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Background
• The spread of various internet services

• Growing need to provide a flexible network

• Network slicing
• Construction multiple virtual networks (VNs)

on a substrate network (SN)

• Virtual Networking Embedding (VNE)
• The resource allocation problem to

determine the mapping between elements
of SN and VNs

Network Slices (Virtual Networks)

Substrate Network

Fig. The model of network slicing
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Problems
• VNE problem is NP-hard

• It is difficult to derive the optimal solution
in the modern huge network

• Many heuristics have been proposed

• Dynamic environment in practical use
• Changes of network condition, user request, …

• Need to solve VNE adaptively
• To derive a feasible solution after such changes

utilizing previous solutions

More CPU
More 

bandwidth

Server 
error

Throughput
degradation

Fig. Changes of VNE environment
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Purpose and method
• Solving VNE adaptively to environmental change

• Utilizing the previous solutions
to develop a new solution immediately

• Genetic algorithm (GA)
• Based on a model of organism evolution

• Conventional GAs tend to decrease diversity

• Quality-Diversity (QD) algorithm
• The methods proposed to generate

diverse and superior solutions

• We focused on one of them, MAP-Elites
Fig. Genetic algorithm

Previous solutions

Next solutions

Selection

Crossover

Mutation
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Method
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The formulation of VNE Problem
• SN and VN are modeled as undirected graphs

• SN: 𝐺𝑆 = 𝑁𝑆, 𝐿𝑆, 𝑅𝑆
𝑛 , 𝑅𝑆

𝑙

• VN: 𝐺𝑉 = 𝑁𝑉 , 𝐿𝑉 , 𝑅𝑉
𝑛 , 𝑅𝑉

𝑙

• A solution of VNE is mapping 𝑀
• 𝑀: 𝑁𝑉 , 𝐿𝑉 → 𝑁𝑆

′, 𝑃𝑆
′ , 𝑁𝑆

′ ⊂ 𝑁𝑆
• 𝑃𝑆

′ is a subset of substrate paths

• Resource requirements must be satisfied
• e.g. 𝑅𝑉

𝑛 𝑛1
𝑉 < 𝑅𝑆

𝑛(𝑛4
𝑆)

• 𝐺𝑉 and 𝑁𝑆
′, 𝑃𝑆

′ must have the same topology Fig. Example of VNE
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The details of MAP-Elites
• Search for diverse solutions in a feature space

• The feature space consists of user-designed variables
and is divided into cells at a certain granularity

• Output the best solution within each cell

• The algorithm is below:
1. Generate an initial population at random

2. Select an individual from population at random

3. Mutate a copy of the selected individual

4. Evaluate fitness and features of a new individual

5. It compete with the existing individual in the cell
(return to 2)
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Fig. MAP-Elites algorithm
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The design of feature space
• Important to search for solutions efficiently

• The dimension of feature space is lower than that of problem space

• Diverse feasible solutions should be spread in feature space

• Features we designed are below:
• Feature 1: The total amount of substrate node resources 

allocated to virtual nodes

• Feature 2: The total hops of the substrate paths 
assigned to virtual links
• We also intend to separate the node and path selections 

into each feature
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Fig. Feature space
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The encoding of solutions 
• Encode a mapping into a genotype

• Encode the correspondences between 
elements of SN and VN directly

• Limit the search space
• To make it possible to encode a mapping 

with a finite fixed gene length

• A substrate path is selected from only 
the k-shortest paths

Fig. Encoded solution
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The definition of fitness
• The population evolves so that its fitness becomes higher

• Define fitness to direct the evolution appropriately

• Fitness: 𝐹 𝑀 = 𝑅 𝑀 − 𝜆𝑃 𝑀
• 𝑅 𝑀 : total amount of residual resources

• Evolve to decrease usage of substrate resources

• 𝑃 𝑀 : penalty term
• The difference between resource requirements

and resource allocated actually

• Evolve to satisfy resource requirements
(𝜆 is set adequately large)

𝑅𝑉
𝑛 𝑛2

𝑉 = 3.0

𝑅𝑆
𝑛 𝑛2

𝑆 = 2.6

violation

𝑃 𝑀 = 3.0 − 2.6

Fig. Resource requirement violation
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Evaluation
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Evaluation method
• We conducted computer simulations of dynamic VNE problem

• Examine the effect of using QD algorithm
• Compare MAP-Elites with conventional GAs and another QD algorithm

• Embed a single VN into a SN in each simulation
• A specific substrate node failure happens at a certain time

• Simulations are performed 30 times for 100 different settings

• Compare the means of the metrics below
after the environmental change
• Acceptance rate:  the percentage of cases 

where a feasible solution is found in the duration

• Immediate acceptance rate: the percentage of cases 
where a feasible solution exists in the population at the environmental change

SN

VN

embed

100 pairs of
30 times for each pair

Node failure

Immediate acceptance rate

Acceptance rate

Simulation duration
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Algorithms used for comparison
• The algorithms we used for comparison are below:

• Elitism-based GA (EGA)
• A basic GA that carries over the best individual to the next population for its steady evolution

• Steady State GA (SSGA)
• A variant of GA that replaces the worst individual with a new individual in the population

• Not generating a new population so that there is no generation gap

• This characteristic is in common with MAP-Elites

• Novelty Search and Local Competition(NSLC)
• One of the QD Algorithms

• Multi-objective optimization for novelty and local competitiveness

• Novelty: the average Euclidean distance to the k nearest neighbors on the feature space

• Local competitiveness: the relative fitness in the k nearest neighbors

• SSGA is used for optimization in this simulation
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Results
• Acceptance rate

• No major difference

• Only SSGA is lower because of
the decrease of diversity

• Immediate acceptance rate
• The QD algorithms are superior to 

the others

• No major difference between the two 
metrics in QD algorithms
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Discussion
• Solution diversity is effective for dynamic VNE

• The difference of acceptance rates 
between EGA and QD algorithms is small

• The diverse and superior solutions found 
by QD algorithms make possible to adapt 
for environmental changes more rapidly

• Tolerance of methods using QD algorithms
• The extent of performance degradation in the case

when the substrate nodes with larger resources become
unavailable is small in QD algorithms

• Solutions independent of substrate nodes 
with larger resources are found in QD algorithms
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Conclusion and future work
• We proposed the method of dynamic VNE using MAP-Elites

• The mechanism of evolution enables to adapt to environmental changes

• The solution diversity of QD algorithms leads to immediate adaptation
• The failure tolerance due to finding solutions independent of important nodes

• Future works
• Better design of feature space to search for solutions more efficiently

• Developing the method assuming more practical scenario
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