
Date of current version May 9, 2024.

Digital Object Identifier

Resource Allocation Considering Impact
of Network on Performance in a
Disaggregated Data Center
AKISHIGE IKOMA1, YUICHI OHSITA2, (MEMBER, IEEE), AND MASAYUKI MURATA1,
(MEMBER, IEEE)
1Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan (e-mail: a-ikoma@ist.osaka-u.ac.jp;
murata@ist.osaka-u.ac.jp)
2Cybermedia Center, Osaka University, Toyonaka 560-0043, Japan (e-mail: y-ohsita@ist.osaka-u.ac.jp)

Corresponding author: Akishige Ikoma (e-mail: a-ikoma@ist.osaka-u.ac.jp).

This work was partially supported by the National Institute of Information and Communications Technology (NICT) under Grant Number
JPJ012368C00101.

ABSTRACT A disaggregated data center (DDC) can efficiently use resources such as CPU and memory.
In a DDC, because each resource is independent and connected by a network, communication between
resources is required for task execution. Communication delays can be an overhead for task execution,
causing performance degradation. Because communication delays depend on the correspondence between
resources on the network and the paths over which they communicate, an efficient resource allocation
method is required to determine this relationship. Herein, we propose a resource allocation method called
RA-CNP to execute many tasks simultaneously while satisfying performance requirements. This method
models the impact of the network on the performance of tasks for the provided service. Furthermore, this
method defines a resource allocation problem to avoid the allocation of resources that will be requested in
the future. We evaluated the effectiveness of our method by simulating various DDC networks, assuming
a DDC at the edge. The results demonstrated that RA-CNP could execute more tasks than conventional
methods could, without violating performance requirements, based only on current network information in
both networks configured by circuit and packet switches. RA-CNP could allocate resources in less than 10 s,
even in a relatively large network configured with 64 switches; this capability demonstrates its practicality.

INDEX TERMS Disaggregated data center, optical network, resource allocation, resource disaggregation

I. INTRODUCTION

IN recent years, numerous services provided via cloud
computing have emerged. However, cloud-based services

are associated with problems such as latency and dense net-
work traffic. Edge computing addresses these problems [1].
This technology deploys small data centers near the users.
Because these data centers are located near the user and
can process data locally, they are effective for time-sensitive
services such as automated driving and face recognition [2].
The number of edge devices is expected to increase further
in the future, and a data center on the edge must execute
more service tasks [2]. Nevertheless, a data center on the
edge has fewer resources than those with larger cloud data
centers. Therefore, optimal resource utilization for each task
is key [3].

Flexible resource allocation via infrastructure virtualiza-

tion and optimization of resource utilization have been con-
sidered potential ways to achieve this goal [4]. However, in
traditional architectures where resources such as CPU and
memory are aggregated on a server, per-resource flexible
management is limited [5]. For example, if four tasks re-
quiring 2 cores and 4 GB of memory are allocated to a
server with a 16-core CPU and 16 GB of memory, 8 CPU
cores are unavailable for other tasks owing to the absence
of available memory resources. One approach to solving
such inefficient resource usage is resource disaggregation [6].
Resource disaggregation refers to the use of an architecture
constructed from resources such as CPUs and memory that
are connected by a network. The resources in this architecture
can be easily upgraded and flexibly used by allocating only
the required number of resources to each task. This can be
done because each resource is independent, in contrast to the

VOLUME -, - 1

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

case of a traditional data center where resources are aggre-
gated into servers [7]. Owing to these advantages, resource
disaggregation has been considered in various areas, such
as serverless computing, big data processing, and database
processing [8]–[10]. Therefore, we focused on a data center
applying resource disaggregation (hereafter referred to as a
disaggregated data center (DDC)), as shown in Fig. 1 and
aim to configure a DDC that can execute many service tasks
simultaneously.

Tradi�onal data center

DC内NW

CPU

CPU GPU

NIC RAM

RAM GPU

storage

Network
…

rack 1 rack 2 rack n

CPU

RAM

IO

NIC

Server Disaggregated data center

Network

FIGURE 1. Traditional data center and disaggregated data center.

When a task for a service is executed in a DDC, after the
required resources to execute the task are selected, the task
must be executed via communication between the selected
resources. Because resources are connected by a network, the
task execution time increases with the duration of the com-
munication delay between resources. In particular, communi-
cation delay between the CPU and memory has a significant
effect on task execution time [7]. A DDC may not be able
to provide the service in the required time because of this
problem. Therefore, a DDC consisting of an optical network
that has been configured with optical circuit switches and
optical packet switches and that enables communication with
low latency and high bandwidth has been proposed [11], [12].
In this DDC, resource disaggregation has been demonstrated
to be more effective than traditional architectures in terms of
resource utilization and energy consumption. Furthermore, in
[13], resource disaggregation via optical interconnects was
evaluated using actual equipment. Resource disaggregation
is a feasible approach for improving resource utilization.

However, achieving efficient resource utilization in a DDC
only by improving network performance is difficult. Commu-
nication delay between resources also depends on routing be-
tween resources [14]. The resource allocation method, which
determines the CPUs and memories that execute tasks and the
network resources that constitute the communication path, is
also important for a DDC. In particular, network resource
allocation has a significant impact on the performance of
tasks [15]. If the path between the CPU and memory to
execute a task has many hops, it takes more time for the
CPU to retrieve data from memory. Furthermore, if a network
resource with high traffic is allocated as a path between
resources, congestion may occur. In these cases, the time
required to complete a task increases, and the performance
requirements of tasks may no longer be satisfied. As a result,
the execution of many tasks becomes more difficult. Because
this problem can occur in any network configuration, an
efficient resource allocation method considering the impact

of the network on the performance of tasks is required for a
DDC.

However, only considering the impact of the network
on the performance of tasks is not sufficient to execute
many tasks. For example, we assume a case where low
latency network resources are allocated regardless of the
performance requirements of tasks to minimize performance
degradation. Because available network resources are not
infinite, available paths for tasks with strict time constraints
may be exhausted even if there are available resources for
task execution. If tasks with long time constraints avoided
using network resources with low latency, this situation could
have been prevented. Preserving the resources required by
future tasks considering the impact of the network on the
performance of tasks and performance requirements is im-
portant.

We emphasize that resource allocation methods for a tra-
ditional data center are insufficient for resource allocation
in a DDC. In a DDC, communication delays can occur just
as a computational resource, such as a CPU or GPU, reads
data from memory, resulting in increased task execution time.
By contrast, because resources are connected on the mother-
board in traditional data centers, network communication is
absent between resources involved in task execution. Because
of this difference, a resource allocation method for a DDC is
required. Resource allocation methods have been proposed
for a DDC [14]–[17], but these methods do not consider
the impact of the network on the performance of each task
and future tasks. Instead, they allocate network resources to
minimize performance degradation. Because it is important
to preserve the resources required for future tasks, these
methods are not sufficient to execute many tasks in a DDC.

We have previously proposed a resource allocation method
that considers the impact of the network on performance
(hereafter called RA-CNP) [18]. In that study, we modeled
the impact of the allocated resources on the time required to
complete a task based on the communication delay between
execution resources. In addition, when multiple candidate
resources existed, we avoided allocating high-performance
and low-latency network resources that may be requested in
the future to execute more tasks. We defined the resource
allocation cost in terms of resource importance; moreover,
we formulated a resource allocation problem to satisfy the
performance requirements of a task and to select the candi-
date with the smallest cost. By not using resources with high
costs, a DDC preserves those that can be used in future task
requests, thereby executing more tasks.

This paper is an extension of a previous study [18], in
which only packet switch networks were assumed, even
though several DDCs composed of optical circuit switches
have been proposed. Therefore, we extended the model repre-
senting the network impact on performance to a general form
to support both networks configured by circuit and packet
switches. Then, we evaluated the effectiveness of RA-CNP
by comparing it with other methods in networks configured
by circuit and packet switches. By contrast, the previous

2 VOLUME -, -

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

study has only evaluated small networks and has not shown
effectiveness in a DDC of the scale that we have envisioned.
Therefore, we evaluated the effectiveness of RA-CNP in a
larger network. Moreover, the effectiveness of RA-CNP has
only been demonstrated in a solution derived via ant colony
optimization, and the optimal solution to the defined resource
allocation problem has not been verified. In this study, we
also evaluated the optimal solution for RA-CNP. Finally, we
investigated whether RA-CNP can allocate resources within
a practical computation time.

The main contributions of this study are as follows:
• We modeled the impact of computational and network

resources on task performance in a general form.
• We proposed a resource allocation method to execute

many tasks simultaneously, RA-CNP, based on our
model and the resource allocation problem.

• We demonstrated that RA-CNP can enable the comple-
tion of many tasks within their acceptable time and can
allocate resources in a practical computation time.

The remainder of this paper is organized as follows:
Section II discusses related work. Section III provides an
overview of the resource allocation method. Section IV dis-
cusses the simulations used to evaluate the effectiveness of
RA-CNP and the computational time. Finally, Section V
concludes this paper.

II. RELATED WORK
A DDC is constructed using resources such as a CPU, a
GPU, and memory connected by a network. Resource disag-
gregation improves resource utilization and scaling flexibility
[19]. After the necessary execution resources are determined,
a task executed in a DDC is processed via communication
between the selected resources.

A DDC architecture must consider the following aspects:
(1) processing tasks in a DDC, (2) connection of resources,
and (3) allocation of resources. In the remainder of this
section, we discuss existing reports on DDC architectures.

A. PROCESSING SYSTEM
In a DDC, resources are distributed. A system is required to
manage these resources and execute tasks.

LegoOS has been proposed as an operating system for
resource disaggregation [20]. This system divides operating
system functions according to each disaggregated resource
and manages them in a decentralized manner. Furthermore,
the operating system demonstrates compatibility with Linux
and the feasibility of application deployment. This system
can be used to run existing applications and feasibly imple-
ment a DDC.

B. RESOURCE CONNECTION
In a DDC, performance degradation due to communication
delays between resources is significant, and nanosecond
resource communication is required [7]. Therefore, DDCs
require high-bandwidth and low-latency switches to reduce
performance degradation.

Optical switching has been proposed to enable high-
bandwidth and low-latency communication [11], [12], [21],
[22]. Zervas et al. proposed a network architecture for a DDC
using optical circuit switches [11]. Owing to the configu-
ration of the optical circuit switches, the resources could
communicate at low latency. The researchers demonstrated
that the blocking rate for resource requests was lower than
that of traditional data centers. Yan et al. also proposed a
disaggregated architecture configured by an optical circuit
switch for machine learning and demonstrated that optical
interconnection can improve the utilization of disaggregated
resources [22]. Optical circuit switches must establish a
direct connection between input and output ports for com-
munication between resources. Because of this characteristic,
the path between resources is dedicated to that resource
pair. DDC configured by optical packet switches as well as
optical circuit switches has been studied [12], [21]. Terzeni-
dis et al. proposed a network for a DDC configured by
optical packet switches [21]. Switching delays were reduced
to nanoseconds, demonstrating the feasibility of resource
disaggregation using packet switches. Guo et al. proposed
a DDC architecture based on hybrid switches, including an
optical circuit switch with many ports and an optical packet
switch with few ports, and they achieved efficient resource
utilization [12]. Because packet switches can route data to
the appropriate port based on the destination address of the
packets, the connection between input and output ports is not
fixed. Therefore, the path between resources is not dedicated,
and a network resource can be used for communication
between multiple resources. However, the latency between
resources is greater than that in optical circuit switch net-
works.

Resources connected via optical networks can communi-
cate with low latency, thereby reducing performance degra-
dation. However, if resource allocation is inefficient, the
number of tasks that can be executed is limited, even on an
optical network. Fig. 2 shows examples of inefficient and
efficient resource allocation. This example assumes that tasks
with short time constraints are requested after resources are
allocated for tasks with long time constraints. In the case of
inefficient resource allocation, resource pairs that can com-
municate in fewer hops are allocated for tasks with long time
constraints. Because of this, the next requested task is forced
to use resource pairs that require many hops to communicate.
As a result, all the requested tasks cannot be executed. In the
case of efficient resource allocation, avoid allocating resource
pairs that can communicate in fewer hops because tasks with
long time constraints do not necessarily require minimizing
performance degradation due to communication between re-
sources. As a result, tasks with short time constraints can also
be executed because resource pairs that can communicate
at the lowest hop exist. Thus, when available resources are
severely limited due to inefficient resource allocation, future
tasks may be forced to utilize resource pairs that cannot
satisfy performance requirements. We emphasize that this
can occur regardless of network architecture. This is because

VOLUME -, - 3

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

C M

C M

SS

SS
C C

C C

SS
M M

SS

M M

SS

SS
C C

C C

SS
M M

SS

M M

SS

SS
C C

C C

SS
M M

SS

M M

Requested two tasks with long �me constraint
(required one CPU and memory)

Requested task with short �me constraint
(required one CPU and memory)

Example of inefficient resource alloca�on

Example of efficient resource alloca�on

Have only resource pairs that require
many hops for communica�on

C M

Requested task cannot be executed to
sa�sfy the performance requirements

Capable of execu�ng all tasks to sa�sfy
performance requirements

Allocate resource pairs that can
communicate in fewer hops

Avoid alloca�ng resource pairs that can
communicate in fewer hops

Have resource pairs that can
communicate at the lowest hop

CAllocated memory Allocated CPU Link SwitchM S

CM Available CPUAvailable memory Allocated link

SS

SS
C C

C C

SS
M M

SS

M M

FIGURE 2. Example of inefficient resource allocation and efficient resource
allocation.

available resources and network resources are finite, regard-
less of network architecture. Individual execution resources
can only handle a limited number of tasks. Then, available
network resources are not also infinite due to bandwidth
constraints or dedicated network resources (in the case of
a network with optical circuit switches). Therefore, when
many tasks are executed, available resources are reduced, and
flexible selection of execution resources becomes difficult in
any network. This can create a situation where inefficient
allocation of a task inhibits the allocation of other tasks,
as shown in Fig. 2. An efficient resource allocation method
considering the impact of the network on performance and
future tasks is required to execute many tasks simultaneously
for a DDC.

C. RESOURCE ALLOCATION
To execute a service task, the resources that will be used to
run the task and the paths that will be used to communi-
cate between those resources must be determined. Although
resource allocation methods have been proposed for tradi-
tional data centers, they are not suitable for DDCs. Because
resources are connected on the motherboard in traditional
data centers, network communication is lacking between
resources involved in task execution. On the other hand, in
a DDC, network communication between resources occurs
when tasks are executed. Because task execution time is
affected by the communication delay between resources, a
resource allocation method for a DDC considering this aspect
is required [16].

Several resource allocation methods have been proposed
for a DDC [14]–[17]. The characteristics of each method,
in terms of objective and approach, are shown in Table 1.
We analyze whether existing studies are sufficient to execute
many tasks while satisfying performance requirements based

on Table 1. Papaioannou et al. proposed a resource alloca-
tion to minimize the performance degradation of requested
tasks by minimizing a metric based on the bandwidth and
latency of paths [15]. The authors demonstrated that this
method can improve resource utilization without affecting
task performance in a DDC configured by an optical circuit
switch and an electrical packet switch. Zervas et al. proposed
a resource allocation method to minimize round-trip latency
between execution resources in requested tasks by minimiz-
ing a metric based on bandwidth and link distance [14]. The
authors demonstrated that this method can improve resource
utilization in a DDC configured with optical circuit switches.
These methods [14], [15] consider only the task requested
at that time and preferentially allocate resources that can
communicate with low latency regardless of the performance
requirements of the task. Resources required for tasks with
strict performance requirements, where low-latency commu-
nication is essential, may soon be depleted. As a result,
many tasks cannot be executed. Amaral et al. proposed a
resource allocation method to minimize the execution time
of requested tasks while avoiding performance degradation
of running tasks [16]. This method prevents performance
interference between running tasks and the requested task,
considering the execution time calculated based on network
load. In this method, resources are allocated to minimize
the execution time of the requested task at that time. There-
fore, it does not also consider future tasks. Furthermore,
this method calculates execution time directly from network
load by using statistical data. Therefore, this method cannot
consider the impact of communication delays between re-
sources on performance. It is not possible to optimize routing
between resources while considering task performance. Guo
et al. proposed a resource allocation method to maximize
requests that satisfy the failure probability requirement of
allocated resources in a given set of resource allocation re-
quests [17]. This method enables higher resource utilization
while guaranteeing the reliability of tasks. However, this
method assumes that all resource allocation requests are
given in advance. When new tasks are requested in a situation
where multiple tasks are executed, there may be no available
resources for those tasks. Furthermore, this method does
not consider performance degradation due to communication
between resources. It is difficult to execute many tasks while
satisfying performance requirements.

To execute many tasks simultaneously, consideration for
future tasks is essential. If resources are allocated without
considering whether future tasks can be executed with the
required performance, available resources to satisfy the re-
quirements of new tasks may be exhausted soon. In re-
ality, allocating resources to ensure the best performance
of running tasks or requested tasks is not always neces-
sary, as in the efficient allocation in Fig. 2. Any resources
are sufficient if the performance requirements of the task
are satisfied. By avoiding unnecessarily allocating resources
and network resources required for future tasks, more tasks
can be executed. Note that we must consider whether the

4 VOLUME -, -

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

TABLE 1. Objective and approach of each resource allocation method for a DDC

Author Objective Approach
Papaioannou et al. [15] Minimize performance of impact of network latency in

requested task
Minimize latency between resources for requested task based
on bandwidth, hops, delay of link

Zervas et al. [14] Minimize round trip latency between execution resources
in requested task

Minimize latency between resources for requested task based
on bandwidth and link distance

Amaral et al. [16] Minimize execution time of requested task while avoiding
performance degradation of running tasks

Minimize performance interference of running tasks and re-
quested task considering the execution time calculated based
on network load

Guo et al. [17] Maximize requests that satisfy the failure probability re-
quirement of allocated resources in a given set of resource
allocation requests

Minimize resources used as backup in case of failure of
resources considering the failure probability requirement of
requests

Ikoma et al. (This study) Minimize use of resources required for future requested
tasks

Avoid allocating resources and path required for future tasks
considering the impact of the network on performance based
on communication delay between execution resources

performance requirements of tasks are satisfied. Existing
methods did not sufficiently consider it. Instead, they simply
allocate resources to maximize the performance of tasks. In
this study, we propose a resource allocation method for a
DDC to execute many tasks simultaneously while satisfying
performance requirements. This method allocates resources
to minimize the use of resources required for future requested
tasks. Furthermore, it models the impact of the network on
performance based on the communication delay between
execution resources. Thus, this method can allocate resources
and network resources, considering both task performance
and future tasks. The major difference from existing methods
is the consideration of future resource allocation based on
the impact of the network on performance rather than simply
minimizing performance degradation to execute many tasks
simultaneously.

III. RESOURCE ALLOCATION CONSIDERING THE
IMPACT OF THE NETWORK ON PERFORMANCE
In this section, we model the impact of the network on per-
formance. Thereafter, we formulate the resource allocation
problem and present an example of a method for addressing
it.

A. OVERVIEW OF A DISAGGREGATED DATA CENTER
We show the assumed DDC in this section.

1) The components of a disaggregated data center
We assume a DDC in which the memory and computational
resources (CPUs and GPUs) are connected by a network,
as shown in Fig. 3. This DDC includes resource pools, in
which several resources of the same type are collected. Each
resource pool is connected via packet or circuit switches. The
components of a DDC are as follows:

a: Memory resources
A memory resource is a device that stores the data required
by computational resources. In this study, we divide memory
into blocks and treat each block as a memory resource. Data
in memory are managed via paging.

Mul�ple resources in resource pool

C M G

DDC Network

SSS

C C C・・・ M M M・・・

SS

C M C

SSS

C C C・・・ M M M・・・

SS

C M

Task execu�on
request

CMemory resource pool Computa�onal resource pool (CPU)

LinkSwitch

M

S C MAvailable computa�onal resource Available memory resource

Requested resources

C M

DDC Network

Corresponding resources and route is allocated

S S S S
A computa�onal and
memory resource
are required to execute task

G Computa�onal resource pool (GPU)

FIGURE 3. Overview of a disaggregated data center.

b: Computational resources (CPUs and GPUs)
A computational resource has a small cache. When the data
required to execute a process do not exist in the cache and
a page fault occurs, the computational resource obtains the
data from the memory resource. Data are transmitted at the
granularity of a page. In a DDC, the data read time from
disaggregated memory resources is longer than the data read
time from the cache. Therefore, the impact of the latter on
performance is negligible. In this study, cache levels and the
latency between a cache and computational resources are not
considered. Each CPU core, or GPU, is treated as a single
computational resource.

c: Network
The network consists of resource pools and switches that
connect them. Links connect pools to switches and one
switch to another.

A resource pool holds multiple resources of the same type.
A computational resource pool holds multiple computational
resources, and a memory resource pool holds multiple mem-
ory resources. Each resource in the pool connects to a switch
via a common link between the pool and the switch.

Optical circuit switches, or optical packet switches, are
used in the DDC. In a network configured with optical circuit
switches, once a path for optical signals is established to

VOLUME -, - 5

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

execute a task, the path is occupied by the task. Therefore,
each optical circuit switch can immediately relay data to
the next port without blocking, according to prior routing.
In a network configured with optical packet switches, each
switch has a buffer. If the next port is available, the switch
immediately relays the packet to it before the entire packet
is received. If the next port is busy, the switch stores the
packet in its buffer to prevent communication that exceeds
the bandwidth. The switch then waits for the next port to
become available. We allow the construction of an aggregated
virtual link from multiple links between the same nodes.
Aggregating the links can reduce the delay, even if some links
in the aggregated link are busy. The switch can still relay the
packet without storing it in the buffer, as long as it has at least
one link available.

2) Execute task in a disaggregated data center
We assume that users request the execution of tasks at any
time for services provided by a DDC. When a DDC receives
a task execution request, it allocates the computational and
memory resources required to execute the task from among
the available resources in the resource pool shown in Fig.
3. Thereafter, it determines the communication path between
the allocated resources. We treat this process as resource
allocation.

Multiple types of processing with different resource re-
quirements may be required to complete a task. In this study,
we divide tasks into processes according to the need to use
resources flexibly. A task utilizes a set of processes that
are allocated by selecting the necessary resources for each
process.

B. MODELING A DDC AND A RESOURCE ALLOCATION
REQUEST
The notations used for modeling a DDC and resource alloca-
tion request are listed in Table 2.

1) Modeling a DDC network
A DDC network is represented as a graph Gs(Ns, Es),
where Ns and Es denote sets of nodes and undirected
links, respectively. Three types of nodes exist: computational
resource pools, memory resource pools, and switches. N c

and Nm are the sets of computational and memory resource
pools, respectively. Cs

n and Ms
n represent the number of

available computational and memory resources in the com-
putational and memory resource pools corresponding to node
n ∈ Ns, respectively. For each resource in the computational
resource pool c ∈ N c, we define Kc > 0 as the number
of floating-point operations per second, Fc > 0 as the clock
frequency, and Vc > 0 as the page size. For each resource in
the memory resource pool m ∈ Ms, we define TR

m ≥ 0 as the
delay in reading data in one memory access. Then, let Rs be
the number of resource pools. We also define TN

n ≥ 0 as the
processing delay until a packet is relayed to the next port in
node n ∈ Ns. If node n does not have switching capability,
TN
n is infinite. In addition, we define the I/O processing delay

TABLE 2. Notation of the DDC and resource request model

Symbols Definition
DDC network

Ns Set of nodes
Es Set of links
Nc Set of computational resource pools
Nm Set of memory resource pools
Cs

c Number of available resources in the computational resource pool c
Ms

m Number of available resources in the memory resource pool m
Rs Number of resource pools
Kc Performance metric (FLOPS) of resources

in the computational resource pool c ∈ Nc

Fc Clock frequency of resources
in the computational resource pool c ∈ Nc

Vc Page size of resources in the computational resource pool c ∈ Nc

Ri,j Set of configurable paths between nodes i, j ∈ Ns

B Bandwidth of DDC link
TN
n Delay to send the entire packet in node n ∈ Ns

T I
n Delay to process I/O in node n ∈ Ns

TR
m Delay of memory processing in a memory resource m ∈ Ms

No
e Number of links existing between adjacent nodes of link e ∈ Es

TP
e Propagation delay of link e ∈ Es

λs
e,n Arrival rate of packets from node n ∈ Ns in link e ∈ Es

Resource graph
Nv Set of resource graph nodes
Ev Set of resource graph links
Cv Set of nodes corresponding to computational resources
Mv Set of nodes corresponding to memory resources

Process graph
Np

t Set of process graph nodes in task t
Ep

t Set of process graph links in task t

σf
p Number of page faults of a process p ∈ Np

σn
p Pages per a page fault of process p ∈ Np

σc
p Clock counts of process p ∈ Np

λr
p Arrival rate of packets from the memory of process p ∈ Np

λw
p Arrival rate of packets to the memory of process p ∈ Np

S Set of tasks
Np

t Set of processes required for task t ∈ S
Ta
t Acceptable time of task t ∈ S

Pt Set of paths of the process graph in task t ∈ S
cvp Set of computational resources required to run the process p ∈ Np

mv
p Set of memory resources to run process p ∈ Np

T I
n ≥ 0 that occurs during communication at each node

n ∈ Ns.
For each link e ∈ Es, we define No

e > 0 as the number
of links existing between adjacent nodes, TP

e ≥ 0 as the
propagation delay, and λs

e,n ≥ 0 as the arrival rate of packets
from node n ∈ Ns. We define Ri,j as the set of configurable
paths between nodes i, j ∈ Ns on the DDC. r ∈ Ri,j denotes
the set of links on path r. The bandwidth of all links is B > 0.

2) Modeling a resource allocation request
Resources required for a task are requested before running
the task. We model a resource request using two graphs,
where one indicates the relationships between the required
resources (resource graph) and the other indicates the rela-
tionships between the processes required to execute the task
(process graph). An example request is shown in Fig. 4.

A resource graph is given a graph structure Gv(Nv, Ev),
where Nv and Ev denote the sets of nodes and undirected
links, respectively. Each node corresponds to the requested
computational or memory resource. Cv and Mv denote
the sets of requested computational and memory resources,
respectively. Links are added between computational and
memory resources that execute the same process.

6 VOLUME -, -

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

M

C

Memory resource

Computa�onal resource

C

C

M

M

C

Process
1 ・Execu�on resource

・Process execu�on data

Link between resources
that exchange data

Node property

Resource graph

Process graph

M

Link Indica�ng the resource
to run the process

Directed link indica�ng
the order of process execu�on

Process
2

Process
3

FIGURE 4. Example of resource and process graphs.

Process graphs are provided for each task. We define a set
of tasks as S. For task t ∈ S, a process graph is defined
as a directed graph structure Gp

t (N
p
t , E

p
t), where Np

t and Ep
t

denote the sets of nodes and directed links, respectively. Each
node p ∈ Np

t represents the process required to execute the
requested task. Node p ∈ Np

t has a set of resource graph
nodes cvp and mv

p corresponding to the computational and
memory resources required to run the process corresponding
to node p.

For each node p ∈ Np
t , we define the number of page faults

(σf
p ≥ 0), the number of pages transmitted per page fault

(σn
p ≥ 0), and the clock counts required to execute a process

(σc
p ≥ 0). For a process corresponding to node p ∈ Np,

λr
p > 0 denotes the arrival rate of packets from the memory,

and λw
p > 0 denotes the arrival rate of packets to the memory.

Arrival rates were obtained in advance by monitoring the task
in the test environment. Note that if multiple resources run a
process, the amount of communication and the number of
clock counts for a resource pair will be reduced. However,
in this study, we set the same value as the worst-case value.
Each link e ∈ Ep

t is a directed link that indicates the process
order. Each path from the first to the final process provides
the sequence of processes required to complete a particular
task. We define the set of paths in the process graph for task
t ∈ S as Pt.

In addition, for each task t ∈ S, acceptable time T a
t is

defined as a performance requirement. All tasks should be
completed within an acceptable time.

C. RELATIONSHIP BETWEEN RESOURCE ALLOCATION
AND TASK EXECUTION TIME
In a DDC, resource allocation defines the performance of
a task. Here, we model the relationship between resource
allocation and task execution time.

1) Mapping the resources
δNi,j denotes the mapping between the requested resources
and those in the DDC. δNi,j = 1 when resource graph node
i ∈ Nv is mapped to the DDC network node j ∈ Ns and
δNi,j = 0 otherwise.

2) Mapping the network resources
δEx,y denotes the mapping between the resource graph links
and paths in the DDC. δEx,y = 1 when the resource graph

links x ∈ Ev are mapped to path y ∈ Rk,t between nodes
k, t ∈ Ns in the DDC and δEx,y = 0 otherwise.

3) Modeling the execution time of a task
The execution time of task t ∈ S is the sum of the times
required to complete all processes in task t. In addition, the
execution time for each process is the sum of the processing
time of the computational resources and the processing time
required to read the data from the memory resource. In
this study, we compare the worst-case execution time with
the acceptable time to allocate resources that satisfy the
requirements of the request. The worst-case execution time
T e
t for task t ∈ S is obtained as follows:

T e
t = max

y∈Pt

∑
p∈y

max
c′∈cvp,m

′∈mv
p

(
T c
c′,p + Tm

c′,m′,p

)
. (1)

where T c
c′,p denotes the processing time of process p ∈ Np

t

in the computational resource mapped to c′ ∈ Nv , and
Tm
c′,m′,p denotes the processing time to read the data for

process p from the memory resource mapped to m′ ∈ Nv

in the computational resource mapped to c′ ∈ Nv .

a: Processing time in a computational resource
The processing time T c

c′,p for a process p ∈ Np in a
computational resource mapped to c′ ∈ Nv is calculated by
dividing the clock count σc

p required to complete process p
by the clock frequency Fj of a resource in the computational
resource pool j ∈ N c as follows:

T c
c′,p =

∑
j∈Ns

(
δNc′,j

σc
p

Fj

)
. (2)

T c
c′,p denotes the processing time of the computational re-

source mapped to c′ ∈ Nv because δc′,j = 1 only if c′ is
mapped onto j ∈ Ns.

b: Processing time required to read the data from the
memory resource
A computational resource accesses a memory resource via
I/O interfaces such as PCIe and must perform address pro-
cessing on the access data. Then, read processing is per-
formed in the memory resource, and the data are transferred
to the computational resource. Therefore, the processing
time required to read the data from the memory resource
is the sum of the I/O processing time T I

c of the resource
in computational resource pool c ∈ N c, processing time
TR
m of the resource in memory resource pool m ∈ Nm,

and communication delay T d
c′,m′,p required to transmit the

data from a memory resource mapped to m′ ∈ Nv to
a computational resource mapped to c′ ∈ Nv in process
p ∈ Np.

Tm
c′,m′,p = T d

c′,m′,p +
∑

j∈Ns

(δNc′,j · T I
j + δNm′,j · TR

j) . (3)

where csj and ms
j denote the computational resource and

memory resource on node j ∈ Ns, respectively. The com-
munication delay T d

c′,m′,p is the sum of the time required to

VOLUME -, - 7

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

obtain the head of the page and the transmission delay. In
process p ∈ Np, the communication delay T d

c′,m′,p required
to transmit the data from a memory resource mapped to
m′ ∈ Nv to a computational resource mapped to c′ ∈ Nv

is obtained as follows:

T d
c′,m′,p =

{(∑
j∈Ns δN

c′,j ·Vj

B

)
σn
p + T l

er
c′,m′ ,p

}
· σf

p

where erc′,m′ denotes the link between nodes c′,m′ ∈ Nv .∑
j∈Ns δNc′,j · Vj denotes the page size of the computational

resource mapped to c′ ∈ Nv because δc′,j = 1 only if c′

is mapped to a computational resource in node j ∈ Ns.
T l
er
c′,m′ ,p

denotes the latency in the path mapped to erc′,m′

in process p ∈ Np. In a resource graph link e′ ∈ Ev and
process p ∈ Np, T l

e′,p is obtained as follows:

T l
e′,p =

∑
i,j∈Ns

∑
y∈Ri,j

δEe′,y

{∑
e∈y

(
T p
e + TS

nss
e ,e,p)

)}

where nss
e denotes the source node of link e ∈ Es when

reading data from memory. T p
e denotes the propagation delay

in link e, and T s
nss
e ,e,p denotes the switching and buffering

delay in transferring the data of process p from node nss
e to

link e.
The switching and buffering delays depend on the type of

switch. For a packet switch, buffering is required to avoid
packet collisions if the link is busy. Therefore, we model it
as the sum of the switching process delay and the buffering
delay. For a circuit switch, we consider only the switching
delay because buffering does not occur. The switching and
buffering delay T s

n,e,p is obtained as follows:

T s
n,e,p=

{
TN
n if n is circuit switch

TN
n +TR

n (λe
e,n,p, N

o
e , T

N
n) if n is packet switch

where λe
e,n,p denotes an estimate of the packet rate to link

e after resource allocation in node n. λe
e,n,p is the sum of

the current packet rate λs
e,n on link e ∈ Es occurring from

node n ∈ Ns and the packet rate λr
p from the memory to a

computational resource in process p ∈ Np, that is, λe
e,n,p =

λs
e,n+λr

p.
TR
n (λe

e,n,p, N
o
e , T

N
n) is a function that returns the buffering

time in node n ∈ Ns based on three arguments: an estimate
of the packet rate λe

e,n,p to link e at node n, the number of
links forwarding packets No

e , and the switching delay TN
n

at the node. This function is based on the M/D/C queuing
model. In the M/D/C queuing model, arrivals occur according
to a Poisson process, and the system has C servers that
can process an arrival at a fixed time D. In other words,
we assume buffering as a situation where packets arriving
according to the Poisson process are waiting to be processed
until one of the C links that can process them in a fixed time
D is ready to forward them. However, obtaining an accurate
response time using the M/D/C queuing model is difficult.

We use the approximation from [23]. TR
n (λ, J,D) is obtained

as follows:

TR
n (λ, J,D) =

{1+fQ(λ,J,D)gQ(λ,J,D)}hQ(λ,J,D)

2
,

where

fQ(λ, J,D) =
(1−λD

J)(J−1)(
√
4+5J−2)

16λD
,

gQ(λ, J,D) = 1− exp
{
− J−1

(J+1)fQ(λ,J,D)

}
,

hQ(λ, J,D) = D·(λD)J

J·J!(1−λD
J)

2

[
J−1∑
i=0

(λD)J

i! + (λD)J

(1−λD
J)J!

]−1

.

D. RESOURCE ALLOCATION PROBLEM
At the edge, task execution requests are made continuously,
and resources are allocated.

To execute many tasks in such an environment, the re-
sources required for future task requests must remain avail-
able at the appropriate time. Therefore, we avoid allocating
important resources that may be required by future requests.
In this study, to avoid the allocation of important resources,
we define the resource allocation cost based on the impor-
tance of the resources to future resource requests and mini-
mize the costs of the allocated resources under the constraint
that the performance requirements are satisfied.

In the remainder of this section, we first define the allo-
cation costs. Thereafter, we define the resource allocation
problem based on the defined costs and the execution time
model of the task defined in Section III-C3.

1) Resource allocation costs
Here, we define resource allocation costs for computational
resources, memory resources, and network resources.

Computational resources that can execute tasks with the
minimum acceptable processing times are important. In ad-
dition, computational resources in resource pools that ac-
commodate numerous resources are important because they
can execute tasks that demand substantial computational
resources. Therefore, we define the cost as the product of the
available computational resources and FLOPS. The alloca-
tion cost W c

c of computational resources in the computational
resource pool c ∈ N c is obtained as follows:

W c
c = Cs

c ·Kc. (4)

A memory unit with several available memory blocks can
execute tasks that require extensive memory resources. The
allocation cost Wm

m of a memory resource in the memory
resource pool m ∈ Nm is obtained as follows:

Wm
m = Ms

m. (5)

Network resources that are likely to be used as paths
between important resources are important. In addition, find-
ing the shortest path is important to satisfy performance

8 VOLUME -, -

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

requirements because it minimizes communication delays
between resources. Therefore, we increase the cost of net-
work resources which are possibly the shortest paths between
critical resource pairs.

We define the possibility to be a network resource on the
shortest path as the ratio of the number of shortest paths
between resources to the number of shortest paths through
that network resource. The larger this value, the higher the
probability that it is the shortest path. When a resource in
computational resource c ∈ N c and a resource in memory
resource m ∈ Nm are paired, the possibility of being a
network resource on the shortest path between resources in
resource pool c and m uc,m(e) is

uc,m(e) =
Nr

c,m(e)

Nr
c,m

.

where Nr
c,m denotes the number of shortest paths between

resources in resource pools c and m, and Nr
c,m(e) denotes

the number of shortest paths between resources in resource
pools c and m passing through network resource e.

If the resources are close to each other and are of high
cost, they are an important resource pair. Therefore, when a
resource in computational resource c ∈ N c and a resource in
memory resource m ∈ Nm are paired, the importance of the
resource pair vc,m is

vc,m =
W c

c ·Wm
m

Hc,m
.

where Hc,m denotes the smallest hop count between re-
sources in resource pool c and m.

The allocation cost W e
e of link e is obtained as follows:

W e
e =

{ ∑
c∈Nc,m∈Nm

uc,m(e) · vc,m e /∈ Ealc

ϵ e ∈ Ealc
, (6)

where Ealc denotes the set of network resources that are
already allocated. ϵ is a small cost defined for the links used
by previously started tasks. By using ϵ instead of 0, we avoid
allocating large paths.

2) Defining the resource allocation problem
We define a resource allocation problem to avoid allocating
resources required by tasks in the future. In this problem,
the network information of the DDC and resource allocation
request is given; this outputs the mapping δN , δE between the
requested resource and allocated resource defined in Sections
III-C1 and III-C2.

a: Resource mapping constraints
A request graph node is mapped as a node, and a request
graph link is mapped as a path in the DDC network as
follows:

∀i ∈ Nv,
∑

j∈Ns δNi,j = 1 . (7)

∀x ∈ Ev,∀k, s ∈ Ns,∑
y∈Rk,s

δEx,y = δNnvs
x ,k · δNnvd

x ,s
. (8)

where nvs
x and nvd

x denote the source and destination nodes
of link x ∈ Ev from memory to computational resources.

Resources other than those available in the resource pool
cannot be allocated, which can be represented as follows:

∀c ∈ N c, Cs
c −

∑
c′∈Cv δNc′,c ≥ 0 . (9)

∀m ∈ Nm, Ms
m −

∑
m′∈Mv δNm′,m ≥ 0 . (10)

b: Time constraints
All tasks in provided services must be executed within an
acceptable time; therefore,

∀t ∈ S, T e
t ≤ T a

t (11)

c: Objective
In this method, resources are allocated to minimize the costs,
that is,

minimize
∑

c∈Nc

∑
c′∈Cv δNc′,c(W

c
c)+∑

m∈Nm

∑
m′∈Mv δNm′,m(Wm

m)+∑
i,j∈Ns

∑
y∈Ri,j

[
1∑

x∈Ev δEx,y>0

(∑
e∈y W

e
e

)]
,

(12)

where 1∑
x∈Ev δEx,y>0 is 1 when

∑
x∈Ev δEx,y > 0 and 0

otherwise.
Solving this problem enables a DDC to avoid allocating

resources required by future tasks while satisfying the per-
formance requirements of the tasks: this is a binary combina-
torial optimization problem. A resource allocation problem
based on a binary combinatorial optimization problem has
been proven to be NP-hard and metaheuristic methods have
been used to solve such problems [24]. In this study, we solve
this problem using ant colony optimization (ACO). ACO can
respond flexibly to changes in the environment [25]. ACO
is suitable in DDCs where flexible resource utilization is
available and a network is likely to change. However, any
method that can find a solution can be used.

E. RESOURCE ALLOCATION BASED ON ANT COLONY
OPTIMIZATION
We solve the resource allocation problem defined in Section
III-D2 based on ACO; however, any method that can find a
solution can be used.

ACO is a population-based metaheuristic method in which
multiple agents probabilistically search for a solution. First,
pheromone values are assigned to candidate resources. The
higher the pheromone value of a resource, the more likely
it is to be selected by the agent. After multiple agents
probabilistically search for a solution based on pheromones,
the optimal solution is selected from among the searched
solutions. Finally, the pheromone value of the resource in the
optimal solution is increased. These processes are repeated
multiple times.

A resource allocation method based on ACO (VNE-AC)
has already been proposed [24]. However, VNE-AC targets

VOLUME -, - 9

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

traditional architectures and does not target DDC. In tradi-
tional architectures, there is no need to consider performance
degradation due to communication delays between resources,
unlike DDC. Therefore, VNE-AC does not consider the
impact of the network on the performance of tasks. From
this difference, we arrange and use VNE-AC in terms of
network resource allocation to solve our resource allocation
problem. Note that VNE-AC allocates network resources by
solving the shortest path problem. Because the impact of the
network on performance is nonlinear, it is difficult to make
optimal allocations based only on the shortest path. We use
ACO for network resource allocation as well as to consider
the impact of the network on performance. The processing
steps for each agent include the (1) resource search, (2)
network resource search, (3) execution time calculation, and
(4) pheromone update phases. These steps are repeated titr

times. To reduce unnecessary searching, if the allocation cost
is greater than the current best solution during the search, the
resource allocation of the agent is rejected at that time. The
notation used in the following equations is listed in Table 3.

TABLE 3. Notation of resource allocation based on ant colony optimization

Symbols Definition
τr Pheromone of resource r
α Pheromone weight
β Resource allocation cost weight
ρ Pheromone decrease rate
ϕ Pheromone increase rate
H Maximum number of network resource search
titr Number of search iterations
Ccd Set of candidate computational resources
Mcd Set of candidate memory resources
Ecd

n Set of all candidate links adjacent to node n
Cb Set of computational resources in current best solution
Mb Set of memory resources in current best solution
Eb Set of links in current best solution

1) Resource search phase
In this phase, an agent probabilistically allocates the re-
sources corresponding to the nodes in the resource graph
from the available resources. Because we aim to find a low-
cost solution, we set a high allocation probability for a low-
cost resource. We define the allocation probabilities pcc and
pmm for computational resources in the resource pool c ∈ Cs

and memory resources in the resource pool m ∈ Ms as
follows:

pcc =
(τc)

α

(
1

(Wc
c)β

)
∑

x∈Ccd

[
(τx)α

1

(Wc
x)β

] , pmm =
(τm)α

(
1

(Wm
m)β

)
∑

x∈Mcd

[
(τx)α

1

(Wm
x)β

]

where α > 0 and β > 0 denote the weight of the
pheromone and the cost, respectively. Ccd and M cd denote
the sets of candidate computational and memory resources,
respectively. τx, τc, and τm denote the pheromone of the
resource x, c,m, respectively.

2) Network resource search phase
In this phase, the agent searches for paths between the
resources selected in the resource search phase. To search
for these paths, the agent generates subagents. Each subagent
probabilistically allocates paths corresponding to links in the
resource graph from the links in the DDC. The search is
performed starting with the source resource. First, the link
from the source resource is selected. The next link from the
destination node of the first link is then selected. This process
continues until a link to the destination resource is identified.
At each step of this process, a link e ∈ Es is selected based
on the probabilities pe,n in node n ∈ Ns. Note that if a route
between resources cannot be determined in the Hth search,
the search is terminated because the communication delay
increases as the route length increases.

pe,n =
(τe)

α 1

(We
e)β∑

x∈Ecd
n

[
(τx)α

1

(We
x)β

]
Here, α > 0 and β > 0 denote the relative importance of the
pheromone and the cost, respectively. Ecd

n denotes the set of
candidate links adjacent to node n, and τx and τe denote the
pheromones of the links x, e, respectively.

3) Execution time calculation phase
After finding the resources, the agent determines the pre-
dicted execution time for tasks whose performance is affected
by latency due to network resource allocation. This value
is derived from the equation presented in Section III-C3.
If the predicted execution time is less than or equal to the
acceptable time, this may be a solution. When one task is
allocated, communication occurs between the newly allo-
cated resources, which may increase communication delays
between other resources. This calculation is performed for
the requested task and all other executing tasks whose per-
formance is affected by resource allocation because all tasks
allocated to the DDC must be able to complete processing
within an acceptable time.

4) Pheromone update phase
After obtaining the resources, the agent updates the
pheromone based on the pheromone decrease rate, ρ (0 <
ρ < 1). The pheromones of the resources and links of the
best solution for each iteration are enhanced based on the
pheromone increase rate ϕ and resource allocation cost. The
pheromone-enhanced value h is obtained as follows:

h = ϕ∑
c∈Cb W c

c +
∑

m∈Mb Wm
m +

∑
e∈Eb W e

e

where Cb, M b, and Eb denote the sets of computational
resources, memory resources, and links, respectively, in the
resource allocation with the smallest cost.

Using these values, we update the pheromones for each
resource in the computational and memory resource pools
c ∈ N c, m ∈ Nm, and each network resource e as follows:

τc = ρτc + h, τm = ρτm + h, τe = ρτe + h

10 VOLUME -, -

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

IV. EVALUATION
We evaluated RA-CNP by simulating the DDC networks.
First, we discuss the effectiveness of the resource allocation
problem defined in Section III-D2 by evaluating the opti-
mal solution in a small network. Thereafter, we discuss the
evaluation of RA-CNP in the networks of the scale that we
envisioned. Finally, to demonstrate the practicality of RA-
CNP, we investigate whether the resource allocation problem
can be solved within a feasible computational time.

A. ENVIRONMENT
Here, we describe the evaluation networks, resource requests,
and comparative methods used to evaluate RA-CNP.

1) Network
We assume a data center that is located near the users. In
such data centers, on-site services such as industrial automa-
tion, environmental monitoring, and object recognition are
provided [1], [26]. One of the early instances of an edge
data center was one composed of approximately 10 servers to
enable deployment even in a limited space. However, because
of the increasing demand for edge services, the concept of
edge data centers with multiple racks has been proposed [27].
We believe that data centers with more resources, including
hundreds of servers, will be required at the edge in the
future. In this study, we considered DDCs with 20–552
computational resources. This scope is similar to the number
of servers in the data center we assumed.

Fig. 5 shows the network structures used in the perfor-
mance evaluation. These networks are composed of resource
pools containing multiple resources and switches. Each CPU
pool had 16 computational resources, and each memory
pool had 24 memory resources. We assumed a 2D torus
interconnect because this topology is widely used and can
be configured at various scales. We connected each resource
pool to a switch. When connecting the resource pools, we
avoided adjacent switches connected to the same resource
type, such that many types of resources could be connected
with a short path. A more suitable network topology may
exist; this will be a topic for future studies.

Optical packet switches and optical circuit switches have
been proposed for resource disaggregation networks [14],
[21]. In this study, we evaluated two cases: one configured
with optical packet switches (packet switch network) and the
other configured with optical circuit switches (circuit switch
network).

We set the parameters of the DDC network as listed
in Table 4. CPU_A represents an Intel® Xeon® W-3335
processor, CPU_B represents an Intel® Xeon® Silver 4314
processor, and GPU represents an NVIDIA GeForce RTX
3090. We used these values to calculate the execution time
of the task and the resource allocation cost. We referred to
the I/O latency and memory latency measured in [14]. In
addition, we referred to the optical circuit switch proposed
in [14] and the optical packet switch proposed in [21]. The
bandwidth of each link was set to 10 Gbps based on these

studies. Each link length was assumed to be 5 m, and the
propagation delay was set to 0.025 µs. The page size was set
to a default size of 4 KB.

TABLE 4. Parameter settings for the DDC network

Parameters Value
CPU_A FLOPS 108.8 GFLOPS

CPU_A clock speed per core 3.4 GHz
CPU_B FLOPS 76.8 GFLOPS

CPU_B clock speed per core 2.4 GHz
GPU FLOPS 35.7 TFLOPS

GPU clock speed per core 1.7 GHz
Memory processing time 50 ns

I/O processing time 350 ns
Propagation delay 0.025 µs

Switch latency of the optical circuit switch 5 ns
Switch latency of the optical packet switch 550 ns

Page size 4 KB
The bandwidth of each link 10 Gbps

2) Resource request
Resources are requested when a task execution request ar-
rives at the DDC. In this study, we assumed that tasks for
two services are executed. One is image classification for
face recognition using ResNet [28] (service 1) and the other
is real-time object identification for automated driving using
YOLO [29] (service 2). YOLO and ResNet are commonly
used machine learning models for real-time object identi-
fication and image classification, respectively. In addition,
these are typical of services running at the edge [2], making
them prime candidates for being offered as services by a data
center located at the edge [26].

All tasks include three processes: Process 1 selects the
resource to execute the task, Process 2 loads the required
data, and Process 3 executes the main process in the task.
Considering the roles of the processes, we allocate the same
memory resources to Processes 1 and 2 and the same compu-
tational resources to Processes 2 and 3. In addition, Processes
1 and 2 use small amounts of data and do not cause page
faults. The parameters for each process, such as clock count
and number of page faults, were set on the basis of values
obtained by running the task using an Intel(R) Xeon(R) CPU
E5-2687W. The parameters for each task are shown in Table
5. We generate four types of resource requests for each task,
with different acceptable times and required resources.

• Request 1: Resource request for service 1 with a long
acceptable time

• Request 2: Resource request for service 2 with a
medium acceptable time

• Request 3: Resource request for service 2 with a short
acceptable time

• Request 4: Request for service 2 that requires a GPU
with a very short acceptable time

All resource requests have the same structure, shown in Fig.
4. We demonstrate the effectiveness of RA-CNP in various
cases by changing the required resources and acceptable
time. Table 6 shows the pattern of the number of resources

VOLUME -, - 11

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

Memory resource pool

CPU_A poolGPUSwitch

Link

C M G

M C M

G M C

S S S

S S S

S

M

CGS

S S

(a) 3 × 3 2D torus network

Memory resource pool

CPU_A poolGPUSwitch CPU_B pool

Link

G C C M C M

C G M C M C

C M G C C M

M C C G M C

C M C M G C

M C M C C G

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

M

C CGS

(b) 6 × 6 2D torus network

Memory resource pool

CPU_A poolGPUSwitch CPU_B pool

LinkM

C CGS

G C C M C M C M

C G M C M C M C

C M G C C M C M

M C C G M C M C

C M C M G C C M

M C M C C G M C

C M C M C M G C

M C M C M C C G

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

(c) 8 × 8 2D torus network

FIGURE 5. Networks used in evaluation

required for evaluation. Acceptable time values are shown in
Table 7.

TABLE 5. Parameter settings for a task for each service

Service 1 Service 2
Process 1

Clock count 0.035 0.035
Packet rate to memory (/ms) 0.00033 0.0020

Packet rate from memory (/ms) 0.00033 0.0020
Process 2

Clock count 0.054 0.054
Packet rate to memory (/ms) 0 0

Packet rate from memory (/ms) 0.00033 0.0020
Process 3

Clock count 2371.33 1960.36
Packet rate to memory (/ms) 1.87 1.90

Packet rate from memory (/ms) 3.71 3.43
Number of page faults 67543.25 56661.29

Number of pages per page fault 5.27 4.84

3) Compared methods
We compared RA-CNP with two resource allocation meth-
ods. The results of these methods were obtained using ACO,
the parameters of which are shown in Table 8. The two
compared methods are described below.

a: Resource allocation using the shortest path (SP)
This method allocates resources based on the shortest path
between them. To achieve this allocation, the link cost is
defined as W e

e = 1.
This method is extremely simple, and we used it to eval-

uate whether simple routing is sufficient for DDC resource
allocation.

b: Resource allocation by considering network performance
(NP)
This method allocates paths based on low traffic volumes
and short path lengths between computational and memory
resources. It allocates resources by focusing on performance
and corresponds to the resource allocation policy proposed
by Zervas et al. [14] and Amaral et al. [16]. The NP solution

is obtained by identifying the solution with the minimum cost
by setting the cost of link e ∈ Es with node n ∈ Ns as the
source as follows:

W e
e,n =

λs
e,n

Ncore
e

λmax +
Di,j

Dmax

where λmax denotes the maximum traffic volume, Di,j de-
notes the SP length from node i ∈ Nv to node j ∈ Nv , and
Dmax denotes the maximum path length between any two
resources in a DDC.

B. OPTIMAL SOLUTION OF RA-CNP IN A SMALL
NETWORK
We determined the optimal solution of RA-CNP by finding
the solution among all solutions (hereafter called BFS) with
the solutions of other allocation methods to demonstrate the
effectiveness of RA-CNP. In a DDC, the ability to execute
many tasks simultaneously using limited resources is desired.
Therefore, we investigated how many resources were ulti-
mately allocated by generating resource requests up to the
limit of allocation.

In addition, we investigated whether the solution of RA-
CNP could be derived using ACO. We compared the solu-
tions obtained using ACO and BFS.

1) DDC network
We used a small DDC network, as shown in Fig. 5a, because
of the significant computational time required to obtain the
solutions of BFS. Furthermore, if the number of resources
in the resource pool is large, a significant amount of time is
required to obtain the solutions of BFS. In this evaluation,
we reduced the number of resources in the resource pool.
Each CPU pool had six computational resources, and each
memory pool had six memory resources. Note that for the
packet switch network, the number of links between a given
pair of nodes was set to one; for the circuit switch network,
the number of links between a given pair of nodes was set to
three to allocate more tasks.

12 VOLUME -, -

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

TABLE 6. Number of resources required for each request

Pattern A Pattern B Pattern C Pattern D
computational memory computational memory computational memory computational memory

resources resources resources resources resources resources resources resources
Total(Request 1/2/3/4) 2/2/2/2 2/2/2/3 4/4/4/2 4/4/4/3 7/7/7/2 7/7/7/3 10/10/10/2 10/10/10/3

Process1(Request 1/2/3/4) 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1/1 1/1/1/1 1/1/1/1/1
Process2(Request 1/2/3/4) 1/1/1/1(GPU) 1/1/1/1 3/3/3/1(GPU) 1/1/1/1 6/6/6/1(GPU) 1/1/1/1 9/9/9/1(GPU) 1/1/1/1
Process3(Request 1/2/3/4) 1/1/1/1(GPU) 1/1/1/2 3/3/3/1(GPU) 3/3/3/2 6/6/6/1(GPU) 6/6/6/2 9/9/9/1(GPU) 9/9/9/2

TABLE 7. Acceptable time for each request

Request 1 Request 2 Request 3 Request 4
Pattern 1 1000 ms 500 ms 250 ms 200 ms
Pattern 2 500 ms 300 ms 200 ms 180 ms
Pattern 3 500 ms 250 ms 150 ms 100 ms

TABLE 8. Parameter settings for ACO

Parameters Value
Number of agents 20
Number of agent generations 20
Pheromone decrease rate 0.1
Pheromone increase rate 100
Pheromone weight 2
Allocation cost weight 1
Initial pheromone value 1000

2) Resource request
In this evaluation, the acceptable time for each request corre-
sponded to Pattern 1 in Table 7. The number of computational
and memory resources required for each request per process
was set as listed in Pattern A of Table 6. We generated
resource requests up to the number of tasks that could be
executed in the DDC. The generated sequences of resource
requests were the two patterns listed in Table 9, to be evalu-
ated in various environments. The order in which the requests
arrived in each case was uniformly random.

TABLE 9. Breakdown of generated requests in each pattern

Request 1 Request 2 Request 3 Request 4
Generated pattern 1 4 2 2 2
Generated pattern 2 2 2 4 2

3) Metrics
We measured the worst-case resource utilization and total
allocation cost.

a: Worst-case resource utilization
We investigated whether RA-CNP could allocate resources
to a limit. Therefore, we measured resource utilization after
the allocation of resource requests in Table 9.

Memory resource utilization uc and computational re-
source utilization um are defined as follows: um = malc

mall

and uc = calc

call . call and mall denote the computational and
memory resources in a DDC, respectively, and calc and malc

denote the allocated computational and memory resources,
respectively. We assumed that a request is blocked if the re-
sources required to satisfy the performance requirements can-

not be allocated; that is, if some of the requests are dropped,
resource utilization becomes small. In this evaluation, the
number of requested computational resources is the same
as the number of computational resources in the network.
Therefore, if all requests are accepted, the computational
resource utilization becomes 100% and no more requests can
be accepted.

b: Total allocation cost
To compare the solutions obtained using ACO and BFS, we
measured the total allocation cost. If the total cost of the
solution obtained using ACO was the same as that obtained
using BFS, we concluded that ACO derived the optimal
solution for RA-CNP.

The total allocation cost is the sum of the costs of the
resources allocated to all generated requests. The total alloca-
tion cost W all is defined as follows: W all =

∑
r∈Rreq W alc

r .
Rreq is the set of generated requests, and W alc

r is the resource
allocation cost for request r.

4) Result
Fig. 6 shows the worst-case resource utilization according to
10 measurements in two cases: the packet and circuit switch
networks. In this evaluation, when all generated requests
were allocated, the resource utilization of computational
resources was 100% and it was impossible to allocate more
resources. Fig. 7 shows a comparison between the allocation
costs of the solutions obtained using ACO and BFS.

As shown in Fig. 6, RA-CNP had 100% worst-case com-
putational resource utilization without blocking resource re-
quests in the packet switch network and the circuit switch
network. By contrast, SP and NP did not have 100% worst-
case computational resource utilization because they caused
blocking in some cases. This is because the resources and
paths required to execute the task have been exhausted as a
result of not considering future requests. RA-CNP derived
the optimal solution in a situation in which other methods
caused blocking, regardless of the switch type.

In addition, Fig. 7 shows that allocation costs similar to
those in the solution obtained using BFS can be achieved
using ACO. Hence, ACO can identify one of the best so-
lutions to the resource allocation problem. In the following
evaluation, we compared RA-CNP derived using ACO with
that of other methods.

C. EFFECTIVENESS OF RA-CNP
We demonstrated that RA-CNP could execute many tasks
from the current network information, regardless of the

VOLUME -, - 13

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

RA-CNP
by ACO

RA-CNP
by BFS

SP NP0

20

40

60

80

100

W
or

st
-c

as
e

re
so

ur
ce

 u
til

iza
tio

n(
%

)

Computational resource
Memory resource

(a) Generated pattern 1
(Packet switch network)

RA-CNP
by ACO

RA-CNP
by BFS

SP NP0

20

40

60

80

100

W
or

st
-c

as
e

re
so

ur
ce

 u
til

iza
tio

n(
%

)

Computational resource
Memory resource

(b) Generated pattern 2
(Packet switch network)

RA-CNP
by ACO

RA-CNP
by BFS

SP NP0

20

40

60

80

100

W
or

st
-c

as
e

re
so

ur
ce

 u
til

iza
tio

n(
%

)

Computational resource
Memory resource

(c) Generated pattern 1
(Circuit switch network)

RA-CNP
by ACO

RA-CNP
by BFS

SP NP0

20

40

60

80

100

W
or

st
-c

as
e

re
so

ur
ce

 u
til

iza
tio

n(
%

)

Computational resource
Memory resource

(d) Generated pattern 2
(Circuit switch network)

FIGURE 6. Worst-case resource utilization and blocked requests in each pattern

Se
q 1

Se
q 2

Se
q 3

Se
q 4

Se
q 5

Se
q 6

Se
q 7

Se
q 8

Se
q 9
Se
q 1
0

0

50000

100000

150000

200000

250000

To
ta
l a

llo
ca
tio

n
co
st

BFS
ACO

(a) Generated pattern
(Packet switch network)

Se
q 1

Se
q 2

Se
q 3

Se
q 4

Se
q 5

Se
q 6

Se
q 7

Se
q 8

Se
q 9
Se
q 1
0

0

50000

100000

150000

200000

250000

To
ta
l a

llo
ca
tio

n
co
st

BFS
ACO

(b) Generated pattern 2
(Packet switch network)

Se
q 1

Se
q 2

Se
q 3

Se
q 4

Se
q 5

Se
q 6

Se
q 7

Se
q 8

Se
q 9
Se
q 1
0

0

50000

100000

150000

200000

250000

To
ta
l a

llo
ca
tio

n
co
st

BFS
ACO

(c) Generated pattern 1
(Circuit switch network)

Se
q 1

Se
q 2

Se
q 3

Se
q 4

Se
q 5

Se
q 6

Se
q 7

Se
q 8

Se
q 9
Se
q 1
0

0

50000

100000

150000

200000

250000

To
ta
l a

llo
ca
tio

n
co
st

BFS
ACO

(d) Generated pattern 2
(Circuit switch network)

FIGURE 7. Total allocated cost per request sequence in BFS and RA-CNP

switch type composing the network. Therefore, we compared
RA-CNP with the two resource allocation methods in two
cases: the circuit and packet switch networks.

1) DDC network
We used two DDC networks of different scales: 6 × 6 and
8 × 8 2D torus networks, as shown in Fig. 5b and Fig. 5c,
respectively. Each CPU pool had 16 computational resources,
and each memory pool had 24 memory resources.

In this study, we used multicore optical fibers. For this
evaluation, the nodes were connected via multicore optical
fibers with four optical fiber cores, i.e., the number of links
between a pair of nodes was four.

2) Resource request
We continuously generated the requests listed in Table 5 for
300 min. The lifetime of each task was 90 min. In this evalu-
ation, we set the probability that requests 1, 2, 3, and 4 were
generated to 0.3, 0.3, 0.3, and 0.1, respectively. We evaluated
RA-CNP in four cases to demonstrate its effectiveness in
various situations. Each case is shown below.

• Case 1: Neutral case for comparison.
• Case 2: Case in which many resources are required per

resource request.
• Case 3: Case in which the performance requirements of

requests are strict.
• Case 4: Case in which requests arrive frequently.
The combination of generated requests, required re-

sources, and performance requirements for each case is
shown in Table 10. Because the 8 × 8 2D torus network holds
more resources, we allocated more resources to compare the
methods.

3) Metrics
We defined blocked requests as a metric to evaluate whether
RA-CNP could allocate many tasks, which refers to the
number of requests that could not find resources to satisfy
their performance requirements. A larger number of blocked
requests implies that resource allocation is insufficient to
accommodate many requests.

4) Result
We measured the blocked requests for the five request se-
quences for each case in two networks: the packet switch
network and the circuit switch network. Fig. 8 illustrates the
blocked requests for each allocation method.

RA-CNP had fewer blocked requests than the other meth-
ods, regardless of network and case. By contrast, blocking
occurred in SP and NP, even in environments where blocking
did not occur in RA-CNP (case 4 of Fig. 8a). This difference
is attributed to the availability of resources when requests re-
quire several resources. SP does not consider future requests
and cannot accommodate requests with strict performance
requirements. As shown in case 4 in Fig. 8a and Fig. 8c,
Request 4, which had the strictest performance requirement,
was blocked. NP preferentially allocated paths between re-
sources with low communication delays, regardless of the
performance requirements of the request. Consequently, re-
source pairs that can satisfy performance requirements were
depleted. In particular, NP caused more blocking in the
packet switch network for cases 1, 2, and 4 than did the
other methods. These blocks are attributed to packet switch
processing delays being large and the likely depletion of
resource pairs with small communication delays. RA-CNP
can allocate more tasks than other methods in various envi-

14 VOLUME -, -

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

RA-CNP SP NP

0

15

30

45

60

75

Bl
oc
ke
d
re
qu

es
ts

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 1

RA-CNP SP NP

0

15

30

45

60

75

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 2

RA-CNP SP NP

0

15

30

45

60

75

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 3

RA-CNP SP NP

0

15

30

45

60

75

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 4

Request 1 Request 2 Request 3 Request 4

(a) Blocked requests for each case in the packet switch network (6 × 6 2D torus network)

RA-CNP SP NP

0

15

30

45

60

75

Bl
oc
ke
d
re
qu

es
ts

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 1

RA-CNP SP NP

0

15

30

45

60

75

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 2

RA-CNP SP NP

0

15

30

45

60

75

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 3

RA-CNP SP NP

0

15

30

45

60

75

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 4

Request 1 Request 2 Request 3 Request 4

(b) Blocked requests for each case in the circuit switch network (6 × 6 2D torus network)

RA-CNP SP NP

0

15

30

45

60

75

Bl
oc
ke
d
re
qu

es
ts

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 1

RA-CNP SP NP

0

15

30

45

60

75

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 2

RA-CNP SP NP

0

15

30

45

60

75

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 3

RA-CNP SP NP

0

15

30

45

60

75

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 4

Request 1 Request 2 Request 3 Request 4

(c) Blocked requests for each case in the packet switch network (8 × 8 2D torus network)

RA-CNP SP NP

0

15

30

45

60

75

Bl
oc
ke
d
re
qu

es
ts

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 1

RA-CNP SP NP

0

15

30

45

60

75

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 2

RA-CNP SP NP

0

15

30

45

60

75

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 3

RA-CNP SP NP

0

15

30

45

60

75

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
1

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
2

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
3

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
4

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Se
q
5

Case 4

Request 1 Request 2 Request 3 Request 4

(d) Blocked requests for each case in the circuit switch network (8 × 8 2D torus network)

FIGURE 8. Blocked requests

VOLUME -, - 15

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

TABLE 10. Combination of generated requests, required resources, and performance requirements for each case

6 × 6 2D torus network 8 × 8 2D torus network
Generated Required resources Performance requirements Generated Required resources Performance requirements
requests (Table 6) (Table 7) requests (Table 6) (Table 7)

Case 1 120 Pattern B Pattern 1 150 Pattern C Pattern 1
Case 2 120 Pattern C Pattern 1 150 Pattern D Pattern 1
Case 3 120 Pattern B Pattern 3 150 Pattern C Pattern 3
Case 4 170 Pattern B Pattern 1 200 Pattern C Pattern 1

ronments by allocating resources in consideration of future
requests. At the assumed DDC scale, RA-CNP was effective.

A comparison of Fig. 8a and Fig. 8b in RA-CNP shows
that the packet switch network was superior in cases 2 and
4 and that the circuit switch network was superior in case 3.
In cases 2 and 4, because many resources were requested,
many resource pairs existed for communication. Therefore,
in the circuit switch network, where network resources are
occupied, the paths between resources are depleted. In case
three, the processing delay of the packet switch was too
large to satisfy the performance requirements of the tasks.
By contrast, a comparison of Fig. 8c and Fig. 8d shows that
the circuit switch network could allocate more tasks in all
cases because more resources were held than requested. In
such cases, the circuit switch network, which can reduce
communication delays between resources, has more resource
pairs that can satisfy the performance requirements.

D. COMPUTATIONAL TIME OF RA-CNP
For practical resource allocation, RA-CNP must allocate
resources within a practical computational time at various
DDC scales. We have presented an example solution based
on ACO in Section III-E. We evaluated the computation time
when solving using ACO. We investigated the relationship
between the computation time and the factors involved in the
computational complexity of each step, as shown in Section
III-E, as the computational time depends on computational
complexity.

1) Computational complexity of Resource allocation based
on ACO
The resource allocation process is divided into four steps. The
computational complexity for each step is shown below. Note
that each symbol is based on Tables 2 and 3.

a: Resource search phase
This phase continues until resources are found for all nodes
in the resource graph. For each requested resource, one
agent selects resources from each resource pool. Therefore,
the computational complexity per agent in this phase is the
product O(Rs(|Cv| + |Mv|)) of the number of requested
resources |Cv|+ |Mv| and number of resource pools Rs.

b: Network resource search phase
In this study, because the resource graph connected all mem-
ory and computational resources in the same process, the
number of allocated paths was O(|Cv||Mv|). As described

in Section III-E, the network resource search is repeated
a maximum of H times for each network resource in the
resource graph. However, H is a constant parameter for
ACO. Therefore, the computational complexity per agent in
this phase is O(|Cv||Mv|).

c: Execution time calculation phase
This calculation is performed for the requested task and tasks
whose performance is affected by resource allocation. Let
Adeg be the number of tasks affected by resource allocation.
The computational complexity per agent in this phase was
O(Adeg).

d: Pheromone update phase
Pheromones are updated on all resource pools and network
resources in the DDC. Therefore, the computational com-
plexity is the sum O(Rs + |Es|) of the number of resource
pools Rs and network resources |Es|.

We summarize the computational complexity of each step
in Table 11. This series of phases is iterated titr times.
However, titr is a parameter for ACO. This value is constant
and does not affect the computational time. Rs and Es

depend on the network scale, whereas Cv and Mv depend on
the number of requested resources. Adeg increases as more
tasks are allocated. We investigated whether computational
time can be practical for the number of required resources,
the number of accommodated requests, and the DDC network
scale.

TABLE 11. Computational complexity in each phase

Step computational complexity
Resource search phase O(Rs(|Cv |+ |Mv |))
Network resource search phase O(|Cv ||Mv |)
Execution time calculation phase O(Adeg)
Pheromone update phase O(Rs + |Es|)

2) Impact of the number of required resources on allocation
time
a: Environment
We used the DDC network shown in Fig. 5b. The number
of resources for requests 1, 2, and 3 shown in Table 6 was
changed to five patterns, as shown in Table 12. In each
measurement, 100 requests were randomly generated within
300 min.

16 VOLUME -, -

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

TABLE 12. Required resources for requests 1, 2, and 3

Resource request pattern 1 2 3 4 5
Required computational resources 2 4 6 8 10

Required memory resources 2 4 6 8 10

b: Result
Fig. 9 shows the relationship between the required resources
and allocation time in the packet switch and circuit switch
networks. The 95% confidence interval is included in Fig. 9.

In both networks, the allocation time increased almost
linearly with the product of the required number of com-
putational and memory resources. This result matches the
computational complexity of the network resource search
phase O(|Cv||Mv|). RA-CNP required less than 10 s, even
when 10 CPUs and 10 memory blocks were requested, which
is considered acceptable for resource allocation before task
execution.

In addition, the rate of increase in the allocation time
differed between the circuit and packet switch networks.
Each agent stops searching for resources if the currently
selected resource allocation cost becomes greater than the
current best solution. This means that if a low-cost solution
can be found, the search time can be significantly reduced. In
packet networks, the number of candidate network resources
is greater than the number of circuits because link sharing
and aggregation are also possible. Consequently, the increase
in computational time is high in the packet switch network.

0 20 40 60 80 100
Product of required computational and

 memory resources

0

2

4

6

8

10

Av
er
ag

e
al
lo
ca

tio
n
tim

e
(s
)

Pattern 1
Pattern 2

Pattern 3

Pattern 4 Pattern 5

Packet switch network
Circuit switch network
95% confidence interval

FIGURE 9. Required resources and allocation time

3) Impact of the number of accommodated requests on
allocation time
a: Environment
We used the DDC network, as shown in Fig. 5b. In this
evaluation, the number of resources required for each request
was set according to Pattern 2 in Table 6. We changed the
number of generated requests to investigate the effect of the
number of accommodated requests. Table 13 lists the number
of generated requests. Resource requests were generated
randomly.

b: Result
Fig. 10 shows the relationship between the number of accom-
modated requests and allocation time. The 95% confidence

TABLE 13. Parameter setting for each type of generated requests

Generated request pattern 1 2 3 4 5
Generated requests 150 180 210 240 270

interval is included in Fig. 10.
Fig. 10 shows that there was no significant difference in

the allocation time in each case. First, because links are not
shared in the circuit switch network, they are not affected
by an increase in the number of requests. In addition, the
number of requests sharing the same link is limited to prevent
incurring a large latency between resources in the packet
switch network. The number of accommodated requests only
has a limited impact on computational time.

80 100 120 140 160 180 200 220
Number of generated requests

0

2

4

6

8

10

Av
er
ag
e
al
lo
ca
tio

n
Ti
m
e
(s
)

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Packet switch network
Circuit switch network
95% confidence interval

FIGURE 10. Number of requests and allocation time

4) Impact of DDC network scale on allocation time
a: Environment
We used 5 × 5, 6 × 6, 7 × 7, and 8 × 8 2D torus networks.
The parameters for each structure are listed in Table 14. In
this evaluation, the number of resources required for each
request was set according to Pattern B in Table 6. In each
measurement, 100 requests were generated within 300 min.

TABLE 14. Parameter settings for each 2D torus network

2D torus network 5 × 5 6×6 7×7 8×8
Switches 25 36 49 64

CPU pools 12 18 24 34
GPU pools 5 6 7 8

Memory resource pools 8 12 18 22
Links 75 108 147 192

b: Result
Fig. 11 shows the impact of the scale of the DDC network on
the allocation time. The 95% confidence interval is included
in Fig. 11.

Fig. 11 shows that the allocation time quadratically in-
creased with the number of resource pools and links Rs +
|Es|. This result does not match the computational complex-
ity of the resource search and pheromone update phases in
Table 11. Because the scales of the 5 × 5 and 6 × 6 2D
torus networks are small, the number of candidate resources
is small. Therefore, RA-CNP can find the solution quickly,

VOLUME -, - 17

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

100 125 150 175 200 225 250 275
Number of resource pools and links

 in the DDC network

0

2

4

6

8

10

Av
er
ag

e
al
lo
ca
tio

n
tim

e
(s
)

5 × 5
2D torus

6 × 6
2D torus

7 × 7
2D torus

8 × 8
2D torus

Packet switch network
Circuit switch network
95% confidence interval

FIGURE 11. DDC network scale and allocation time

thereby reducing the computational time. Conversely, as the
scale of the network increases, the reduction in computational
time may be slight. Consequently, a large difference occurs in
the computational time. However, even in the case of an 8 ×
8 2D torus, the computational time is less than 6 s.

E. DISCUSSION ON LIMITATIONS AND FUTURE
RESEARCH DIRECTIONS
We demonstrated RA-CNP can execute more tasks simulta-
neously than other resource allocation methods in both net-
works configured by circuit and packet switches. However,
this study has some limitations.

First, RA-CNP assumes that service execution resources
are allocated before task execution and that the service
continues to use the allocated resources. RA-CNP provides
enough computational time in such a situation. However, in a
situation where execution resources for services are managed
dynamically in real-time, as in the case of microservices,
RA-CNP is not practical because it is excessively time-
consuming. In such a situation, preparing candidate execu-
tion resources in advance is effective for real-time resource
management. Execution resources can be allocated in real-
time because the search for execution resources is no longer
required at the time of a resource allocation request. To
achieve this approach, a method for selecting candidate ex-
ecution resources based on the prediction of future requested
services is required. Proposals for such a method are future
work.

Next, RA-CNP assumes that the execution information of
each task, such as the resources required for task execution
and the packet rate that occurs between resources, is known
in advance. However, in cases such as task offloading from
users, it is difficult to know which tasks will be offloaded in
advance. In such a case, RA-CNP cannot achieve the objec-
tive because it cannot calculate the impact of the network on
performance. Estimating execution information is required.
The amount of transferred data and frequency of communi-
cation depend on the size of processed data and memory size.
The clock count depends on the executable program and the
performance of the device. Estimating execution information
based on these factors is also a future work.

In future studies, we plan to introduce an optimal network
architecture for a DDC. Currently, there have been several

studies of network architecture in a DDC [11], [12], [21],
[22]. However, there has been no comparative evaluation of
whether the network is optimal through resource allocation.
RA-CNP is a resource allocation method available for any
network. Therefore, RA-CNP can allow us to evaluate the
suitability of various DDC networks to execute many tasks.
We plan to propose a network configuration method consid-
ering running tasks and network topology and evaluate the
network by RA-CNP.

V. CONCLUSION
DDCs improve resource utilization and scaling flexibility.
However, network resources significantly influence task per-
formance, and an efficient resource allocation method is
required. We modeled the impact of allocated resources on
task performance and defined the resource allocation cost,
considering future resource requests. We then defined the
resource allocation problem and resource allocation based on
this model and costs RA-CNP. In RA-CNP, by avoiding un-
necessary allocation of important resources, we can preserve
these resources to fulfill future requests and execute more
tasks simultaneously.

We conducted simulations to evaluate the effectiveness of
RA-CNP. The results demonstrated that RA-CNP could allo-
cate more tasks than other methods in various environments.
This method enables the execution of many tasks in a DDC
and the evaluation of architectures. Finally, we measured
the allocation time of RA-CNP and demonstrated that this
method can allocate resources within a practical time.

We discussed the limitations of this study and suggested
the need for real-time resource management methods and
execution information estimation methods. In future studies,
we plan to introduce a DDC network architecture considering
network topology and running tasks by using RA-CNP.

REFERENCES
[1] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, “Potentials, trends, and

prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data
centers,” Computer Networks, vol. 130, pp. 94–120, Jan. 2018.

[2] J. Pan and J. McElhannon, “Future edge cloud and edge computing for
internet of things applications,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439–449, 2018.

[3] A. Y. Ding, E. Peltonen, T. Meuser, A. Aral, C. Becker, S. Dustdar,
T. Hiessl, D. Kranzlmüller, M. Liyanage, S. Maghsudi, N. Mohan, J. Ott,
J. S. Rellermeyer, S. Schulte, H. Schulzrinne, G. Solmaz, S. Tarkoma,
B. Varghese, and L. Wolf, “Roadmap for edge ai: A dagstuhl perspective,”
ACM SIGCOMM Computer Communication Review, vol. 52, no. 1, pp.
28–33, mar 2022.

[4] L. A. Haibeh, M. C. E. Yagoub, and A. Jarray, “A survey on mobile edge
computing infrastructure: Design, resource management, and optimization
approaches,” IEEE Access, vol. 10, pp. 27 591–27 610, 2022.

[5] M. Ewais and P. Chow, “Disaggregated memory in the datacenter: A
survey,” IEEE Access, vol. 11, pp. 20 688–20 712, 2023.

[6] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker, “Network
support for resource disaggregation in next-generation datacenters,” in
Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks,
Nov. 2013, pp. 1–7.

[7] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource dis-
aggregation,” in Proceedings of 12th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 16). Savannah, GA:
USENIX Association, Nov. 2016, pp. 249–264.

18 VOLUME -, -

A.Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a Disaggregated Data Center

[8] X. Lu and A. Kashyap, “Towards offloadable and migratable microservices
on disaggregated architectures: Vision, challenges, and research roadmap,”
in Proceedings of the Second Workshop On Resource Disaggregation
and Serverless (WORDS’21), co-located with ASPLOS 2021, ser.
WORDS ’21. ACM, Apr. 2021, vision Paper. [Online]. Available:
https://wuklab.github.io/words/words21-lu.pdf

[9] G. Vargas-Solar, M. Hassan, and A. Akoglu, “Jita4ds: Disaggregated
execution of data science pipelines between the edge and the data centre,”
Journal of Web Engineering, vol. 21, no. 1, pp. 1–26, Nov. 2021.

[10] Q. Zhang, Y. Cai, S. G. Angel, V. Liu, A. Chen, and B. T. Loo, “Rethinking
data management systems for disaggregated data centers,” in Proceedings
of Conference on Innovative Data Systems Research (CIDR), jan 2020.

[11] V. Mishra, J. L. Benjamin, and G. Zervas, “Monet: Heterogeneous
memory over optical network for large-scale data centre resource
disaggregation,” Research Article Journal of Optical Communications and
Networking, vol. 1, 2021. [Online]. Available: http://dx.doi.org/10.1364/
ao.XX.XXXXXX

[12] X. Guo, X. Xue, F. Yan, B. Pan, G. Exarchakos, and N. Calabretta, “Dacon:
a reconfigurable application-centric optical network for disaggregated data
center infrastructures [invited],” Journal of Optical Communications and
Networking, Vol. 14, Issue 1, pp. A69-A80, vol. 14, pp. A69–A80, 1 2022.

[13] A. Saljoghei, M. Enrico, D. Syrivelis, K. Katrinis, A. Reale, M. Bielski,
I. Syriogs, D. Pnevmatikatos, D. Theodoropoulos, N. Parsons, G. Zervas,
and V. Mishra, “dredbox: Demonstrating disaggregated memory in an
optical data centre,” in Proceedings of Optical Fiber Communication
Conference, 01 2018, p. W1C.1.

[14] G. Zervas, H. Yuan, A. Saljoghei, Q. Chen, and V. Mishra, “Optically dis-
aggregated data centers with minimal remote memory latency: Technolo-
gies, architectures, and resource allocation [invited],” Journal of Optical
Communications and Networking, vol. 10, no. 2, pp. A270–A285, 2018.

[15] A. D. Papaioannou, R. Nejabati, and D. Simeonidou, “The benefits of a
disaggregated data centre: A resource allocation approach,” in Proceedings
of 2016 IEEE Global Communications Conference (GLOBECOM), Dec.
2016, pp. 1–7.

[16] M. Amaral, J. Polo, D. Carrera, N. Gonzalez, C.-C. Yang, A. Morari,
B. D’Amora, A. Youssef, and M. Steinder, “Drmaestro: orchestrating
disaggregated resources on virtualized data-centers,” Journal of Cloud
Computing, vol. 10, pp. 1–20, mar 2021.

[17] C. Guo, X. Wang, G. Shen, S. K. Bose, J. Xu, and M. Zukerman,
“Exploring the benefits of resource disaggregation for service reliability
in data centers,” IEEE Transactions on Cloud Computing, vol. 11, no. 2,
pp. 1651–1666, 2023.

[18] A. Ikoma, Y. Ohsita, and M. Murata, “Disaggregated micro data center:
Resource allocation considering impact of network on performance,” in
Proceedings of 2023 IEEE 20th Consumer Communications & Network-
ing Conference (CCNC), 2023, pp. 360–365.

[19] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent
advances in optical technologies for data centers: a review,” Optica, vol. 5,
no. 11, pp. 1354–1370, Nov 2018.

[20] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “LegoOS: A disseminated,
distributed OS for hardware resource disaggregation,” in Proceedings
of 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). Carlsbad, CA: USENIX Association, Oct.
2018, pp. 69–87. [Online]. Available: https://www.usenix.org/conference/
osdi18/presentation/shan

[21] N. Terzenidis, M. Moralis-Pegios, G. Mourgias-Alexandris, T. Alexoudi,
K. Vyrsokinos, and N. Pleros, “High-port and low-latency optical switches
for disaggregated data centers: The hipoλaos switch architecture,” Journal
of Optical Communications and Networking, vol. 10, no. 7, pp. 102–116,
2018.

[22] S. Yan, Z. Zhu, M. S. Glick, Z. Wu, and K. Bergman, “Accelerating
distributed machine learning in disaggregated architectures with flexible
optically interconnected computing resources,” in Proceedings of 2022
Optical Fiber Communications Conference and Exhibition (OFC), 2022,
pp. 1–3.

[23] T. Kimura, “Approximations for multi-server queues: System interpola-
tions,” Queueing Systems, vol. 17, pp. 347–382, 1994.

[24] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “VNE-AC: Virtual
network embedding algorithm based on ant colony metaheuristic,” in
Proceedings of 2011 IEEE International Conference on Communications
(ICC), Jun. 2011, pp. 1–6.

[25] M. Dorigo and T. Stützle, Ant Colony Optimization: Overview and Recent
Advances. Boston, MA: Springer US, 2010, pp. 227–263. [Online].
Available: https://doi.org/10.1007/978-1-4419-1665-5_8

[26] V. Bahl, “Emergence of micro datacenter (cloudlets/edges)
for mobile computing,” online: https://www.microsoft.
com/en-us/research/wp-content/uploads/2016/11/
Micro-Data-Centers-mDCs-for-Mobile-Computing-1.pdf. Accessed
13 March 2024.

[27] “Vapor edge module (vem-20) specifications,” online: https://www.vapor.
io/technology/datasheet/#VEM20. Accessed 13 March 2024.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 779–788.

AKISHIGE IKOMA received the M.E. degree
in information science and technology from Os-
aka University, Japan, in 2022, where he is cur-
rently pursuing the Ph.D. degree with the Graduate
School of Information Science and Technology.

His research interests include network architec-
ture for a disaggregated data center.

YUICHI OHSITA (Member, IEEE) received the
M.E. and Ph.D. degrees in information science and
technology from Osaka University, Japan, in 2005
and 2008, respectively.

From April 2006 to March 2012, he was an
Assistant Professor at the Graduate School of
Economics, Osaka University. In April 2012, he
moved to the Graduate School of Information Sci-
ence and Technology, Osaka University, where he
has been an Associate Professor at the Institute

for Open and Transdisciplinary Research Initiatives, since January 2019. In
August 2023, he has been an Associate Professor at the Cybermedia Center,
Osaka University. His research interests include traffic engineering, traffic
prediction, and network security.

Dr. Ohsita is a member of IEICE and the Association for Computing
Machinery (ACM).

MASAYUKI MURATA (Member, IEEE) received
the M.E. and D.E. degrees in information and
computer science from Osaka University, Japan,
in 1984 and 1988, respectively.

In April 1984, he joined Tokyo Research Labo-
ratory, IBM Japan, as a Researcher. From Septem-
ber 1987 to January 1989, he served as an Assis-
tant Professor at the Computation Center, Osaka
University. In February 1989, he joined the De-
partment of Information and Computer Sciences,

Faculty of Engineering Science, Osaka University, where he became a Pro-
fessor of the Graduate School of Engineering Science in April 1999. He has
been with the Graduate School of Information Science and Technology since
April 2004. His research interests include information network architecture,
performance modeling, and evaluation.

Prof. Murata is a member of ACM and IEICE.

VOLUME -, - 19

