,” arXiv preprint

arXiv:2209.06300, 2022.

[91] O. Banos, R. Garcia, J. A. Holgado-Terriza, M. Damas, H. Pomares, I. Rojas,

A. Saez, and C. Villalonga, “mHealthDroid: A Novel Framework for Agile

– 102 –

https://dl.acm.org/doi/10.1145/2968219.2968277
https://aaai.org/ojs/index.php/AAAI/article/view/3893

BIBLIOGRAPHY

Development of Mobile Health Applications,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2014, vol. 8868, no. January, pp. 91–98. [Online]. Available:

http://link.springer.com/10.1007/978-3-319-13105-4_14

[92] R. Mutegeki and D. S. Han, “A CNN-LSTM Approach to Human Activity

Recognition,” in 2020 International Conference on Artificial Intelligence in

Information and Communication (ICAIIC). IEEE, February 2020, pp. 362–366.

[Online]. Available: https://ieeexplore.ieee.org/document/9065078/

[93] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint

arXiv:1411.1784, 2014.

[94] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,”

34th International Conference on Machine Learning, ICML 2017, vol. 7, pp. 5109–

5118, 2017.

[95] Y. Senzaki, S. Ohata, and K. Matsuura, “Simple black-box adversarial examples

generation with very few queries,” IEICE Transactions on Information and Systems,

vol. E103D, no. 2, pp. 212–221, 2020.

[96] P. Karle, F. Fent, S. Huch, F. Sauerbeck, and M. Lienkamp, “Multi-Modal Sensor Fu-

sion and Object Tracking for Autonomous Racing,” IEEE Transactions on Intelligent

Vehicles, pp. 1–13, 2023.

[97] X. Zhang, P. Zheng, T. Peng, D. Li, X. Zhang, and R. Tang, “Privacy-preserving

activity recognition using multimodal sensors in smart office,” Future Generation

Computer Systems, vol. 148, pp. 27–38, may 2023.

[98] H. Zhou, Y. Zhao, Y. Liu, S. Lu, X. An, and Q. Liu, “Multi-Sensor

Data Fusion and CNN-LSTM Model for Human Activity Recognition System,”

Sensors, vol. 23, no. 10, p. 4750, May 2023. [Online]. Available: https:

//www.mdpi.com/1424-8220/23/10/4750

– 103 –

http://link.springer.com/10.1007/978-3-319-13105-4_14
https://ieeexplore.ieee.org/document/9065078/
https://www.mdpi.com/1424-8220/23/10/4750
https://www.mdpi.com/1424-8220/23/10/4750

BIBLIOGRAPHY

[99] L. Yuan, J. Andrews, H. Mu, A. Vakil, R. Ewing, E. Blasch, and J. Li,

“Interpretable passive multi-modal sensor fusion for human identification and

activity recognition,” Sensors, vol. 22, no. 15, 2022. [Online]. Available:

https://www.mdpi.com/1424-8220/22/15/5787

[100] F. Tramèr and D. Boneh, “Adversarial training and robustness for multiple perturba-

tions,” in Advances in Neural Information Processing Systems, vol. 32, no. NeurIPS,

2019, pp. 1–11.

[101] D. Kang, Y. Sun, T. Brown, D. Hendrycks, and J. Steinhardt, “Transfer of adversarial

robustness between perturbation types,” arXiv preprint arXiv:1905.01034, 2019.

[102] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A Simple Way to Prevent Neural Networks from Overfittin,” Journal

of Machine Learning Research 15, vol. 15, pp. 1929–1958, January 2014. [Online].

Available: https://linkinghub.elsevier.com/retrieve/pii/037026939390272J

– 104 –

https://www.mdpi.com/1424-8220/22/15/5787
https://linkinghub.elsevier.com/retrieve/pii/037026939390272J

	List of publication
	Preface
	Acknowledgments
	Introduction
	Malware and Ransomware
	Attacks on Machine Learning Models
	Outline of Thesis

	Analysis of Cerber Ransomware Behavior Based on Network Forensics
	Introduction
	Basic Theory
	Ransomware
	Cerber Ransomware
	Ransomware Detection Methods
	Network Forensics

	Methods
	OSCAR Methodology: A Comprehensive Framework for Network Forensics Investigations

	Results
	Analysis

	Conclusion

	Experiments on Adversarial Examples for Deep Learning Model Using Multimodal Sensors
	Introduction
	Related Work
	Definition of Adversarial Examples by Hacking a Small Number of Sensors
	Definition of Attack
	Generation of Attack

	Experiments
	Target Scenario
	Property of the Estimator.
	Demonstration of the Attack.
	Property of the Generated Attacks

	Discussion
	 Conclusions

	Detection of Sensors Used for Adversarial Examples Against Machine Learning Models
	Introduction
	Related Work
	Sensor-based Adversarial Examples.
	Framework Against Sensor-based Adversarial Examples.
	Feature Removable Model
	Detection of Attacks and Identification of Compromised Sensors

	Experiment.
	Original Target Model, Dataset, and Attacks
	Property of the Feature Removable Model Without Attack
	Property of the Attack
	Accuracy of Detection
	Accuracy of Detection of Sensors Used in Sensor-based AEs.
	Mitigation of Sensor-based AEs by Excluding the Detected Sensors

	Criticality of Sensors.
	Definition of Criticality
	Example of Criticality

	Discussion Toward Robust System Against Sensor-based AEs.
	Building a System
	Assessment of Importance of Class Identification
	Assessment of Risk
	Evaluation Based on Criticality and Update of the System

	Conclusions.

	Conclusion
	Bibliography

