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Abstract—In 5G, flexible resource management, mainly by base
stations, will enable support for a variety of use cases. However,
in a situation where a large number of devices exist, such as
in mMTC, devices need to allocate resources appropriately in
an autonomous decentralized manner. In this paper, autonomous
decentralized timeslot allocation is achieved by using a decision
model for each device. As a decision model, we propose an extension
of the Bayesian Attractor Model (BAM) using Bayesian estimation.
The proposed model incorporates a feature of human decision-
making called magnitude sensitivity, where the time to decision
varies with the sum of the values of all alternatives. This allows the
natural introduction of the behavior of making a decision quickly
when a time slot is available and waiting otherwise. Simulation-
based evaluations show that the proposed method can avoid time
slot conflicts during congestion more effectively than conventional
Q-learning based time slot selection.

Index Terms—Bayesian Attractor Model, Timeslot Allocation,
mMTC, 5G NR, Value-based Decision Making

I. INTRODUCTION

In recent years, 5G coverage areas have been gradually
expanding, and 5G is on the verge of becoming widespread.
The main feature of 5G is that different communication qualities
can be provided simultaneously by defining the communication
quality to be provided for each communication requirement of
the service [1]. Particularly representative are eMBB (enhanced
Mobile Broadband), URLLC (Ultra-Reliable and Low Latency
Communications), and mMTC (massive Machine Type Com-
munications). To realize these different communication types
simultaneously on the same communication infrastructure, dif-
ferent technological elements have to be assembled, and this is
likely to be the case for future communication schemes beyond
5G.

One of the key features in satisfying these different commu-
nication requirements simultaneously on the same substrate is
time slot allocation. 5G divides radio resources into time and
frequency and allocates them accordingly to satisfy different
communication requirements simultaneously. Basically, in the
case of 5G, the base station centrally determines the time slot
and frequency, and the terminal often follows accordingly [2],
[3]. However, in some cases, such as communication start time
and mMTC, where a large number of terminals are expected,
random access is used, where terminals select their time slots
autonomously.

In particular, in mMTC, there are many other devices, and
it is necessary to select a timeslot that does not collide with
other devices based on limited information about the movements
of all devices, which is not known. A simple way to avoid
collisions would be for all devices to transmit sparingly [4], but
excessive sparing of transmission will reduce overall throughput.
A method [5] that uses reinforcement learning to determine
the time slots to transmit has also been proposed, but it does
not include control over waiting to transmit and is limited to
situations where each device only sends a certain number of
packets.

In this paper, we propose an autonomous decentralized times-
lot allocation scheme, including transmission latency, inspired
by the human decision-making property [6]. Magnitude sen-
sitivity refers to the human tendency to make choices when
there are multiple alternatives with different values and is
influenced by the sum of the values of the alternatives (called
magnitude). It allows waiting to make a choice for a better
choice in the future [7]. Such properties are also known to
play an important role in consensus building in group decision-
making [8]. Autonomous decentralized timeslot allocation can
be viewed as consensus building regarding the timeslot to be
used by each device, which is a problem compatible with
magnitude sensitivity.

Our research group has applied a decision model called the
Bayesian Attractor Model (BAM) to several network control
problems (e.g., [9]). BAM is a model that takes observed
information as input, updates the internal state of the BAM
itself, and outputs the results of the decision process. The
original BAM does not take values as input, but rather instances
for typical patterns, but in this paper, we extend this to a
value-based decision model. As we will show later, there is
some magnitude sensitivity in the BAM itself when extended to
value-based decision-making. In addition, its similarity to other
decision models makes it easy to incorporate models with other
magnitude sensitivities.

Due to the applicability of such BAMs to network control
and their compatibility with magnitude sensitivity, this paper
proposes a method for autonomous decentralized timeslot allo-
cation using an extended model of value-based BAMs. In this
method, each terminal independently determines the timeslot to
be used. At this time, the terminal also considers the option of



not making a decision, i.e., waiting for transmission, according
to the magnitude sensitivity. After selecting a timeslot, the base
station provides feedback to the terminal on the availability of
the timeslot, and the terminal updates the value of the choice
and moves on to the next choice. Through the evaluation by
simulation, we show that the proposed method can determine
when to wait for a decision and when to make a decision,
depending on the situation, and make an appropriate choice.

The remainder of this paper is organized as follows. In
Section II, we propose a new model of magnitude-sensitive
decision-making that extends the Bayesian attractor model. In
Section III, we present an application of the proposed model
to achieve distributed timeslot allocation in a random access
environment at mMTC. In section IV, we evaluate the behavior
of the proposed model. Finally, in section V, we summarize and
discuss future work.

II. MAGNITUDE-SENSITIVE BAYESIAN ATTRACTOR MODEL

In this chapter, we propose a new model of decision-making
that is magnitude sensitive and highly applicable to engineering.
First, we introduce the basic model, BAM. Our research group
has applied BAM to various network control problems, and
BAM is a model with high applicability. However, since the
original BAM is a feature-based classification model, which
is different from the value-based decision-making targeted in
this paper, we introduce an extended BAM for value-based
decision-making. We then propose a new model that integrates
the conventional magnitude sensitivity models, LCA and IDN,
into the value-based BAM.

A. Value-based BAM
1) Bayesian Attractor Model: BAM [10] is a model of brain

decision-making that involves the process of updating internal
states based on observations, and making decisions based on the
updated internal states.

The original BAM models the process of reaffirmation, in
which features are used as input and representative values are
updated by comparing them to representative values bound to
a previously given choice, called an attractor. The specific state
update is performed by Bayesian updating based on observed
values, using the relationship between attractors and represen-
tative values, and the endogenous dynamics of the state as a
generative model. The generative model is as follows

zt = f(zt−1) + qwt (1)
xt = Mσ(zt) + svt (2)

where xt is the observed value, zt is the internal state, and
wt, vt is the noise. Eq. (1) is an expression for the internal
variation of the state, where f is the Hopfield dynamics with K
attractors ϕ1, · · · , ϕK . Eq. (2) is an expression for the relation
between representative values and attractors, where M is a
matrix of representative values µi corresponding to the attractor
ϕi and M = (µ1, · · · , µK). The σ(zt) is an element-wise
sigmoid function. Also, q, s are the parameters for the magnitude
of each noise term, called dynamic uncertainty and sensory
uncertainty.

2) Values as Observations and Representatives: As noted
above, the original BAM is a recognition model and does not
address the value of alternatives. In this paper, the observed and
representative values are changed to value-based values of the
alternatives in order to make value-based decisions in the BAM.

Let Vi,t be the value of choice ϕi at time t, and let BAM
obtain a value estimated value v̄i,t through reward feedback
information. This sequence of value estimates is the information
that BAM can observe at time t, and the observed value as value
is defined as xt = (v̄1,t, · · · , v̄K,t).

In value-based decision-making, we need to find the highest-
value alternative. To handle this in the recognition scheme
of BAM, the representative value µi of the choice ϕi is the
observed value such that the choice is of maximum value.
That is, using the standard value v̄ and the maximum value
v̄max = max{v̄1,t, · · · , v̄K,t}, we determine the representative
value as follows

µi = (v̄0, · · · , v̄0,
(i)

v̄max, v̄0, · · · , v̄0). (3)

In this paper, v̄0 = 0. The representative value closest to the
observed value xt is µmax, corresponding to the option with
the largest value ϕmax. Therefore, it is possible to choose the
option with the largest value as the scheme to recognize the
observed value.

In a normal BAM, the observed and representative values
are often normalized, but here the values are used as they are
without normalization. This leads to a large deviation from the
left-hand side of Eq. (2) in the case of large values. As a result
of Bayesian estimation, which attempts to eliminate this bias,
the magnitude sensitivity property is at work, shifting the update
of zt to a larger value.

3) Decision Process: In the original BAM, the alternative is
selected for which the confidence P (zt = ϕi|x1..t) is above
the threshold. On the other hand, in a value-based BAM, the
confidence level is determined by the relative proximity to the
largest value, so it is not appropriate to set a threshold that is
an absolute standard for the confidence level.

Therefore, ϕfirst and ϕsecond are selected if the ratio of the
confidence level of the top two options ϕfirst and ϕsecond is
greater than some threshold θ. In other words, ϕfirst is selected
if the following conditions are met, otherwise we wait for the
decision.

P (zt = ϕfirst|x1..t)

P (zt = ϕsecond|x1..t)
> θ (4)

where x1..t is a sequence of observations from time 1 to time
t.

B. BAM-LCA

LCA is a model of magnitude sensitivity decision-making
based on the diffusion model [11], [12].

In the diffusion model, the internal state is updated by a
drift term and a noise term, and decisions are made when the
internal state exceeds a threshold; in LCA, magnitude sensitivity
is expressed by varying the drift term in the diffusion model



in a stimulus size-dependent manner. Specifically, the internal
state Xi for each option is updated according to the following
equation.

Xi,t+1 = Ii(t) + (1− γ)Xi,t − β
∑
j ̸=i

Xj (5)

where Ii(t) represents the stimulus magnitude, and γ, β are
the parameters. The first term indicates that the more valuable
the choice, the larger the movement of the state. The second term
indicates self-activation, and the third term indicates suppression
of other choices by the active choice. In the steady state, only
one higher-value option is active, similar to BAM.

In value-based BAM, the definition of M,xt in eq. (2) indi-
rectly causes an internal state update according to the magnitude
of the value. However, it is s that controls the effect of Eq. (2) on
the state update. The smaller s is, the more strictly x follows
the equation, and the more deterministically x updates in the
Bayesian update.

Therefore, by varying s as a function of magnitude, the value-
based z update can be more directly controlled. In this paper, s
is varied by the reciprocal of the magnitude as follows.

s =
s0
Vt

(6)

where s0 is the reference sensory uncertainty and Vt =
∑

i v̄i
is the magnitude. Assume s0 = 1 unless otherwise noted.

C. BAM-IDN

IDN is also a model of decision-making with magnitude
sensitivity based on the diffusion model. Specifically, the noise
term ξi,t is given by

ξi,t ∼ N(0, πv̄2i + σ2) (7)

where π, σ are parameters. When the value is large, the variance
of the noise term is larger and the diffusive state change is
accelerated. As a result, the time it takes for the state to cross the
threshold is reduced and decisions are made faster in situations
where the value is large.

In the BAM, the parameter that controls the magnitude of the
noise term is q. Therefore, by varying the magnitude of q in a
value-dependent manner, an effect similar to that of IDNs can
be realized. In this paper, the generating distribution of q and
the gamma distribution are given by the following equation, so
that the expected value of q depends on the magnitude.

q ∼ Γ(kΓ, θΓ) (8)
E[q] = kΓθΓ = πV 2

t + σ2 (9)

where kΓ, θΓ are the parameters of the gamma distribution
and satisfy Eq. (9). However, since there remains 1 degree of
freedom in the parameters, we shift θΓ and set kΓ =

πV 2
t +σ2

θΓ
.

In this paper, θΓ = 6, π = 1, σ = 0 unless otherwise noted.

III. DISTRIBUTED TIMESLOT ALLOCATION WITH
VALUE-BASED BAM

Autonomous decentralized timeslot allocation is performed
using the value-based extended BAM model proposed in the
previous chapter. In this method, each device independently
makes decisions based on the value-based BAM model and
selects a timeslot to transmit. Appropriate timeslots are selected
by receiving value-based feedback from the base station about
timeslot congestion. First, the assumed system model is de-
scribed. Then, the specific application of value-based BAM to
timeslot decision-making is described.

A. System Model

In this paper, we assume a system model that is nearly
equivalent to that in Ref. [5]. The main change is that in the
reference [5], the number of packets to be sent by the device is
assumed to be fixed at the beginning, whereas in this paper, the
packets to be sent by the device are assumed to be generated on
a continuous basis. This is considered to be more compatible
with mMTC use cases, such as sensor networks.

Assuming an mMTC network, all N devices send data to the
base station. A subframe consists of K timeslots.

Only if only one device chooses to send a packet for a given
time slot, the packet transmission is considered successful. If
two or more devices are in use in the same time slot, there
is a collision and the packet transmission will fail. If the
transmission fails, it is up to the application to decide whether
to retransmit the packet, which is described by the packet
generation process. To simplify the analysis, physical channel
losses such as multipath fading are assumed to be negligible.

Before the start of the next subframe, the base station feeds
back to the devices the congestion in the time slot quantized in
b bits. When the number of devices is less than the subframe
length, it is more efficient to provide feedback on a per-
device basis, but when the number of devices exceeds the
subframe length, it is more efficient to broadcast information on
a per-timeslot basis. mMTC mainly assumes a large number of
devices, so it is more efficient to broadcast information on a per-
timeslot basis. Feedback is assumed to broadcast the congestion
level of each timeslot.

B. Timeslot Allocation

Each device independently makes decisions about timeslot
selection and transmission waiting through value-based BAM.
Each device updates its internal state based on feedback from
the base station and incorporates it into the next decision.
The following sections describe the attractors and how to map
decisions to timeslot selection in value-based BAM.

1) Attractor: K attractors ϕ1, · · · , ϕK corresponding to the
K timeslots in the subframe are prepared. The attractor ϕK

corresponds to the selection of the Kth time slot.
2) Value of Timeslot: The value-based BAM estimates the

value of each attractor from the feedback and uses the estimated
v̄k,t as the observed value to update the internal state.

In the feedback information, a value of 1 is given for a
successful transmission, and a negative value is given for a



collision, discretized by b bits of congestion in the timeslot.
More specifically, the value of timeslot k at time t is given by

vk,t =

{
+1 if transmission succeeds

−Mb(
Nk,t

N ) otherwise
(10)

where Mb(x) is the discretized value of congestion in b bits,
and B = 2, Mb(x) ∈ 0.25, 0.5, 0.75, 1. Let Nk,t denote the
number of devices that have selected timeslot k at time t. We
assume broadcast feedback in this paper.

The feedback value reflects instantaneous congestion in a
subframe. Since this value includes temporary congestion, we
try to get a more stable understanding of congestion by using
time-smoothed estimates. That is, as feedback is received, the
estimates are updated as follows

v̄k,t = (1− α)v̄k,t + αvk,t (11)

where α is the smoothing parameter. Unless otherwise noted,
α = 0.3 is used in this paper. This corresponds to the Q value.
In the case of Q-learning, updating all time slots is negative
because Q-value synchronization causes congestion in a time
slot. In value-based BAM, on the other hand, the BAM itself
has the consistency of decision-making as an internal state, so
even if value updates are synchronized, each device can remain
in a different selection state. Therefore, for value-based BAMs,
the update of v̄k,t is performed for all timeslots.

3) Decision: In value-based BAM, the maximum confidence
selection is made if the ratio of the confidence levels for the
top two choices exceeds the threshold, otherwise, a decision
is awaited. If the attractor ϕk is selected, it selects timeslot k
and attempts to transmit the packet. On the other hand, if no
decision is made in this subframe, no timeslot is selected and
packet transmission waits until the next subframe.

IV. EVALUATION

The proposed model and its application to autonomous de-
centralized timeslot allocation are evaluated by simulation. In
this chapter, we confirm that the proposed model is magnitude
sensitive and investigate how the selection tendency is affected
by magnitude. Then, we evaluate by simulation the behavior of
the proposed model when applied to timeslot allocation under
the assumption of mMTC.

A. Magnitude Sensitivity of the Model

Using a numerical example, we confirm the magnitude sen-
sitivity of the value-based BAM described in section II. By
directly changing v̄1,t, · · · , v̄K,t, the inputs in the value-based
BAM, we can see how the behavior of the model changes with
the magnitude of the value.

Figure. 1 shows the decision time and accuracy for different
magnitudes. In the figure, ”BAM” represents value-based BAM,
”IDN” represents BAM-IDN, and ”LCA” represents the results
of BAM-LCA. accuracy indicates the percentage of time the
decision at each time point is consistent with the correct answer.

The figure shows that all models show magnitude sensitivity,
which means that the speed of decision-making increases as the

magnitude increases. This tendency is particularly pronounced
for BAM-IDN and BAM-LCA, which are magnitude-sensitive
extensions of value-based BAM.

Accuracy is also found to improve with increasing magnitude.
In general, it seems that the earlier the decision is made, the
lower the accuracy. However, in the present case, the total
number of correct answers increases with the earlier decision,
because the state of waiting for a decision is automatically
assumed to be incorrect.

BAM-LCA has better decision time and accuracy than other
models, but this may be due to the magnitude improvement
in decision behavior. Originally, in BAM, the decisive action
brings us closer to the prepared choice, so by emphasizing this
behavior, we quickly arrive at the correct answer.

B. Simulation of Timeslot Allocation in mMTC
To confirm the effectiveness of autonomous decentralized

timeslot allocation in mMTC with magnitude-sensitive BAM,
we evaluate the proposed method by simulation. In the simula-
tion, each device continuously sends packets to the base station,
and the proposed method is used to select the timeslot in which
the packets are sent.

1) Setting: As described in section III-A, N devices oc-
cupy K timeslots simultaneously. A device decides whether to
transmit a packet per subframe and, if so, chooses a timeslot.
The number of timeslots per subframe is determined by the
numerology µ, where K = 2µ. Unless otherwise noted, µ = 4.
Since we wanted to check the response to changes in spatial
load, N was allowed to vary during the simulation.

Before the next subframe starts, the base station gives feed-
back to the device. The feedback is a discretized value of
congestion in b bits. We chose b = 2 to match the settings
in Ref. [5].

Collision and efficiency are used as performance metrics.
collision is the ratio of the number of timeslots in which
collisions occur out of K timeslots. Efficiency is the ratio of the
number of timeslots in which communication succeeds out of
K timeslots. Therefore, the smaller the collision and the higher
the efficiency, the more appropriate timeslot allocation can be
achieved by avoiding collisions.

2) Behavior of Each Model: To verify the behavior of each
model, we first check the time slot allocation for value-based
BAM and BAM-IDN and BAM-LCA, respectively. The number
of devices is assumed to be N = 10 to see if collision avoidance
can be achieved in a situation where collisions are in principle
avoidable.

Figure 2 shows the time series of collisions resulting from
the time slot allocation when using each model. One step on the
horizontal axis represents one subframe and the vertical axis is
the percentage of collisions that occurred during that subframe.
”BAM”, ”IDN” and ”LCA” represent the results of value-based
BAM, BAM-IDN, and BAM-LCA, respectively.

The figure shows that BAM-LCA achieves collision avoid-
ance. Value-based BAM also shows a gradual decrease in
collisions, but not to the point of collision avoidance. In addition,
BAM-IDN shows an increase and decrease in collisions due to
noise-induced changes in decision-making.
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V. CONCLUSION

In this paper, magnitude-sensitive decision models are applied
to achieve autonomous decentralized timeslot allocation for
mMTC networks. Based on these models, we proposed the
magnitude-sensitive BAM, BAM-LCA, and BAM-IDN, which
are extensions of BAM. Using these models, we proposed a
method in which each device autonomously and decentrally
selects an appropriate timeslot through feedback that reflects the
value of timeslot congestion. Through simulation-based evalu-
ation, we showed that BAM-LCA can avoid timeslot collisions
compared to other methods. We also showed that BAM-LCA is
more efficient in timeslot utilization, especially when the number
of devices is large.

Future work includes a comprehensive performance evalua-
tion in various settings and a study of how to switch to more
appropriate decisions based on the number of devices.
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