
Dynamic Resource Allocation Considering Workload
Changes in a Disaggregated Data Center

Akishige Ikoma
Graduate School of Information

Science and Technology
Osaka University, Suita, Japan

a-ikoma@ist.osaka-u.ac.jp

Yuichi Ohsita
D3 Center

Osaka University, Toyonaka, Japan
yuichi.ohsita.cmc@osaka-u.ac.jp

Masayuki Murata
Graduate School of Information

Science and Technology
Osaka University, Suita, Japan

murata@ist.osaka-u.ac.jp

Abstract—Disaggregated data centers (DDC)
enable efficient resource utilization. However, a
DDC faces performance degradation due to re-
source communication latency. Furthermore, work-
load changes in DDC affect the execution time
of service tasks. Therefore, to continually satisfy
the performance requirements for service tasks, a
dynamic resource management method is required
that considers workload changes and the impact
of the network on performance. We propose a
dynamic resource allocation method considering
the workload changes in a DDC (DRA-CWC). We
formulate the impact of workload changes on per-
formance and define resource allocation costs based
on service demand and resource importance for fu-
ture service execution. Based on these, we preserve
the required resources to satisfy the performance
requirements for the future workload increase. By
comparing conventional resource allocation meth-
ods for a DDC, we demonstrate that DRA-CWC
can satisfy service performance requirements for a
longer time.

Index Terms—Disaggregated data center, re-
source allocation

I. Introduction

In recent years, cloud computing has problem of
high communication delays. Edge computing can be
the solution to this problem. In edge computing,
small-scale data centers are located at the edge. How-
ever, such data centers have fewer resources such
as central processing units (CPUs) than cloud data
centers. Therefore, efficient resource usage is required.

One approach for efficient resource usage is resource
disaggregation [1]. In resource disaggregation, each
resource aggregated into servers is decoupled and

This work was supported by JSPS KAKENHI Grant Number
JP24K14914

connected via a network. Because each resource is in-
dependent, resources can be flexibly used by allocating
only the required resources to each task. This improves
resource utilization [2]. We configure edge data centers
applying resource disaggregation (hereafter referred to
as a disaggregated data center (DDC)).

Communication between execution resources occurs
whenever data are exchanged, which is handled by
the motherboard in traditional architectures. Because
the frequency of such communication is high, commu-
nication delays have a significant impact on service
performance [3]. Communication between allocated
resources must be sufficiently low latency to satisfy
performance requirements. Therefore, resource alloca-
tion for a DDC is required.

Several resource allocation methods for a DDC have
been proposed [2], [4], [5]. However, these methods
aim to satisfy the performance requirements of the
requested tasks in the resource usage situation at that
time. If the demand for services increases, the task
execution requests increase and the workload on the
computing resources also increases. If the number of
allocated resources is small relative to service demand,
the performance will be degraded by waiting time for
task execution. A dynamic resource allocation method
that considers workload changes is required.

In this paper, we propose a dynamic resource al-
location method considering workload changes in a
DDC (hereafter called DRA-CWC). DRA-CWC aims
to continually satisfy the performance requirements
for service tasks in a DDC where workloads change
dynamically. DRA-CWC predicts the demand for each
execution service. Based on this prediction, we esti-
mate the communication latency between allocated
resources and the task execution waiting time in the
future to determine additional resource allocation and
reallocation of paths between resources. Furthermore,

we formulate the potential for additional allocation for
each service and the potential as additional allocated
resources for each resource. Based on this, we pre-
serve the required resources to satisfy the performance
requirements for the future workload increase. By
comparing conventional resource allocation methods
for a DDC, we demonstrate DRA-CWC can satisfy
service performance requirements for longer periods.

II. Disaggregated data center

A. Overview of a disaggregated data center

A DDC consists of computational and memory
resources interconnected by a network. Computational
resources, which include CPUs and GPUs, are des-
ignated for task execution and have a small cache.
Memory resources, which include RAM, are responsi-
ble for storing processed data. Data in memory are
managed via paging. When the data required for
tasks do not exist in the cache and a page fault
occurs, computational resources obtain the data from
the memory resource via a network. A DDC network
employs packet switches. A packet switch aggregates
multiple same-type resources and the set of resources
connected to the same switch is called a resource pool.

For dynamic resource management, the following
three processes run:

• Monitor: Measure arrival rate of execution re-
quests for service tasks as service demand, and
traffic on each network link at constant intervals.
Then, send monitoring information to the Predic-
tor and Allocator.

• Predictor: Predict future service execution re-
quests based on information from the Monitor.
Then, send prediction results to Allocator.

• Allocator: Determine whether to allocate execu-
tion resources and reallocate paths for each ser-
vice based on prediction results. Then, determine
execution resources and routes between resources.

The decision to allocate resources is based on the
waiting time for execution requests and the commu-
nication delay threshold between execution resources.
If the threshold is exceeded, additional resources are
allocated to satisfy service performance requirements.
To set the threshold, the allocator has a standard
value for service execution request arrival rate and
traffic and sets the threshold based on that. The
notations for the information held by each process are
listed in Table I.

TABLE I: The information held by each process
Symbols Definition

Allocator holding information
Ns, Es Set of nodes and links in a DDC network
Ln Number of available resources in the resource pool corresponding to node n ∈ Ns

Cs, Ms Set of available computational and memory resources
Fc Clock frequency of computational resource c ∈ Ns

T H
n Delay to send the packet to the next node in node n ∈ Ns

T P
e Propagation delay in link e ∈ Es

Rs Set of paths between resources in the DDC network
B Network bandwidth
P page size
λe,n Traffic from adjacent node n on network link e ∈ Es

S Set of executing services
T t

s Acceptable time of service s ∈ S
Nv

s , Ev
s Set of nodes and links in the resource graph of service s ∈ S

δR
n DDC resource corresponding to resource graph node n ∈ Nv

δP
n Paths in the DDC network corresponding to resource graph link e ∈ Ev

Cv
s , Mv

s Set of resource graph nodes corresponding to the execution computational and
memory resources for service s ∈ S

Nµ
s , Eµ

s Set of nodes and links in the µ-service graph of service s ∈ Se

Rv
µ Set of resource graph paths corresponding to µ-service µ ∈ Nµ

Λc
µ Number of clocks required to execute µ-service µ ∈ Nµ

Λf
µ Number of page faults that occur during the execution of µ-service µ ∈ Nµ

Λp
µ Number of pages read during execution of µ-service µ ∈ Nµ

Iµ, Oµ Size of input and output data for µ-service µ
λP Standard value of traffic
λR Standard value of arrival rate of service execution request

Monitor holding information
Uµ,t Arrival rate of execution requests for µ-service µ ∈ Nµ at time t
λw

µ,t, λr
µ,t Number of packets from/to memory during the execution of µ-service µ ∈ Nµ at time

t
Predictor holding information

Ûs,t+∆t Arrival rate of service execution request in service s ∈ S from t to ∆t
T dur prediction period

B. Execution service
We assume an event-driven service consisting of

multiple µ-services. Each µ-service in a service sends
an execution request and processing results to the
next µ-service after the end of processing. Requests
for each µ-service are queued and wait until a pair
of computational and memory resources to execute
the µ-service is available. An example of the service is
shown in Fig. 1.

μ-service１ μ-service２

・
・
・

Execution request

Service

Each compute and memory
resource pair processes in parallel

Results
return

Computational resource Memory resource

・
・
・

μ-service3

・
・
・

・
・
・

・
・
・

・
・
・

Available computing resources read the
request from the head of the queue

Gateway

Queue QueueQueue

Send processing results and nextμ-service
execution request to the queue
(Allocate a memory resource as a queue)

Fig. 1: Example of the assumed service

C. Modeling of execution service
We model an execution service using two directed

graphs, where one indicates the relationships between
the allocated resources (resource graph) and the other
indicates the relationships between the µ-services (µ-
service graph). An example of service modeling is
shown in Fig. 2. These graphs are configured when de-
ploying a new service and are updated when resources
are additionally allocated. This graph is held in the
allocator.

Resource graph of the service s ∈ S is represented
by Gv

s(Nv
s , Ev

s). For each node n ∈ Nv
s , we define

Computational resource Memory resource

Resource graph link corresponding to data flow

Correspondence between μ-services and resource graph nodes

μ-service
1

μ-service graph

Resource graph

μ-service
2

μ-service
3

Resource graph link corresponding to processing order of μ-services

Service information

Fig. 2: Example of resource and µ-service graph

the correspondence with allocated resource δR
n ∈ N s.

The directed link e ∈ Ev
s represents the relationship

between communicating resources. In the resource
graph, the path from the start to end represents the
flow of data during the execution of the service. For
each link e ∈ Ev

s , we define the correspondence with
allocated path δP

e ⊂ Es.
µ-service graph of the service s ∈ S is represented

by Gµ
s (Nµ

s , Eµ
s). Each node µ ∈ Nµ

s corresponds to
a µ-service comprising the service, and the nodes are
connected in the order of their execution. For each
node µ ∈ Nµ

s , we define the number of page faults
Λf

µ, the number of pages transmitted per page fault
Λp

µ, the clock counts required to execute the µ-service
Λc

µ, traffic read from and written to memory during
execution λr

µ, λw
µ , input data size Iµ and output data

size Oµ. Furthermore, we define the set of paths Rv
µ

in the resource graph from the resource that receives
the processing request for the µ-service µ to the
resource that forwards the processing result as the
correspondence between resource graph and µ-service
graph.

III. Dynamic resource allocation
considering workload changes

First, we formulate the impact of allocated re-
sources and workload change on execution time. Next,
we define an optimization problem to determine the
allocated resources to preserve the required resources
to satisfy the performance requirements for the future
workload increase.

A. The impact of allocated resources and workloads
change on execution time

The execution time of µ-service µ is the sum of
the communication delay of the path corresponding to
the link and the processing time of the computational
resource on the resource graph path y ∈ Rv

µ. Links
on the path y are classified into the following three
links: link y1 for transferring input data to memory
resources, link y2 used for communication between

execution resources, and link y3 for transferring results
to the next µ-service. Therefore, the execution time
of µ-service µ is the sum of the latency T O(y1, Iµ) to
transfer input data Iµ on the path corresponding to
y1 and processing time T E(µ, y2) on computational
and memory resources using the path corresponding
to link y2, latency T O(y3, Oµ) to transfer output data
Iµ on the path corresponding to y3. Furthermore, the
transfer time T O(estart

s , Iµstart) of a request to the µ-
service queue is incurred as a delay before execution.
The execution time T (s) of the service s is obtained
as follows:

T (s) = T O(estart, Iµstart) +
∑

µ∈Nµ
s

max
y∈Rv

µ

{
T O(y1, Iµ) + T E(µ, y2) + T O(y3, Oµ)

} (1)

where estart
s is the link whose source node is the

starting point of the resource graph, and µstart is the
first executed µ-service.

a) Data transfer latency: The transfer time for
the data of size D is the sum of the time required to
obtain the head of the data D

B and the transmission
delay. Note that we assume that the transfer delay is
a latency threshold Le′ to allocate resources to satisfy
performance requirements even when the communica-
tion delay between resources is at the threshold. That
is,

T O(e′, D) = D
B + Le′ . (2)

The latency threshold Le′ on the path between
resources corresponding to the resource graph e′ is the
sum of the communication delay T L(e, λP , ns

e) when
the traffic on a link on a path corresponding to the
resource graph e′ is the standard value λP . That is,

Le′ =
∑

e∈δP
e′

T L(e, λP , ns
e) . (3)

The latency T L(e, λ, n) of transferring data from node
n on a DDC network link e ∈ Es with traffic λ is the
sum of the propagation delay T p

e of link e and the
processing delay T R(lambda, J, T H

n) of the switch to
which link e connects. That is,

T L(e, λ, n) = T p
e + T R(λ, J, T H

n) (4)

where J is the number of links used for transferring
data. T R(λ, J, T H

n) is based on the M/D/C queuing
model. In the M/D/C queuing model, we assume
buffering as a situation where packets arriving ac-
cording to the Poisson process are waiting to be
processed until one of the J links that can process
them in a fixed time T H

n is ready to forward them.

However, obtaining an accurate response time using
the M/D/C queuing model is difficult. We use the
approximation [6]. T R(λ, J, T H

n) is obtained as follows:

T R(λ, J, D) = D + {1+fQ(λ,J,D)gQ(λ,J,D)}hQ(λ,J,D)
2

(5)
where,

fQ(λ, J, D) = (1− λD
J)(J−1)(√

4+5J−2)
16λD

,

gQ(λ, J, D) = 1 − exp
{

− J−1
(J+1)fQ(λ,J,D)

}
,

hQ(λ, J, D) = D·(λD)J

J ·J !(1− λD
J)2

[
J−1∑
i=0

(λD)J

i! + (λD)J

(1− λD
J)J !

]−1
.

b) Processing time of a µ-service: Processing
time of a µ-service is the sum of the communication
delay Λf

µ · T O(e′, P · Λp
µ) of the path between the

execution resources and the execution time Λc
µ

Fc
in

computational resource, the waiting time threshold
Wµ for µ-service µ. The execution time in the com-
putational resource of the µ-service µ is derived by
dividing the clock counts Λc

µ required for execution by
the clock frequency Fc of the computational resource
c. Communication delay is derived by multiplying the
data transfer time T O

e (P · Λp
µ) per page fault on the

path corresponding to link e′ by the number of page
faults Λf

µ. Wµ are used to allocate resources to satisfy
performance requirements even when the waiting time
for µ-service is at the threshold. The processing time
T E(µ, e′) of µ-service µ in the computational and
memory resource pair corresponding to the adjacent
node of the resource graph link e′ ∈ Ev is obtained as
follows:

T E(µ, e′) =
Λc

µ

FδR
ns

e′

+ Λf
µ · T O(e′, P · Λp

µ) + Wµ (6)

Wµ is the waiting time T Q(λR, Cµ, T A
µ) when the

request arrival rate is the standard value λR, the
number of computational resources for the µ-service
µ is Cµ and the average processing time in each
computational resource is T A

µ . That is,
Wµ = T Q(λR, Cµ, T A

µ) (7)
T Q(λR, Cµ, T A

µ) is derived by M/M/C queuing model.
T Q(λR, Cµ, T A

µ) is obtained as follows:
T Q(λ, J, D) =(

J
D − λ

)−1 (
1 +

(
1 − λD

J

) (
J !

(λD)J

) ∑J−1
k=0

(λD)k

k!

)−1

(8)

B. Allocation cost

We define the allocation costs for computational
and memory resources and network links based on the
importance for future service execution. First, based
on future service demand, we define the potential for
additional resource allocation for each service. Next,
we define the potential to be an allocated resource
for each resource and network link. Finally, based on
them, we define the allocation cost.

1) Potential for additional allocation of execution
resources: The greater the predicted demand relative
to the service’s execution computational resources, the
more likely it is that additional execution resources
are allocated. Therefore, the potential for additional
allocation of execution resources ηs,t for service s at
the time t is obtained as follows:

ηs,t =
max

0≤∆t≤T dur
Ûs,t+∆t

|Cv
s |

(9)

2) Potential to be future service execution resources:

a) Computational resource: The additionally al-
located compute resources communicate with the
memory resources corresponding to the queues. To
satisfy performance requirements, computational re-
sources must be able to communicate to memory
resources with low latency. Computational resources
close to the executing memory resource are important.
Computational resources with high clock frequency
and many available resources in the corresponding
pool are also important because they can handle tasks
with various requirements. Therefore, the potential to
be future service execution resources γs,c for compu-
tational resource c ∈ N s is obtained as follows:

γs,c = 1∑
a∈Mv

s
H(δR

a , c) · Fc · Lc (10)

b) Memory resource: The additionally allocated
memory resources communicate with a memory re-
source corresponding to the queue or newly addi-
tionally allocated computational resource. Memory
resources close to the executing memory resource
and available computational resources are important.
Furthermore, memory resources with many available
resources in the corresponding pool are also impor-
tant. Therefore, the potential to be future service

execution resources ζs,m for memory resource m ∈ N s

is obtained as follows:

ζs,m =
{

1∑
a∈Mv

s
H(m, δR

a) + 1∑
b∈Cs H(m, b)

}
· Lm

(11)
3) Network link: In communication between re-

sources, the smaller the hop count and traffic volume,
the smaller the delay and the less likely to cause
congestion. Therefore, the lower-traffic network links
on the shortest paths between resources are impor-
tant. We define the possibility to be a network link
on the shortest path as the ratio of the number
of shortest paths between resources to the number
of shortest paths through that network link. The
possibility θ(a, b, e) that a link e ∈ Es is on the
shortest path between resource a, b ∈ N s is obtained
as follows:,

θ(a, b, e) = ϕ(a, b|e)
ϕ(a, b) · H(a, b) (12)

where ϕ(a, b) denotes the number of shortest paths
between resources a, b ∈ N s, and ϕ(a, b|e) denotes the
number of shortest paths between resources a, b ∈ N s

passing through network link e. H(a, b) is the shortest
hops between resources a, b ∈ N s. Resource pairs
that possibly communicate when allocating additional
resources are (1) executing memory resources and
available resources, (2) available computational and
memory resources and (3) executing resources. Let Rp

be the set of these resource pairs, the potential to be
a network link on the path for future service κs,e is
obtained as follows:

κs,e =
∑

a,b∈Rp θ(a, b, e)
λns

e,e + λnd
e ,e

(13)

4) Defining the allocation cost: We avoid allocat-
ing resources with high potential to be resources for
services for which demand will increase in the future.
Therefore, the allocation costs Cc,t, Mm,t, and Ee,t of
the computational resource c ∈ N s, memory resource
m ∈ N s, and network link e ∈ Es at time t are
obtained as follows:

Cc,t =
∑

s∈S {ηs,t · γs,c}
Mm,t =

∑
s∈S {ηs,t · ζs,m}

Ee,t =
∑

s∈S {ηs,t · κs,e}
(14)

C. Resource allocation problem
We define a resource allocation problem to preserve

the required resources for future workload increases
while satisfying the performance requirements.

a) Allocated resource constraints: One computa-
tional resource Cv

s , memory resource Mv
s , and edge

Ev
s in the resource graph of service s correspond to a

resource.
∀s ∈ S, ∀c ∈ Cv

s δR
c ∈ Cs

∀s ∈ S, ∀m ∈ Mv
s δR

m ∈ M s

∀s ∈ S, ∀e ∈ Ev
s δP

e ∈ Rs
δR

ns
e
,δR

nd
e

(15)

b) Latency threshold: The latency of the path
between resources corresponding to the link e′ ∈ Ev

s

in the resource graph of the service s ∈ S must be less
than or equal to the threshold Le′ .

∀s ∈ S, ∀e′ ∈ Ev
s

∑
e∈δP

e′
T L(e, λns

e,e, ns
e) ≤ Le′

(16)
c) Waiting time threshold: The waiting time of

each µ-service of the executing service s must be less
than or equal to the threshold.

∀s ∈ S, ∀µ ∈ Nµ
s T Q(Uµ,t, Cµ, T A

µ) ≤ Wµ (17)

d) Performance requirement: All services must
be executed within the acceptable time.

∀s ∈ S T (s) ≤ T t
s (18)

e) Objective: In this method, resources are allo-
cated to minimize the costs, that is,
minimize

∑
c∈Cv

s

CδR
c ,t +

∑
m∈Mv

s

MδR
m,t +

∑
e′∈Ev

s

∑
e∈δP

e′

Ee,t

(19)
This problem is a nonlinear integer programming

problem and NP-hard. To solve such problems, the
method using ant colony optimization is already pro-
posed [5]. In this paper, we derive this problem using
the same approach. However, any method that can
find a solution can be used.

IV. Evaluation
By simulating a DDC where workloads change

dynamically, we demonstrate that DRA-CWC can
continually satisfy service performance requirements
for longer periods.

A. Environment
1) Network: Each resource is alternately deployed

to form a 3x3 2D torus network. Each packet switch
is connected to a computational or memory resource
pool, which holds 24 and 20 resources, respectively.
The clock frequency of each computational resource
is 3.4 GHz. Each switch pair is connected by three
network links and the propagation delay per link is
0.025 µs. The bandwidth is 50 Gbps.

2) Execution service: We assume that the following
three types of services are provided: (1)Service 1:
Semantic segmentation [7], (2) Service 2: 3D Object
Detection [8] and Service 3: Combination of semantic
segmentation [7] and bird’s eye view perception [9]. All
of these are inference processes using the AI model.
Each service task is composed of three types of µ-
services: (1) pre-processing of input data, (2) inference
for input data, and (3)post-processing of processing
results. The parameter settings for each service are
shown in Table II.

TABLE II: Parameter settings for each service
Semantic 3D Object bird’s eye view

segmentation Detection perception
Acceptable time(ms) 100 125 220

Arrival rate standard value 0.0067 0.0033 0.0034
Traffic standard value 150 90 100

µ-service 1
Clock count 68199102 49289698 181852

Traffic to/from memory(/ms) 2.58/4.38 1.74/0.0 0.72/2.61
Number of page faults 1977.88 144.56 31.26

Number of pages per page fault 2.78 2.58 2.36
µ-service 2

Clock count 33095402 52219370 147762478
Traffic to/from memory(/ms) 3.4/3.99 0.77/5.43 8.36/10.36

Number of page faults 1112.48 6832.98 7532.65
Number of pages per page fault 1.4 1.86 2.75

µ-service 3
Clock count 79239 59155594 399211

Traffic to/from memory(/ms) 1.39/0.0 0.81/0.0 3.72/3.13
Number of page faults 66.56 244.36 699.43

Number of pages per page fault 2.09 1.31 3.82

3) Shifting demand for each service: To simulate
dynamic service demand changes, we generate service
execution requests based on a dataset showing vehicle
positions per second in Cologne, Germany for 24
hours [10]. We assume a DDC provides service within
1km range. Thus, the city of Cologne is divided into
a grid every 2km, and the vehicles within the grid are
considered as service users. We generate requests for as
many vehicles as there are in the range. We evaluate
in two ranges: the highest number of vehicles (High
workload) and the number of vehicles as much as
the overall average number (Average workload). The
evaluation is based on the number of vehicles during
a 15-hour period from 5:00 a.m. to 8:00 p.m. Note
that the service used by each vehicle is determined at
random.

4) Demand prediction for services: In this paper,
We constructed a prediction model using the Tempo-
ral Fusion Transformer model. Based on this, we pre-
dict future demand for 60 seconds based on changes in
demand over the past 120 seconds The mean absolute
errors for the high workload and average workload are
6.97 and 2.97, respectively.
B. Comparative methods

We compared DRA-CWC with two resource alloca-
tion methods that do not consider workload changes.

Note that the determination of resource allocation due
to load changes is the same as for DRA-CWC.

a) Resource allocation considering the impact of
the network on the performance (RA-CNP): RA-CNP
avoids the allocation of high-performance resources
and low-latency paths as much as possible while satis-
fying the performance requirements and corresponds
to the resource allocation policy proposed by Ikoma
et al. [5].

b) Resource allocation by considering network
performance (NP): NP allocates paths with low traffic
and short lengths between computational and memory
resources. NP corresponds to the resource allocation
policy proposed by Zervas et al. [2] and Amaral et
al. [4].

C. Metrics
In this evaluation, we measure the time that the

performance requirements for each service could not
be satisfied. The higher this value, the lower the
response to workload changes.

D. Result
The execution delay per second for each service

is shown in Fig. 3. The red line in the figure is
the acceptable time for service. If it is above the
red line, the service does not satisfy the performance
requirements.

The results show that, regardless of the environment
or service, the DRA-CWC can satisfy the perfor-
mance requirements of services for more time than
the comparative methods. This means DRA-CWC
enables resource management to respond more flex-
ibly to workload changes than conventional methods.
Furthermore, even in high workload, the period during
which the acceptable time for service could not be
satisfied in DRA-CWC was only 51 seconds out of
the 15 hours evaluated. On the other hand, RA-CNP
and NP were 2105 and 1311 seconds, respectively.
Resource allocation by DRA-CWC is very effective.

V. Conclusion
We proposed a dynamic resource allocation method

considering the workload changes in a DDC (DRA-
CWC). DRA-CWC predicts the demand for each
execution service. Based on this prediction, we for-
mulated the impact of workload changes on perfor-
mance. Furthermore, we formulated the potential for
additional allocation for each service and the potential
as an additional resource for each resource. Based on

0

200

DRA-CWC
RA-CNP

NP
Acceptable time

0

200

E
xe

cu
tio

n
tim

e
(m

s)

20000 30000 40000 50000 60000 70000

Time(s)

0

200

(a) Service 1 in high workload

0

200

DRA-CWC
RA-CNP

NP
Acceptable time

0

200

E
xe

cu
tio

n
tim

e
(m

s)

20000 30000 40000 50000 60000 70000

Time(s)

0

200

(b) Service 2 in high workload

0

200

DRA-CWC
RA-CNP

NP
Acceptable time

0

200

E
xe

cu
tio

n
tim

e
(m

s)

20000 30000 40000 50000 60000 70000

Time(s)

0

200

(c) Service 3 in high workload

0

200

DRA-CWC
RA-CNP

NP
Acceptable time

0

200

E
xe

cu
tio

n
tim

e
(m

s)

20000 30000 40000 50000 60000 70000

Time(s)

0

200

(d) Service 1 in average workload

0

200

DRA-CWC
RA-CNP

NP
Acceptable time

0

200
E

xe
cu

tio
n

tim
e

(m
s)

20000 30000 40000 50000 60000 70000

Time(s)

0

200

(e) Service 2 in average workload

0

200

DRA-CWC
RA-CNP

NP
Acceptable time

0

200

E
xe

cu
tio

n
tim

e
(m

s)

20000 30000 40000 50000 60000 70000

Time(s)

0

200

(f) Service 3 in average workload

Fig. 3: Service execution delay per second for each environment and service.

these, DRA-CWC preserve the required resources to
satisfy the performance requirements for the future
workload increase while satisfying the performance
requirements. By comparing conventional resource al-
location methods for a DDC, we demonstrated DRA-
CWC can satisfy service performance requirements for
a longer time.

We plan to consider communications between var-
ious types of resources. In this paper, we assumed
services composed of multiple µ-services. In fact, there
are various forms of service execution. It is necessary
to generalize about the formulation of execution per-
formance and resource allocation costs, regardless of
the execution resource type.

References

[1] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and
S. Shenker, “Network support for resource disaggregation
in next-generation datacenters,” in Proceedings of the
Twelfth ACM Workshop on Hot Topics in Networks,
ser. HotNets-XII. New York, NY, USA: Association
for Computing Machinery, 2013. [Online]. Available:
https://doi.org/10.1145/2535771.2535778

[2] G. Zervas, H. Yuan, A. Saljoghei, Q. Chen, and V. Mishra,
“Optically disaggregated data centers with minimal re-
mote memory latency: Technologies, architectures, and
resource allocation [invited],” Journal of Optical Commu-
nications and Networking, vol. 10, no. 2, pp. A270–A285,
2018.

[3] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira,
S. Han, R. Agarwal, S. Ratnasamy, and S. Shenker,
“Network requirements for resource disaggregation,” in
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16). Savannah, GA: USENIX
Association, Nov. 2016, pp. 249–264. [Online]. Available:
https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/gao

[4] M. Amaral, J. Polo, D. Carrera, N. Gonzalez, C.-C. Yang,
A. Morari, B. D’Amora, A. Youssef, and M. Steinder, “Dr-
maestro: orchestrating disaggregated resources on virtual-
ized data-centers,” Journal of Cloud Computing, vol. 10,
pp. 1–20, mar 2021.

[5] A. Ikoma, Y. Ohsita, and M. Murata, “Resource allocation
considering impact of network on performance in a disag-
gregated data center,” IEEE Access, vol. 12, pp. 67 600–
67 618, 2024.

[6] T. Kimura, “Approximations for multi-server queues: Sys-
tem interpolations,” Queueing Systems, vol. 17, pp. 347–
382, 1994.

[7] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez,
and P. Luo, “Segformer: Simple and efficient design for se-
mantic segmentation with transformers,” in Proceedings of
Neural Information Processing Systems (NeurIPS), 2021.

[8] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded
convolutional detection,” Sensors, 2018.

[9] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Y. Qiao,
and J. Dai, “Bevformer: Learning birdfs-eye-view repre-
sentation from multi-camera images via spatiotemporal
transformers,” arXiv preprint arXiv:2203.17270, 2022.

[10] S. Uppoor, O. Trullols-Cruces, M. Fiore, and J. M.
Barcelo-Ordinas, “Generation and analysis of a large-scale
urban vehicular mobility dataset,” IEEE Transactions on
Mobile Computing, vol. 13, no. 5, pp. 1061–1075, 2014.

